JPH0770613A - Dehydrogenation in production of titanium powder - Google Patents

Dehydrogenation in production of titanium powder

Info

Publication number
JPH0770613A
JPH0770613A JP5221286A JP22128693A JPH0770613A JP H0770613 A JPH0770613 A JP H0770613A JP 5221286 A JP5221286 A JP 5221286A JP 22128693 A JP22128693 A JP 22128693A JP H0770613 A JPH0770613 A JP H0770613A
Authority
JP
Japan
Prior art keywords
furnace
powder
titanium
dehydrogenation
kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5221286A
Other languages
Japanese (ja)
Inventor
Noboru Takaku
昇 高久
Hideki Fujii
秀樹 藤井
Masao Yamamiya
昌夫 山宮
Michio Tamura
道夫 田村
Wataru Kagohashi
亘 籠橋
Hidekazu Fukazawa
英一 深澤
Ryoji Murayama
良治 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toho Titanium Co Ltd
Original Assignee
Nippon Steel Corp
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toho Titanium Co Ltd filed Critical Nippon Steel Corp
Priority to JP5221286A priority Critical patent/JPH0770613A/en
Publication of JPH0770613A publication Critical patent/JPH0770613A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently dehydrogenate titanium hydride in the production of titanium powder by rotating and agitating the titanium hydride charged in a closed rotary kiln instead of a conventional stationary batch-type dehydrogenator wherein trays are placed on one another in multiple stages. CONSTITUTION:A titanium hydride powder 11 is charged into a closed rotary kiln 1 connected with an evacuating pipe 4 and a gaseous Ar feed pipe 6 through a rotary joint 5, the kiln is evacuated and heated, the powder is dehydrogenated while rotating the kiln 1, heating is stopped after the kiln is restored to a specified vacuum, and gaseous Ar is supplied immediately or after a necessary retention time to cool the kiln. The kiln 1 is vibrated continuously or intermittently during dehydrogenation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金原料としての
チタン粉末を水素化脱水素法(HDH法)により製造す
る場合において、水素化チタン粉末を脱水素化熱処理す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat-treating dehydrogenating titanium hydride powder in the case of producing titanium powder as a powder metallurgy raw material by the hydrodehydrogenation method (HDH method).

【0002】[0002]

【従来の技術】チタン合金は比強度が高く、耐熱性、耐
蝕性に優れており、航空機等の材料として極めて有効な
特性を具備しているが、溶解、鍛造、切削等の加工性に
難点がある。このため、加工費の低減、歩留りの向上の
観点から最終形状に近い半製品を直接製造する技術とし
て、粉末冶金法が有望になっている。粉末冶金によって
チタン合金を製造する場合、原料として純チタン粉末と
チタン母合金粉末の混合粉末を用いる方法、およびチタ
ン合金粉末を用いる方法がある。前者の方法は両粉末の
混合比を変えることにより種々の組成の合金を安価に製
造できることから有利な方法とされている。
2. Description of the Related Art Titanium alloys have high specific strength, excellent heat resistance and corrosion resistance, and have properties that are extremely effective as materials for aircraft, etc., but have difficulty in workability such as melting, forging, and cutting. There is. Therefore, the powder metallurgy method is promising as a technique for directly manufacturing a semi-finished product having a final shape from the viewpoint of reducing the processing cost and improving the yield. In the case of producing a titanium alloy by powder metallurgy, there are a method of using a mixed powder of pure titanium powder and a titanium mother alloy powder as a raw material, and a method of using a titanium alloy powder. The former method is considered to be an advantageous method because alloys of various compositions can be manufactured at low cost by changing the mixing ratio of both powders.

【0003】純チタン粉末の製造方法としては、一般に
金属チタンを得るスポンジチタンを機械的に直接粉砕し
て粉末とする方法もあるが、スポンジチタンは展延性に
富むためこれを直接粉砕して微粉末を得るのは困難であ
り、また、得られたとしても塩素分が多いため粉末冶金
用としては低い品質となる。一方、溶融チタンをガスで
吹き飛ばして粉末を作るアトマイズ法、或いは、チタン
電極を回転させ、その電極をプラズマ等で溶融し、遠心
力で吹き飛ばして粉末にする回転電極法がある。これら
の方法によれば、比較的純度の高いチタンが得られる
が、粉末形状、粒度、コスト等に難点がある。
As a method of producing pure titanium powder, there is generally a method of mechanically directly crushing sponge titanium to obtain metallic titanium to obtain powder, but since sponge titanium is rich in spreadability, it is directly crushed and finely divided. It is difficult to obtain a powder, and even if it is obtained, it has a high chlorine content, and therefore has a low quality for powder metallurgy. On the other hand, there is an atomizing method in which molten titanium is blown off with a gas to produce powder, or a rotating electrode method in which a titanium electrode is rotated and the electrode is melted by plasma or the like and blown off by a centrifugal force to obtain powder. According to these methods, titanium having a relatively high purity can be obtained, but there are problems in powder shape, particle size, cost, and the like.

【0004】このため、原料チタンを水素化処理して脆
弱なチタン水素化物とし、これを機械的に粉砕して粉末
とした後、真空加熱等により脱水素してチタン粉末を得
るHDH法による方法が一般的に採用されている。この
HDH法による脱水素化処理では水素化チタン粉末を皿
状の処理容器(トレイ)に充填し、真空中で加熱処理さ
れるが、トレイ中には水素化チタン粉末の層厚を30〜
50mm以上にすると脱水素に時間が掛かるという問題が
あり、そのため脱水素効率から前記層厚を30〜50mm
程度に抑える必要がある。このように、脱水素化チタン
粉末の層厚に制限があるため、処理量を上げるには水素
化チタン粉末が厚さ30〜50mm入ったトレイを多段に
積上げ処理する必要がある。この積上げるトレイは脱水
素化炉の熱処理・排気能力、炉内容積・形状等によって
も異なるが、工業的規模では数十段になる。
For this reason, the raw material titanium is hydrotreated to give a brittle titanium hydride, which is mechanically pulverized into powder and then dehydrogenated by vacuum heating or the like to obtain titanium powder by the HDH method. Is generally adopted. In this dehydrogenation treatment by the HDH method, titanium hydride powder is filled in a dish-shaped treatment container (tray) and heat-treated in vacuum. The titanium hydride powder has a layer thickness of 30 to 30 in the tray.
If the thickness is 50 mm or more, there is a problem that dehydrogenation takes a long time. Therefore, the layer thickness is 30 to 50 mm in view of dehydrogenation efficiency.
It is necessary to suppress it to a certain degree. Thus, since the layer thickness of the dehydrogenated titanium powder is limited, it is necessary to stack the trays containing the titanium hydride powder in a thickness of 30 to 50 mm in multiple stages in order to increase the treatment amount. The stacking tray has several tens of stages on an industrial scale, although it depends on the heat treatment / exhaust capacity of the dehydrogenation furnace, the volume and shape of the furnace, etc.

【0005】現状この各トレイにチタン粉末を供給し、
所定の層厚に調整するのを人手で行っており、そして必
要な段数に積上げて脱水素化炉に装入する。このような
人手によることは、作業効率が悪く生産性が低い。また
層厚みのバラツキがあり、これによる処理時間にもバラ
ツキを引き起すという問題がある。
Presently, titanium powder is supplied to each tray,
It is manually adjusted to a predetermined layer thickness, and the necessary number of stages is stacked and charged into a dehydrogenation furnace. Such manual labor causes poor work efficiency and low productivity. In addition, there is a problem that the layer thickness varies, which causes variation in processing time.

【0006】一方、脱水素処理が終了した後は、多段に
積んだトレイを人手で解体し、また粉末がトレイに凝着
・付着した場合も人手で剥がさなければならない。
On the other hand, after the dehydrogenation treatment is completed, the trays stacked in multiple stages must be manually dismantled, and even if the powder adheres or adheres to the trays, it must be peeled off manually.

【0007】[0007]

【発明が解決しようとする課題】本発明はこの様な従来
の問題点を解消するものであって、トレイを多段に積ん
で脱水素化熱処理を静止・バッチ型でなく、密閉型回転
炉で装入した水素化チタンを回転攪拌させながら行うこ
とにより、生産性が高く、かつ効率のよいチタン粉末製
造における脱水素化処理方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, in which trays are stacked in multiple stages to carry out dehydrogenation heat treatment in a closed rotary furnace instead of a static / batch type. It is an object of the present invention to provide a dehydrogenation treatment method in the production of titanium powder with high productivity and efficiency, by performing the stirring while rotating the charged titanium hydride.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、以下の構成を要旨とする。すなわち、(1)
水素化脱水素法によりチタン粉末を製造する方法におい
て、回転炉内に水素化チタン粉末を装入し、該炉を回転
させながら脱水素処理することを特徴とするチタン粉末
製造における脱水素化処理方法であり、(2)回転ジョイ
ントを介して真空吸引管及びArガス供給管を連結した
密閉回転炉に水素化チタン粉末を装入し、炉内を真空引
きすると共に加熱し、かつ回転炉を回転させながら脱水
素処理を行い、炉内が所定の真空以下に回復した後に加
熱を停止せしめ直ちに或いは所要時間保定後Arガスを
供給して冷却することを特徴とするチタン粉末製造にお
ける脱水素化処理方法である。上記脱水素処理中の回転
炉に振動を連続或いは間欠的に付与することにより炉内
への脱水素化チタン粉末の付着を防止できる。
In order to achieve the above object, the present invention has the following structures. That is, (1)
A method for producing titanium powder by a hydrodehydrogenation method, which comprises charging titanium hydride powder into a rotary furnace and performing dehydrogenation while rotating the furnace. (2) Titanium hydride powder is charged into a closed rotary furnace in which a vacuum suction pipe and an Ar gas supply pipe are connected via a rotary joint, and the furnace is evacuated and heated, and the rotary furnace is Dehydrogenation in titanium powder production, characterized by performing dehydrogenation treatment while rotating, stopping heating immediately after the inside of the furnace is restored to a predetermined vacuum or lower, and immediately or holding for a required time and then supplying Ar gas for cooling. It is a processing method. By continuously or intermittently applying vibration to the rotary furnace during the dehydrogenation treatment, it is possible to prevent the dehydrogenated titanium powder from adhering to the inside of the furnace.

【0009】[0009]

【作用】このように本発明においては、水素化チタン粉
末を密閉型回転炉に装入し回転させながら脱水素化処理
を行うことにより、粉末が常に攪拌されることで脱水素
化の効率がよくなると共に、前記バッチ型のように装入
層厚を50mm以下に制限する必要も無く、また、粉末が
疑似焼結して塊状になることもない。一部疑似焼結化す
ることがあっても脱水素化後簡単に解砕するだけです
む。更に、回転炉の内壁を高融点材料とするか、この材
料でライニングすることにより、或いは更に炉壁に振動
等の打撃を与えることにより、チタン粉末が炉壁へ付着
するのを防止できる。
As described above, in the present invention, the titanium hydride powder is charged into the closed rotary furnace and is subjected to the dehydrogenation treatment while being rotated, so that the powder is constantly stirred to improve the efficiency of dehydrogenation. In addition, it is not necessary to limit the thickness of the charging layer to 50 mm or less as in the case of the batch type, and the powder is not pseudo-sintered into a lump. Even if some of them are pseudo-sintered, they can be easily crushed after dehydrogenation. Further, it is possible to prevent the titanium powder from adhering to the furnace wall by making the inner wall of the rotary furnace a high melting point material, lining it with this material, or by further hitting the furnace wall with vibration or the like.

【0010】以下に本発明を詳細に説明する。図1は本
発明の脱水素化処理を実施する装置を模式的に示した説
明図である。図において、1は円筒状の回転炉であり、
加熱手段(例えば電気ヒーター、図示せず)を埋設した
炉壁2と、その内側にステンレス等の耐熱合金鋼からな
る内壁3から構成されている。内壁3の内表面には高融
点材、例えばMo,Nb等の耐熱材やAl2 3 ,窒化
Nb等のセラミックスを内張或いは溶射等で被覆するの
が好ましく、これによりチタン粉末が内壁に付着するの
を防止できる。4は真空吸引管でありロータリージョイ
ント5を介して回転炉1に側壁中心部に連結している。
6は炉の側壁にロータリージョイント5′を介して連結
するArガス供給管であり、脱水素処理終了時に炉内に
Arガスを供給する。回転炉の回転は、とくに図示しな
いが、通常のロータリーキルンと同様に、炉の外周複数
ヶ所に設けた外部動力により作動する回転ローラーで行
われる。7は振動付与装置であり、炉1の外周に適宜設
ける。図の例は炉の操業中に回転に応じて適時に炉壁を
打撃するハンマーを示している。8は水素化チタン粉末
を回転炉に供給するホッパーであり、炉壁1に設けた開
閉可能な供給口(図示せず)により炉内と連通する。9
は開閉可能に炉壁に設けた排出口(図示せず)と連通す
る排出ボックスであり、上部にガイドクラッシャー10
が設けられていて処理したチタン粉末を導出する。11
は炉内に装入された水素化チタン粉末である。
The present invention will be described in detail below. FIG. 1 is an explanatory view schematically showing an apparatus for carrying out the dehydrogenation treatment of the present invention. In the figure, 1 is a cylindrical rotary furnace,
It comprises a furnace wall 2 in which a heating means (for example, an electric heater, not shown) is embedded, and an inner wall 3 made of a heat-resistant alloy steel such as stainless steel, inside the furnace wall 2. The inner surface of the inner wall 3 is preferably coated with a refractory material, for example, a heat-resistant material such as Mo or Nb or a ceramic such as Al 2 O 3 or Nb nitride by lining or thermal spraying, whereby titanium powder is applied to the inner wall. It can prevent the adhesion. Reference numeral 4 denotes a vacuum suction pipe, which is connected to the rotary furnace 1 through a rotary joint 5 at the center of the side wall.
Reference numeral 6 is an Ar gas supply pipe connected to the side wall of the furnace via a rotary joint 5 ', and supplies Ar gas into the furnace at the end of the dehydrogenation process. Although not shown in the drawing, the rotation of the rotary furnace is performed by rotary rollers provided at a plurality of locations on the outer circumference of the furnace and operated by external power, as in a normal rotary kiln. Reference numeral 7 denotes a vibration imparting device, which is appropriately provided on the outer periphery of the furnace 1. The example in the figure shows a hammer that strikes the furnace wall in a timely manner in response to rotation during operation of the furnace. Reference numeral 8 denotes a hopper for supplying the titanium hydride powder to the rotary furnace, which communicates with the inside of the furnace through an openable / closable supply port (not shown) provided in the furnace wall 1. 9
Is a discharge box that opens and closes and communicates with a discharge port (not shown) provided in the furnace wall.
And the treated titanium powder is discharged. 11
Is titanium hydride powder charged into the furnace.

【0011】本発明において、水素化チタン粉末が、供
給ホッパー8より停止している回転炉1の供給口を開に
して所定量炉内に装入された後、密閉した回転炉を真空
に引くと共にヒーターをオンにして加熱を開始し、所定
温度に達した後回転を始動する。水素化チタン粉末より
脱水素が開始されると炉内真空度は低下するが、時間経
過と共に水素発生量が少なくなり、真空度が次第に回復
し、設定値或いはそれ以下になって脱水素が終了する。
脱水素化は炉内をほぼ700℃に加熱し、炉を所定の回
転速度で実施することで水素化チタン粉末が攪拌される
ため常に雰囲気に露され、極めて短時間で処理が進行す
る。図2は加熱時間と回転数の関係を示したもので、1
0rpm以上の回転速度とすることによりほぼ600分
で脱水素化が可能となることがわかる。なお、脱水素処
理中に振動を付与することはチタン粉末の炉壁への付着
をより抑制できる。
In the present invention, titanium hydride powder is charged into the furnace by opening a supply port of the rotary furnace 1 stopped from the supply hopper 8 and charging a predetermined amount into the furnace, and then the sealed rotary furnace is evacuated. At the same time, the heater is turned on to start heating, and after reaching a predetermined temperature, rotation is started. When dehydrogenation starts from titanium hydride powder, the degree of vacuum in the furnace decreases, but with the passage of time, the amount of hydrogen generated decreases, the degree of vacuum gradually recovers, and the dehydrogenation ends when it reaches the set value or less. To do.
For dehydrogenation, the inside of the furnace is heated to about 700 ° C., and the titanium hydride powder is agitated by carrying out the furnace at a predetermined rotation speed, so that the titanium hydride powder is always exposed to the atmosphere and the treatment proceeds in an extremely short time. Figure 2 shows the relationship between heating time and rotation speed.
It can be seen that the dehydrogenation can be performed in about 600 minutes by setting the rotation speed to 0 rpm or more. In addition, applying vibration during the dehydrogenation treatment can further suppress the adhesion of titanium powder to the furnace wall.

【0012】脱水素化が終了した後は加熱および真空吸
引を停止し、炉の回転を一旦中止してバルブを開にして
炉内にArガスを供給し、炉を再び回転させながら室温
まで冷却する。冷却時の炉内はほぼ大気圧の状態とな
る。このように炉を回転することで脱水素処理と同様に
処理時間が大幅に短縮される。図3は冷却時間と回転数
の関係を示したものであるが、これから、10rpm以
上の回転速度にすることにより、ほぼ600分で常温ま
での冷却処理が可能となることがわかる。
After the completion of dehydrogenation, heating and vacuum suction were stopped, the rotation of the furnace was once stopped, the valve was opened to supply Ar gas into the furnace, and the furnace was rotated again to cool it to room temperature. To do. The inside of the furnace during cooling is at about atmospheric pressure. By rotating the furnace in this way, the processing time can be greatly shortened as in the dehydrogenation process. FIG. 3 shows the relationship between the cooling time and the number of revolutions. From this, it can be seen that by setting the rotation speed to 10 rpm or more, the cooling treatment to room temperature can be performed in about 600 minutes.

【0013】[0013]

【実施例】脱水素化炉として図1に示すロータリキルン
型の回転炉を用い、水素化チタン粉末65kgを装入した
後、炉内を真空引きすると共にヒーターをオンにして加
熱した。炉温が300℃に達した時点で炉を30rpm
で回転させ、さらに750℃まで加熱して保定した。脱
水素化に伴って水素が発生するが炉内を真空引きして脱
気した。加熱は炉内の真空度が0.05torr以下に到達
した後、ヒーターをオフにし、かつ回転を停止すると共
にArガスを封入し60分保定し、その後冷却した。冷
却時にはArガスを供給流通し、かつ炉を30rpmで
回転させ、100℃以下になったら冷却を終了した。
EXAMPLE A rotary kiln type rotary furnace shown in FIG. 1 was used as a dehydrogenation furnace, and after charging 65 kg of titanium hydride powder, the inside of the furnace was evacuated and the heater was turned on to heat. When the furnace temperature reaches 300 ° C, the furnace is rotated at 30 rpm.
The sample was rotated by and further heated to 750 ° C. and held. Hydrogen was generated with dehydrogenation, but the inside of the furnace was evacuated and degassed. For heating, after the degree of vacuum in the furnace reached 0.05 torr or less, the heater was turned off, the rotation was stopped, Ar gas was sealed, the temperature was held for 60 minutes, and then the furnace was cooled. During cooling, Ar gas was supplied and circulated, and the furnace was rotated at 30 rpm, and when the temperature reached 100 ° C. or lower, cooling was terminated.

【0014】加熱および冷却の終了するまでの時間は夫
々600分であった。因みに従来のトレイ使用の水素化
チタン粉末65kgの静置処理における加熱時間の一例は
2800分、冷却時間は1500分であった。このよう
に本発明での処理時間が短縮されたのは、回転炉内で脱
水素を行なうことによりチタン粉末が常に攪拌されるた
め、高温になっても粉末が疑似焼結化して塊状になるこ
とがなく、水素化チタンが回転炉中で常に表層部に出て
脱水素化および冷却が効率良く行われた結果である。ま
た、水素化チタン粉末の装入層厚を従来のトレイ使用の
静置処理のように制限する必要がない。
The time required to complete heating and cooling was 600 minutes, respectively. Incidentally, an example of the heating time in the static treatment of 65 kg of titanium hydride powder used in the conventional tray was 2800 minutes, and the cooling time was 1500 minutes. As described above, the processing time in the present invention is shortened because the titanium powder is constantly stirred by performing dehydrogenation in the rotary furnace, and thus the powder is pseudo-sintered into a lump even at high temperature. The result is that titanium hydride was always discharged to the surface layer portion in the rotary furnace to efficiently perform dehydrogenation and cooling. Further, it is not necessary to limit the thickness of the titanium hydride powder charging layer as in the conventional stationary treatment using a tray.

【0015】以上本発明を脱水素化処理に用いる場合を
主体に説明したが、本発明はこれに限定されるものでな
く、水素化チタン粉末以外の熱処理にも適用できる。
Although the present invention has been mainly described above for use in the dehydrogenation treatment, the present invention is not limited to this and can be applied to heat treatments other than titanium hydride powder.

【0016】[0016]

【発明の効果】以上説明したように、本発明は回転炉で
脱水素化を行なうことにより、従来の静止・バッチ型炉
での処理に比して、脱水素化化処理時間の短縮、処理量
の増大、解砕工程の負荷軽減、付着防止等による生産性
の増大、省力化、コスト削減が図れる。特に処理時間短
縮化は大きく、実施例から明らかのように従来加熱時間
が2800分掛かっていたものが本発明では600分で
終了し、また冷却時間も1500分から600分で終了
することが可能となり、この工業的効果は極めて大き
い。
As described above, according to the present invention, by carrying out dehydrogenation in a rotary furnace, the dehydrogenation processing time can be shortened and processed as compared with the processing in a conventional static / batch type furnace. It is possible to increase the amount, reduce the load of the crushing process, increase productivity by preventing adhesion, save labor, and reduce costs. In particular, the treatment time is greatly shortened. As is clear from the examples, the conventional heating time of 2800 minutes is completed in 600 minutes in the present invention, and the cooling time can be completed in 1500 to 600 minutes. , This industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する装置の一例を模式的に示す
説明図。
FIG. 1 is an explanatory view schematically showing an example of an apparatus for carrying out the method of the present invention.

【図2】加熱時間と回転数の関係を示す図。FIG. 2 is a diagram showing a relationship between heating time and rotation speed.

【図3】冷却時間と回転数の関係を示す図。FIG. 3 is a diagram showing a relationship between cooling time and rotation speed.

【符号の説明】[Explanation of symbols]

1:回転炉 2:炉壁 3:内壁 4:真空吸引管 5:ロータリージョイント 6:Ar瓦斯供給管 7:振動付与装置 8:粉末供給ホッパー 9:粉末排出ボックス 10:ガイドクラッシャー 11:水素化チタン粉末 1: rotary furnace 2: furnace wall 3: inner wall 4: vacuum suction pipe 5: rotary joint 6: Ar gas supply pipe 7: vibration imparting device 8: powder supply hopper 9: powder discharge box 10: guide crusher 11: titanium hydride Powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山宮 昌夫 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 田村 道夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 籠橋 亘 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 深澤 英一 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 村山 良治 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Yamamiya 2-6-3 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Michio Tamura 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo New Nippon Steel Co., Ltd., Hirohata Works (72) Inventor Wataru Kagohashi 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Eiichi Fukazawa 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Inventor Ryoji Murayama 3-3-5 Chigasaki, Chigasaki City, Kanagawa Toho Titanium Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法によりチタン粉末を製造
する方法において、回転炉内に水素化チタン粉末を装入
し、該炉を回転させながら脱水素処理することを特徴と
するチタン粉末製造における脱水素化処理方法。
1. A method for producing titanium powder by a hydrodehydrogenation method, which comprises charging titanium hydride powder into a rotary furnace and performing dehydrogenation while rotating the furnace. Dehydrogenation treatment method in.
【請求項2】 回転ジョイントを介して真空吸引管及び
Arガス供給管を連結した密閉回転炉に水素化チタン粉
末を装入し、炉内を真空引きすると共に加熱し、かつ回
転炉を回転させながら脱水素処理を行い、炉内が所定の
真空以下に回復した後に加熱を停止せしめ、直ちに或い
は所要時間保定後Arガスを供給して冷却することを特
徴とするチタン粉末製造における脱水素化処理方法。
2. A titanium rotary hydride powder is charged into a closed rotary furnace in which a vacuum suction pipe and an Ar gas supply pipe are connected via a rotary joint, the interior of the furnace is evacuated and heated, and the rotary furnace is rotated. Dehydrogenation treatment in the production of titanium powder, characterized by performing dehydrogenation treatment while stopping the heating after the inside of the furnace is restored to a predetermined vacuum or lower, and immediately or holding for a required time and then supplying Ar gas for cooling. Method.
【請求項3】 脱水素処理中の回転炉に振動を連続或い
は間欠的に付与することを特徴とする請求項1或いは2
記載のチタン粉末製造における脱水素化処理方法。
3. The vibration is continuously or intermittently applied to the rotary furnace during the dehydrogenation process.
A dehydrogenation treatment method in the production of titanium powder described in the above.
JP5221286A 1993-09-06 1993-09-06 Dehydrogenation in production of titanium powder Withdrawn JPH0770613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5221286A JPH0770613A (en) 1993-09-06 1993-09-06 Dehydrogenation in production of titanium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5221286A JPH0770613A (en) 1993-09-06 1993-09-06 Dehydrogenation in production of titanium powder

Publications (1)

Publication Number Publication Date
JPH0770613A true JPH0770613A (en) 1995-03-14

Family

ID=16764408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5221286A Withdrawn JPH0770613A (en) 1993-09-06 1993-09-06 Dehydrogenation in production of titanium powder

Country Status (1)

Country Link
JP (1) JPH0770613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007572A1 (en) * 2003-07-18 2005-01-27 Noriyuki Yamazaki Apparatus and method for producing carbide
CN110480029A (en) * 2019-07-23 2019-11-22 中国航天空气动力技术研究院 A kind of malleation reaction device and method of dehydrogenating for titanium hydride powders dehydrogenation
KR20220134178A (en) * 2021-03-26 2022-10-05 한국과학기술원 Catalyst structure for Liquid Organic Hydrogen Carrier(LOHC) dehydrogenation reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007572A1 (en) * 2003-07-18 2005-01-27 Noriyuki Yamazaki Apparatus and method for producing carbide
CN110480029A (en) * 2019-07-23 2019-11-22 中国航天空气动力技术研究院 A kind of malleation reaction device and method of dehydrogenating for titanium hydride powders dehydrogenation
CN110480029B (en) * 2019-07-23 2024-03-26 中国航天空气动力技术研究院 Positive pressure reaction device and method for dehydrogenation of titanium hydride powder
KR20220134178A (en) * 2021-03-26 2022-10-05 한국과학기술원 Catalyst structure for Liquid Organic Hydrogen Carrier(LOHC) dehydrogenation reactor

Similar Documents

Publication Publication Date Title
CN106513684B (en) A kind of production method of tungsten-molybdenum alloy rotary target material
CN108213440A (en) A kind of preparation method of Mo Re alloys tubing
US5993734A (en) Method for making W/Ti sputtering targets and products in an inert atmosphere
JPH09155507A (en) Production system of alloy containing rare earth metal
JPH0770613A (en) Dehydrogenation in production of titanium powder
JP3210293B2 (en) Method for producing powdery material
CN106567048B (en) A kind of manufacturing method of large size High-Purity Molybdenum alloy rotary target material
CN103938005A (en) Method for preparing ultra-fine grained titanium and titanium alloy from jet-milled titanium hydride powder
WO2001068936A1 (en) Method for producing composite material and composite material produced thereby
CN114210977A (en) Device and method for preparing fine-particle-size powder high-temperature alloy hot isostatic pressing part
CN110616340B (en) Method for preparing titanium ingot by hydrogenation and dehydrogenation of high-oxygen titanium reclaimed material
JPH05339606A (en) Production of titanium powder and its device
JPH0734104A (en) Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method
JPH07206404A (en) Production of titanium hydride and its device
JP2715861B2 (en) Method and apparatus for producing non-metallic amorphous by mechanochemical
JPH0754021A (en) Method and apparatus for producing titanium powder
CN114472911B (en) Device and method for preparing alloy powder and method for preparing target material by applying alloy powder
CN109485425A (en) A kind of tungsten carbide composite and preparation method thereof
JP3009281B2 (en) Method for producing titanium-based powder
JPH0754017A (en) Method and apparatus for producing titanium powder
JPS59219446A (en) Production of fe-ti alloy for occluding hydrogen
JPH0360732A (en) Method and device for producing fine powder and is utilization
JP2001234209A (en) Ti SCRAP PULVERIZING METHOD
JP3011140U (en) Low oxygen titanium powder manufacturing equipment
JPH07100629A (en) Production of high-density material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107