JPH0772104B2 - Polycrystalline ceramics - Google Patents

Polycrystalline ceramics

Info

Publication number
JPH0772104B2
JPH0772104B2 JP62108468A JP10846887A JPH0772104B2 JP H0772104 B2 JPH0772104 B2 JP H0772104B2 JP 62108468 A JP62108468 A JP 62108468A JP 10846887 A JP10846887 A JP 10846887A JP H0772104 B2 JPH0772104 B2 JP H0772104B2
Authority
JP
Japan
Prior art keywords
halogenated
sicl
hydride
ticl
polycrystalline ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62108468A
Other languages
Japanese (ja)
Other versions
JPS63274665A (en
Inventor
敏雄 平井
孝 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62108468A priority Critical patent/JPH0772104B2/en
Publication of JPS63274665A publication Critical patent/JPS63274665A/en
Publication of JPH0772104B2 publication Critical patent/JPH0772104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 セラミックスは一般に、金属材料より高硬度で、耐食
性、耐摩耗性に優れているが、常温では塑性変形を示さ
ず脆性である。このため、金属材料と比較すると機械部
品や構造材料としての用途では制約が大きく、工具材や
IC基板等の極めて限られたものを用いられているに過ぎ
ない。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] Ceramics are generally higher in hardness than metal materials and are superior in corrosion resistance and wear resistance, but they do not exhibit plastic deformation at room temperature and are brittle. For this reason, compared to metal materials, there are major restrictions in applications as mechanical parts and structural materials, and it is
Only extremely limited ones such as IC substrates are used.

本発明は従来のセラミックス材料の欠点であった、ごく
わずかの変形によって破壊してしまうという脆性を著し
く改良し、常温においても塑性変形性を有する新たな多
結晶質セラミックス材料に関するものである。
TECHNICAL FIELD The present invention relates to a new polycrystalline ceramic material which has the drawback of conventional ceramic materials, that is, brittleness of being broken by a very small amount of deformation is remarkably improved and which has plastic deformability even at room temperature.

本発明によるセラミックスは、単体として耐熱性、耐食
性、耐酸化性が要求される各種の機械部品や容器、金
型、シール材料として用いられているのみならず、他の
材料の表面にコーティングして同様な用途に用いること
もできる。特に相手材料と密接させて用いる必要がある
機械部品、シール材料等では機械的な変形に対して破壊
し難い特徴を有するため好適である。
The ceramics according to the present invention are not only used as a simple material for various machine parts, containers, molds and sealing materials that are required to have heat resistance, corrosion resistance and oxidation resistance, but also coated on the surface of other materials. It can also be used for similar purposes. In particular, mechanical parts, sealing materials, etc. that need to be used in close contact with the mating material are suitable because they have the characteristic of being less likely to be destroyed by mechanical deformation.

〔従来の技術〕[Conventional technology]

従来のセラミックス材料の中で、耐食性や耐酸化性等の
特性を有しながら、かつ低硬度の材料として代表的なも
のは六方晶BNである。六方晶BNは黒鉛と同様の層状構造
を有し、固体潤滑材としても用いられている。しかし、
六方晶BNは機械部品として用いるにはあまりに低硬度
(Hv100以下)である。その他の低硬度のセラミックス
としては、硫化物、Se化合物等があるが、これ等は耐食
性、耐酸化性の点で劣っている。
Among the conventional ceramic materials, hexagonal BN is a typical material having low hardness while having characteristics such as corrosion resistance and oxidation resistance. Hexagonal BN has a layered structure similar to graphite and is also used as a solid lubricant. But,
Hexagonal BN has too low hardness (Hv100 or less) for use as mechanical parts. Other low hardness ceramics include sulfides and Se compounds, which are inferior in corrosion resistance and oxidation resistance.

本発明のTi3SiC2からなる多結晶質セラミックスは、鋼
に匹敵する硬度を有し、かつ耐食性や耐酸化性に優れた
セラミックスの特徴を有する。
The polycrystalline ceramics made of Ti 3 SiC 2 of the present invention has the characteristics of ceramics having hardness comparable to steel and excellent in corrosion resistance and oxidation resistance.

このTi3SiC2については、既にJeitschkoとNowotny(W.J
eitschko and H.Nowotny,Mh.Chem.98,329(1967)やNic
kl等(J.J Nickl,K.K.Schweitger and P.Luxenburg J.L
ess−Common Metals,26,335(1972)によって数10μm
の小さな単結晶が合成されている。
For this Ti 3 SiC 2, we have already reviewed Jeitschko and Nowotny (WJ
eitschko and H. Nowotny, Mh. Chem. 98,329 (1967) and Nic
kl, etc. (JJ Nickl, KKSchweitger and P.Luxenburg JL
ess-Common Metals, 26, 335 (1972), several tens of μm
A small single crystal of is synthesized.

しかし、現在まで実質的にTi3SiC2相のみからなる多結
晶質セラミックス合成された事が無く、特性も充分測定
されていなかった。
However, until now, polycrystalline ceramics consisting essentially of Ti 3 SiC 2 phase have never been synthesized, and the characteristics have not been sufficiently measured.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は従来のセラミックス材料の脆性を著しく改善
し、セラミックスの特徴である耐食性、耐酸化性等の特
徴を有する材料を提供せんとするものである。
The present invention is intended to provide a material which significantly improves the brittleness of conventional ceramic materials and has the characteristics of ceramics such as corrosion resistance and oxidation resistance.

また機械部品として用いるためには微細な単結晶ではな
く、一定の大きさを持つ多結晶質の材料を製造する事が
可能とならねばならない。
In addition, it must be possible to manufacture a polycrystalline material having a certain size rather than a fine single crystal for use as a mechanical part.

〔問題点を解決するための手段〕[Means for solving problems]

CVD法では反応炉内圧力を1〜760Torrに保持して、Tiの
塩化物(TiCl4等)、Siのハロゲン化物(SiCl4,SiF
4等)、水素化物(SiH4)、ハロゲン化水素化物(SiHcl
3,SiHBr3等)、およびハロゲン化炭水素化物(Si(C
H3)cl4、CH3Sicl4等)のうちの1種以上と炭素のハロ
ゲン化物(Ccl4),水素化物(C3H8,C2H6,CH4等)およ
びハロゲン化水素化物(CH3cl,CH3F等)のうち1種以
上と、水素からなる反応ガス、あるいはTi塩化物と、Si
のハロゲン化炭水素化物と、水素からなる反応ガスを導
入し、1000〜1700℃に加熱された基体上にSi-Ti-C系の
各種の化合物もしくはそれ等の混合物を合成する事がで
きる。それ等の化合物はTiC,SiCTiSi2,Ti3SiC2等であ
る。
In the CVD method, the pressure in the reaction furnace is maintained at 1 to 760 Torr, and Ti chlorides (TiCl 4 etc.) and Si halides (SiCl 4 , SiF 4
4 ), hydride (SiH 4 ), halogenated hydride (SiHcl
3 , SiHBr 3, etc.) and halogenated hydrocarbon hydrides (Si (C
H 3 ) cl 4 , CH 3 Sicl 4, etc.) and carbon halides (Ccl 4 ), hydrides (C 3 H 8 , C 2 H 6 , CH 4 etc.) and hydrides. At least one of (CH 3 cl, CH 3 F, etc.), a reaction gas consisting of hydrogen, or Ti chloride, and Si
It is possible to synthesize various compounds of Si-Ti-C type or a mixture thereof on a substrate heated to 1000 to 1700 ° C by introducing a reaction gas composed of the halogenated carbon hydride and hydrogen. Such compounds are TiC, SiCTiSi 2 , Ti 3 SiC 2 and the like.

合成条件に応じて種々の共析出物からなる複合体セラミ
ックス、例えばTiC+Ti3SiC2,SiC+Ti3SiC2,SiC+TiSi2
が得られる。
Composite ceramics consisting of various co-precipitates depending on the synthesis conditions, such as TiC + Ti 3 SiC 2 , SiC + Ti 3 SiC 2 , SiC + TiSi 2
Is obtained.

発明者等は合成条件を種々変えて検討した結果、本発明
のTi3SiC2単相からなる多結晶質のセラミックスが得ら
れる事を見出した。またこのセラミックスの硬度はTiC
やSiCもしくはこれ等の混合物または更にTiSi2やTi3SiC
2とTiC、SiCを含む混合相からなるものが高い硬度を有
するのに比較して、著しく低硬度で常温下でも塑性変形
性を有する事を確認した。
As a result of various studies on the synthesis conditions, the inventors have found that the polycrystalline ceramics of the present invention consisting of the Ti 3 SiC 2 single phase can be obtained. The hardness of this ceramic is TiC.
Or SiC or mixtures thereof or even TiSi 2 or Ti 3 SiC
It was confirmed that the hardness of the mixed phase containing 2 and TiC and SiC is high, and that it has plastic deformation even at room temperature.

実質的に単相のTi3SiC2からなる多結晶体を得るには、C
VD合成条件を適切な範囲に選択する事が必須である。以
下実施例により説明する。
To obtain a polycrystalline body consisting essentially of single-phase Ti 3 SiC 2 ,
It is essential to select VD synthesis conditions in an appropriate range. An example will be described below.

実施例1 原料ガスとして、Sicl4,Ticl4,Ccl4,及びH2ガスを用い
た。基体としては黒鉛を用い、反応温度を1200〜1600℃
に変化させ、H2ガス及びCcl4の流量を各々1800及び17.5
cm3/minに保ち、Sicl4/(Si cl4+Ticl4)比を0〜1
の範囲で変えて実験した。炉内ガス全圧力は300Torr一
定とした。合成時間は2時間である。
Example 1 Sicl 4 , Ticl 4 , Ccl 4 , and H 2 gas were used as raw material gases. Graphite is used as the substrate, and the reaction temperature is 1200 to 1600 ° C.
The flow rate of H 2 gas and Ccl 4 at 1800 and 17.5, respectively.
Keep in cm 3 / min, 0~1 the Sicl 4 / (Si cl 4 + Ticl 4) ratio
Experiments were performed with different ranges. The total gas pressure in the furnace was kept constant at 300 Torr. The synthesis time is 2 hours.

黒鉛基体上に合成されたSi-Ti-C系の化合物をX線回析
により同定した結果を図1に示した。
The result of identifying the Si—Ti—C compound synthesized on the graphite substrate by X-ray diffraction is shown in FIG.

本実験条件下では、図の斜線部の基体温度及びSicl4
(Sicl4+Ticl4)比が0.4〜0.7の範囲でのみTi3SiC2
相からなる多結晶体が得られた。基体温度1300℃Sicl4
/(Sicl4+Ticl4)=0.42で得られた多結晶体のサイズ
は60mm×40mm×0.4mmであった。
Under the conditions of this experiment, the substrate temperature in the shaded area and SiCl 4 /
A polycrystalline body composed of a Ti 3 SiC 2 single phase was obtained only when the (Sicl 4 + Ticl 4 ) ratio was in the range of 0.4 to 0.7. Base temperature 1300 ℃ Sicl 4
The size of the polycrystal obtained with / (Sicl 4 + Ticl 4 ) = 0.42 was 60 mm × 40 mm × 0.4 mm.

またX線回析による格子定数は a=3.064Å,C=17.650Å の六方晶化合物であった。アルキメデス法による密度は
4.53g/cm3である。なお、X線回析強度比からこの多結
晶体はC軸が基体に平行に生成しており、(110)に強
い配向性を示すことが明らかになった。上記した多結晶
体の硬度をビッカース硬度計で荷重500gで測定した結果
HV=600kg/mm2と大変柔らかい多結晶体である。
The lattice constant by X-ray diffraction was a = 3.064Å, C = 17.650Å and was a hexagonal compound. The density according to the Archimedes method is
It is 4.53 g / cm 3 . From the X-ray diffraction intensity ratio, it was revealed that the C-axis of this polycrystal was formed parallel to the substrate, and that it had a strong (110) orientation. The result of measuring the hardness of the above-mentioned polycrystalline body with a load of 500 g with a Vickers hardness tester
It is a very soft polycrystal with HV = 600 kg / mm 2 .

また、ビッカース圧痕の周辺には多数のすべり線が観察
され、この多結晶体が優れた塑性変形性を有する事が判
明した。
In addition, a large number of slip lines were observed around the Vickers indentation, and it was found that this polycrystalline body had excellent plastic deformability.

実施例2 ホットプレスにより製造したSi3N4製の先端半径5mmのピ
ンを基体として用い、実施例1と同様の原料ガスを用
い、全ガス圧100Torr、基体温度1250℃Sicl4/(Sicl4
+Ticl4)=0.3で30分間処理した。尚、Ccl4/H2の流量
比は0.01とした。
Example 2 A pin made of Si 3 N 4 manufactured by hot pressing and having a tip radius of 5 mm was used as a substrate, the same source gas as in Example 1 was used, the total gas pressure was 100 Torr, the substrate temperature was 1250 ° C. Sicl 4 / (Sicl 4
+ Ticl 4 ) = 0.3 for 30 minutes. The flow rate ratio of Ccl 4 / H 2 was 0.01.

Si3N4ピン上に膜厚20μmのTi3Sicl2単相からなるコー
ティング層が得られた。
A coating layer consisting of a Ti 3 Sicl 2 single phase with a film thickness of 20 μm was obtained on the Si 3 N 4 pin.

比較の為にCcl4/H2の流量比を0.05とし、他は同一の条
件でコーティング層を形成させた。この場合の膜はX線
回析の結果SiCとTiCの混合物からなる事が判った。
For comparison, the flow rate ratio of Ccl 4 / H 2 was set to 0.05, and the coating layer was formed under the same conditions. As a result of X-ray diffraction, the film in this case was found to consist of a mixture of SiC and TiC.

両者についてビッカース硬度を測定したところ、本発明
のTi3SiC2からなる膜では700kg/mm2で、比較材は3,000k
g/mm2と極めて高い値を示した。Al2O3製の円板を周速50
m/minで回転させ、荷重100gでコーティングしたピンを
円板に押しつけて5分間保持した。本発明のTi3Sicl2
コーティングしたSi3N4ピンでは膜及びAl2O3円板の変化
は見られなかった。
The Vickers hardness of both was measured and found to be 700 kg / mm 2 for the film made of Ti 3 SiC 2 of the present invention and 3,000 k for the comparative material.
It showed an extremely high value of g / mm 2 . A disk made of Al 2 O 3 has a peripheral speed of 50.
It was rotated at m / min, the pin coated with a load of 100 g was pressed against the disc and held for 5 minutes. No changes in the film and the Al 2 O 3 disk were observed with the Si 3 N 4 pin coated with Ti 3 Sicl 2 of the present invention.

一方比較材は、接触点の膜が剥離しており、またAl2O3
円板に条痕が見られた。このことから、特にセラミック
ス同士が接触して摺動する様な機械部品や、相手材が焼
入れ鋼等の金属である場合の摺動部材として本発明の多
結晶質セラミックスを用いると相手材を傷つける事が無
く、また塑性変形性に富むため、不均一な接触圧が加わ
った場合に変形によって応力の集中が緩和され、自体が
脆性破壊しないといった優れた特性を有する事が判る。
On the other hand, in the comparative material, the film at the contact point was peeled off, and Al 2 O 3
A streak was seen on the disc. From this, especially when the polycrystalline ceramics of the present invention is used as a mechanical part in which ceramics come into contact with each other and slide, or when the mating material is a metal such as hardened steel, the mating material is damaged. It is clear that since it has no problem and is rich in plastic deformability, concentration of stress is relieved by deformation when non-uniform contact pressure is applied, and it does not have brittle fracture itself.

実施例3 実施例1と同様にして、SiCl4,TiCl4,CCl4,H2ガスを用
いて、SiCl4/(SiCl4+TiCl4)の流量比を種々変化さ
せて、1250〜1600℃間で多結晶体セラミックスを合成し
た。この結果(X線回折による生成相と合成条件の関
係)を第1図に示す。
Example 3 In the same manner as in Example 1, using SiCl 4 , TiCl 4 , CCl 4 , and H 2 gas, the flow rate ratio of SiCl 4 / (SiCl 4 + TiCl 4 ) was variously changed, and the temperature was varied between 1250 and 1600 ° C. Polycrystalline ceramics were synthesized by. The results (relationship between the production phase by X-ray diffraction and the synthesis conditions) are shown in FIG.

〔発明の効果〕〔The invention's effect〕

従来のセラミックスの最大の欠点は、その脆性にある。
機械部品や構造材料としてセラミックスを用いる場合、
必要以上の硬度があるため、加工性が悪く、また摺動材
等として用いると相手材を傷つける事もその用途を制約
するものであった。
The biggest drawback of conventional ceramics is their brittleness.
When using ceramics as mechanical parts or structural materials,
Since it has a hardness higher than necessary, it has poor workability, and when it is used as a sliding material or the like, it damages the mating material, which limits its use.

本発明のセラミックスは、従来のセラミックスのこの様
な欠点を一挙に解決したもので、優れた塑性変形性を有
し、かつ、硬度が焼入れ鋼と同等であるため相手材を傷
つける事も大巾に軽減されている。更に、高温下でも表
面にTiO2,SiO2といった安定な酸化膜が形成される事に
より、耐熱性や耐酸化性、耐食性、といった金属材料と
比較した場合のセラミックスの特徴を合せ持っている。
The ceramics of the present invention solve all of the above-mentioned drawbacks of conventional ceramics at once, have excellent plastic deformability, and have the same hardness as hardened steel, so that the other material may be damaged. Has been reduced to. Furthermore, since a stable oxide film such as TiO 2 and SiO 2 is formed on the surface even at high temperature, it has the characteristics of ceramics such as heat resistance, oxidation resistance, and corrosion resistance as compared with metal materials.

上述のように、本発明による多結晶質セラミックスは、
従来のセラミックスでは用いる事が出来なかった機械部
品、耐食性容器、構造材料として広範囲な用途に敵した
ものである。
As described above, the polycrystalline ceramic according to the present invention is
It is suitable for a wide range of applications as mechanical parts, corrosion resistant containers, and structural materials that could not be used with conventional ceramics.

【図面の簡単な説明】[Brief description of drawings]

第1図は、X線回析による生成相と合成条件の関係、い
わゆるCVD相図を示す。 尚、Sicl4/(Sicl4+Ticl4)は原料ガス流量比を示
す。
FIG. 1 shows a relationship between a generated phase by X-ray diffraction and synthesis conditions, a so-called CVD phase diagram. It should be noted that SiCl 4 / (Sicl 4 + Ticl 4 ) represents the raw material gas flow rate ratio.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Ti3SiC2単相から成り、常温下で塑性変形
性を有することを特徴とする多結晶質セラミックス。
1. A polycrystalline ceramic comprising a single phase of Ti 3 SiC 2 and having plastic deformability at room temperature.
【請求項2】常温下でのビッカース硬度が測定荷重100g
以上で800Kg/mm2以下である事を特徴とする特許請求の
範囲第(1)項記載の多結晶質セラミックス。
2. The Vickers hardness at room temperature has a measured load of 100 g.
The polycrystalline ceramic according to claim (1), characterized in that it is 800 kg / mm 2 or less.
【請求項3】結晶のC軸が基体に平行に生成しかつ(11
0)に配向していることを特徴とする特許請求の範囲第
(1)項乃至第(2)項記載の多結晶質セラミックス。
3. The C axis of the crystal forms parallel to the substrate and (11
The polycrystalline ceramic according to any one of claims (1) to (2), which is oriented in (0).
【請求項4】Tiの塩化物と、Siのハロゲン化物、ハロゲ
ン化水素化物、およびハロゲン化炭水素化のうち1種以
上と、炭素のハロゲン化物、水素化物、およびハロゲン
化水素化物のうちの1種以上と、水素からなる反応ガ
ス、あるいはTiの塩化物とSiのハロゲン化炭水素化物
と、水素、からなる反応ガスを用いて、(Siの、ハロゲ
ン化物、ハロゲン化水素化物及びハロゲン化炭水素化物
の1種以上の流量)/(Siの、ハロゲン化物、ハロゲン
化水素化物及びハロゲン化炭水素化物の1種以上の流量
+TiCl4)が0.4〜0.7で、CVD法によって合成されること
を特徴とする特許請求の範囲第(1)項乃至第(3)項
のいずれか記載の多結晶質セラミックス。
4. A chloride of Ti, at least one of a halide of Si, a halogenated hydride, and a halogenated hydrocarbon, and a halide of carbon, a hydride, and a halogenated hydride of carbon. Using a reaction gas composed of one or more kinds and hydrogen, or a reaction gas composed of Ti chloride and Si halogenated hydrocarbon hydride and hydrogen, (Si, halide, hydride and halogenated The flow rate of one or more types of hydrocarbon hydride) / (the flow rate of one or more types of halides, halogenated hydrides and halogenated carbon hydrides of Si + TiCl 4 ) is 0.4 to 0.7, and be synthesized by the CVD method The polycrystalline ceramic according to any one of claims (1) to (3), characterized in that:
【請求項5】原料ガスとしてSiCl4,TiCl4,C Cl4及びH2
ガスを用い、合成温度が1250〜1400℃、反応ガス全圧が
1〜760TorrであってSiCl4/(SiCl4+TiCl4)が0.4〜
0.7で合成されることを特徴とする特許請求の範囲第
(1)項乃至第(5)項のいずれか記載の多結晶質セラ
ミックス。
5. SiCl 4 , TiCl 4 , C Cl 4 and H 2 as source gases
Using gas, synthesis temperature is 1250 to 1400 ℃, total reaction gas pressure is 1 to 760 Torr, and SiCl 4 / (SiCl 4 + TiCl 4 ) is 0.4 to
The polycrystalline ceramic according to any one of claims (1) to (5), characterized in that it is synthesized at 0.7.
JP62108468A 1987-04-30 1987-04-30 Polycrystalline ceramics Expired - Fee Related JPH0772104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108468A JPH0772104B2 (en) 1987-04-30 1987-04-30 Polycrystalline ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108468A JPH0772104B2 (en) 1987-04-30 1987-04-30 Polycrystalline ceramics

Publications (2)

Publication Number Publication Date
JPS63274665A JPS63274665A (en) 1988-11-11
JPH0772104B2 true JPH0772104B2 (en) 1995-08-02

Family

ID=14485520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108468A Expired - Fee Related JPH0772104B2 (en) 1987-04-30 1987-04-30 Polycrystalline ceramics

Country Status (1)

Country Link
JP (1) JPH0772104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167962A1 (en) * 2013-04-12 2014-10-16 イビデン株式会社 Ceramic assembly, heat-resistant component, and ceramic assembly production method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120816C (en) * 1998-08-19 2003-09-10 中国科学院金属研究所 Process for preparing titaniferous silicon carbide powder
CN1120817C (en) * 1998-10-07 2003-09-10 中国科学院金属研究所 In-situ hot pressing solid-liquid phase reaction process to prepare silicon titanium-carbide material
US6461989B1 (en) * 1999-12-22 2002-10-08 Drexel University Process for forming 312 phase materials and process for sintering the same
US6544674B2 (en) * 2000-08-28 2003-04-08 Boston Microsystems, Inc. Stable electrical contact for silicon carbide devices
SE516644C2 (en) * 2000-12-21 2002-02-05 Sandvik Ab Resistance elements for extreme temperatures
US20040265405A1 (en) * 2003-06-30 2004-12-30 Devrim Akyuz Hot press tool
CN107778009B (en) * 2016-08-26 2021-04-20 辽宁省轻工科学研究院有限公司 Pressure-bearing preparation of Ti3SiC2Method for synthesizing ceramics by reverse thermal expansion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167962A1 (en) * 2013-04-12 2014-10-16 イビデン株式会社 Ceramic assembly, heat-resistant component, and ceramic assembly production method
JP2014205590A (en) * 2013-04-12 2014-10-30 イビデン株式会社 Ceramic joined body, heat resistant component and method of manufacturing ceramic joined body

Also Published As

Publication number Publication date
JPS63274665A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
Rebenne et al. Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance
JPS60502245A (en) Composite silicon nitride cutting tool with coating
JPS60502244A (en) Coated silicon nitride cutting tools
KR20090024788A (en) Ultrahard composite materials
US4225355A (en) Amorphous boron-carbon alloy in bulk form and methods of making the same
JPH0772104B2 (en) Polycrystalline ceramics
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
JP2825521B2 (en) Hard material protective layer for strongly loaded substrates and its preparation
Haubner et al. High performance non-oxide ceramics II
Besmann et al. Morphology of chemical vapor deposited titanium diboride
JPH0333005A (en) Pyrolytic boron nitride of columnar crystal form
AU596074B2 (en) Method for making coatings of boron carbides and coatings obtained thereby
JPH07232978A (en) Diamond-like carbon film-coated material and its formation
US4640693A (en) Coated silicon nitride cutting tool and process for making
US5023215A (en) Cordierite-silicon nitride body
US4906324A (en) Method for the preparation of silicon carbide platelets
JPS60155508A (en) Noncrystalline boron nitride having improved stability
JPS61201778A (en) Coated sintered hard alloy
JPH02192483A (en) Diamond silicon carbide composite
JPH02199064A (en) Sintered silicon carbide having high thermal conductivity and production thereof
JPS62263969A (en) Crystalline ceramics excellent in wear resistance at high temperature and its production
JPS6350383A (en) Coated zro2 base ceramics and manufacture
JPH0310562B2 (en)
Götze et al. Natural and Synthetic Hard Materials
JPH03164437A (en) Optical element forming die

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees