JPH0770479B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0770479B2
JPH0770479B2 JP60025189A JP2518985A JPH0770479B2 JP H0770479 B2 JPH0770479 B2 JP H0770479B2 JP 60025189 A JP60025189 A JP 60025189A JP 2518985 A JP2518985 A JP 2518985A JP H0770479 B2 JPH0770479 B2 JP H0770479B2
Authority
JP
Japan
Prior art keywords
film
silicon
island
shaped
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60025189A
Other languages
Japanese (ja)
Other versions
JPS61185917A (en
Inventor
正記 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60025189A priority Critical patent/JPH0770479B2/en
Publication of JPS61185917A publication Critical patent/JPS61185917A/en
Publication of JPH0770479B2 publication Critical patent/JPH0770479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法、特に絶縁膜上の島状非
単結晶シリコン膜をエネルギーを与えることによって島
状単結晶シリコン膜とする方法に関するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an island-shaped single crystal silicon film by applying energy to an island-shaped non-single crystal silicon film on an insulating film. It is about.

[従来の技術] 従来、絶縁膜上に島状に形成した非晶質シリコン或は多
結晶シリコン膜からなる非単結晶シリコン膜を、エネル
ギーを与えることにより単結晶化させ、島状単結晶シリ
コン膜を形成する場合において、エネルギーを与えるこ
とによるシリコンの熔融状態に起因する表面の凹凸状の
変形が発生することがあった。
[Prior Art] Conventionally, a non-single-crystal silicon film made of an amorphous silicon or a polycrystalline silicon film formed in an island shape on an insulating film is single-crystallized by applying energy to form an island-shaped single-crystal silicon film. In the case of forming a film, irregular deformation of the surface may occur due to the molten state of silicon due to the application of energy.

さらには、島状非単結晶シリコン膜の下面にある絶縁基
板或は絶縁膜が二酸化シリコンにより形成されている場
合には、熔融状態のシリコンと二酸化シリコンとの濡れ
の悪さに起因して、熔融状態のシリコンが液滴状に丸く
変形するか、又は冷却再結晶化した島状単結晶シリコン
膜が下面の絶縁基板或は絶縁膜から剥離を生じることが
あった。
Furthermore, when the insulating substrate or the insulating film on the lower surface of the island-shaped non-single-crystal silicon film is formed of silicon dioxide, the melting of silicon in the molten state and the silicon dioxide causes poor melting. In some cases, the silicon in the state was circularly deformed into droplets, or the island-shaped single crystal silicon film cooled and recrystallized was separated from the lower insulating substrate or insulating film.

これらの変形や剥離を防止することを目的として、島状
非単結晶シリコン膜の上面に二酸化シリコンや窒化シリ
コンからなる絶縁膜を独自に又は各々一層づつ重ねて形
成してエネルギーを与える方法が提案されている(特開
昭57−20812,58−12320)。又、二酸化シリコン膜及び
窒化シリコン膜を一層づつ重ねて形成することは製造方
法を非常に複雑化する欠点を有していた。
In order to prevent these deformations and peeling, a method is proposed in which an insulating film made of silicon dioxide or silicon nitride is formed on the upper surface of the island-shaped non-single-crystal silicon film independently or by stacking each one individually to give energy. (JP-A-57-20812, 58-12320). Further, forming the silicon dioxide film and the silicon nitride film one by one has a drawback that the manufacturing method becomes very complicated.

[発明の解決しようとする問題点] 従来、提案されている方法において島状非単結晶シリコ
ン膜の上面に形成する絶縁膜として二酸化シリコンを用
いた場合は、エネルギーを与えることによる熔融状態の
シリコンの上で二酸化シリコン膜を軟化し得られた島状
単結晶シリコン膜の変形による凹凸の発生を防止する点
で不充分であった。これは二酸化シリコンの軟化温度が
シリコンの熔融温度に近いことに起因していると思われ
る。
[Problems to be Solved by the Invention] When silicon dioxide is used as the insulating film formed on the upper surface of the island-shaped non-single-crystal silicon film in the conventionally proposed method, when silicon dioxide in a molten state by applying energy is used. Was insufficient in preventing unevenness due to deformation of the island-shaped single crystal silicon film obtained by softening the silicon dioxide film. This is probably because the softening temperature of silicon dioxide is close to the melting temperature of silicon.

他方、窒化シリコンを用いた場合は、得られた島状単結
晶シリコン膜に亀裂を生じることがある。これは、窒化
シリコンが熔融シリコンとの濡れが非常に良いことに加
えて、さらに窒化シリコンと単結晶シリコンとでヤング
率が約1桁異ることに起因していると思われる。
On the other hand, when silicon nitride is used, cracks may occur in the obtained island-shaped single crystal silicon film. It is considered that this is because the silicon nitride has very good wettability with the molten silicon, and the Young's modulus of the silicon nitride and the single crystal silicon are different by about one digit.

従来の二酸化シリコン或は窒化シリコンからなる絶縁膜
を島状非単結晶シリコン膜の上面に形成してエネルギー
を与える方法は前述の様に効果の点で不充分であって、
問題点を有していた。
The conventional method of applying energy by forming an insulating film made of silicon dioxide or silicon nitride on the upper surface of the island-shaped non-single-crystal silicon film is insufficient in terms of the effect as described above.
I had a problem.

[問題を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであ
り、絶縁基板或は、絶縁膜上に非単結晶シリコン膜を島
状に形成し、エネルギーを与えることにより前記島状の
非単結晶シリコン膜を単結晶膜または多結晶膜となし、
この島状単結晶または多結晶シリコン膜に半導体素子を
形成する半導体装置の製造方法において、前記島状の非
単結晶膜の厚みを1000nm以下とし、その上面に50〜500n
mの膜厚のシリコンオキシナイトライド膜を形成して、
エネルギーを与え、さらに、シリコンオキシナイトライ
ド膜を除去し、島状単結晶または多結晶シリコン膜を形
成することを特徴とする半導体装置の製造方法である。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problems, and a non-single crystal silicon film is formed in an island shape on an insulating substrate or an insulating film to apply energy. The island-shaped non-single-crystal silicon film is thereby formed into a single-crystal film or a polycrystalline film,
In the method for manufacturing a semiconductor device in which a semiconductor element is formed on the island-shaped single crystal or polycrystalline silicon film, the thickness of the island-shaped non-single-crystal film is 1000 nm or less, and the upper surface thereof has a thickness of 50 to 500 n.
forming a silicon oxynitride film with a thickness of m,
A method of manufacturing a semiconductor device is characterized in that energy is applied and the silicon oxynitride film is removed to form an island-shaped single crystal or polycrystalline silicon film.

本発明においては、絶縁基板或は絶縁膜上に非単結晶シ
リコン膜を形成する。この絶縁性基板或は絶縁膜を有す
る基板としては、石英ガラス、耐熱性ガラス、カーボ
ン、セラミックス、シリコン等の上に必要に応じてSi
O2,Al2O3,SiON,Si3N4等の絶縁膜を形成したものが使用
でき、後述するアニール時に基板或は絶縁膜が溶融しな
いものであればよい。
In the present invention, a non-single crystal silicon film is formed on an insulating substrate or an insulating film. This insulating substrate or substrate having an insulating film is formed on quartz glass, heat-resistant glass, carbon, ceramics, silicon, etc., if necessary.
A material having an insulating film formed of O 2 , Al 2 O 3 , SiON, Si 3 N 4 or the like can be used, as long as the substrate or the insulating film does not melt during annealing described later.

このような、絶縁基板或は絶縁膜を形成した基板上に、
非晶質シリコン又は多結晶シリコンからなる非単結晶シ
リコン膜をCVD法等で形成する。この膜厚は目的により
適宜定められればよいが一般的には1000nm以下程度とさ
れる。
On such an insulating substrate or a substrate on which an insulating film is formed,
A non-single-crystal silicon film made of amorphous silicon or polycrystalline silicon is formed by the CVD method or the like. This film thickness may be appropriately determined according to the purpose, but is generally about 1000 nm or less.

この非単結晶シリコン膜は、直接島状に形成されてもよ
いし、全面に形成後フォトリソグラフィーで島状にエッ
チングしてもよいし、後述のシリコンオキシナイトライ
ド膜(SiON)と同時にフォトリソグラフィーで島状にエ
ッチングしてもよい。
This non-single-crystal silicon film may be directly formed in an island shape, may be etched in an island shape by photolithography after being formed on the entire surface, and may be formed by photolithography simultaneously with a silicon oxynitride film (SiON) described later. May be etched into an island shape.

次いでシリコンオキシナイトライド膜を形成する。この
膜は、CVD法、プラズマCVD法、スパッタ、蒸着等種々の
方法で形成されればよく、その膜厚はその膜の光学特
性、ち密度等を考慮して適宜定められればよいが、一般
的には50〜500nm程度とされる。これは、500nmを越える
とシリコン膜にかかるストレスが大きくなり、又、50nm
未満では本発明の効果が充分発揮できないことがあるた
めである。
Then, a silicon oxynitride film is formed. This film may be formed by various methods such as a CVD method, a plasma CVD method, sputtering, and vapor deposition, and its film thickness may be appropriately determined in consideration of the optical characteristics of the film, density, etc. The target is about 50 to 500 nm. This is because when the thickness exceeds 500 nm, the stress applied to the silicon film increases,
If it is less than the above range, the effect of the present invention may not be sufficiently exhibited.

このシリコンオキシナイトライド膜は、島状にフォトリ
ソグラフィーでエッチングされてもよいし、全面に形成
したままでもよい。また、このシリコンオキシナイトラ
イド膜の上にSiO2等の他の薄膜を形成して反射率を低め
レーザー光の吸収効率を上げることもできる。
This silicon oxynitride film may be etched into an island shape by photolithography, or may be left on the entire surface. Further, another thin film such as SiO 2 can be formed on this silicon oxynitride film to lower the reflectance and increase the absorption efficiency of laser light.

その後、単結晶化したい部分のシリコンに、レーザー
光、リボンヒーター或はストリップヒーター等を用いて
エネルギーを与え、単結晶化する。
After that, energy is applied to the portion of silicon to be single-crystallized by using a laser beam, a ribbon heater, a strip heater or the like to single-crystallize.

なお、この外、本発明は多層構造の半導体装置の製造に
も使用でき、例えば既に回路を形成した半導体基板上を
本発明における基板として用いてもよい。
In addition to the above, the present invention can be used for manufacturing a semiconductor device having a multilayer structure, and for example, a semiconductor substrate on which a circuit has already been formed may be used as the substrate in the present invention.

なお、本発明でいう単結晶膜とは、従来からインゴット
法等で形成された本来の狭義の単結晶のように均一なも
のばかりでなく、狭義の単結晶に近い膜である結晶粒界
(グレンバウンダリー)により分割されている膜も含
み、結晶粒界における結晶方位のずれの少ない、いわゆ
るサブグレンバウンダリーを有している膜であってもよ
い。このサブグレンバウンダリーは無い方がトランジス
タの特性上好ましいが、大型のトランジスタの場合はあ
っても影響が少ないため、用途により使いわけられれば
よい。
Note that the single crystal film in the present invention is not only a uniform single crystal in the narrow sense originally formed by the ingot method or the like, but also a crystal grain boundary that is a film close to a single crystal in the narrow sense ( It may be a film having a so-called sub-glen boundary, which includes a film divided by a grain boundary) and has a small deviation of crystal orientation at a crystal grain boundary. It is preferable not to have this sub-glen boundary in terms of the characteristics of the transistor. However, even in the case of a large transistor, the influence is small, so it may be used depending on the application.

[作用] 本発明では、絶縁基板或は絶縁膜上の非晶質シリコン又
は多結晶シリコンからなる島状非単結晶シリコン膜の上
面に形成する絶縁膜としてのシリコンオキシナイトライ
ドが軟化温度、ヤング率、熔融シリコンとの濡れ性、及
び熱膨張率等において、二酸化シリコンと窒化シリコン
の中間の値を有することによりもたらされる。
[Operation] In the present invention, the silicon oxynitride as an insulating film formed on the upper surface of the island-shaped non-single-crystal silicon film made of amorphous silicon or polycrystalline silicon on the insulating substrate or insulating film has a softening temperature, It is brought about by having an intermediate value between silicon dioxide and silicon nitride in the coefficient, wettability with molten silicon, coefficient of thermal expansion, and the like.

[実施例] 以下、本発明の実施例により図面を用いて詳細に説明す
る。
[Examples] Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

第2図において、上面を鏡面研磨した厚さ約0.4mmの石
英ガラス基板(1)上にモノシラン(SiH4)を用いた化
学気相成長法(CVD)により、厚さ約400nmの多結晶シリ
コン膜(2)を基板全面に形成した。このとき、多結晶
シリコン膜の形成温度として約650℃としたが、約600℃
以上で多結晶となり、それより高温になるに従って粒径
が増大すること、及び逆に約600℃未満では、非晶質と
なることが知られているが何れの多結晶、非晶質シリコ
ン膜においても、本発明の実施において、同等の結果が
得られることを確認した。
In Fig. 2, polycrystalline silicon with a thickness of about 400 nm is formed by chemical vapor deposition (CVD) using monosilane (SiH 4 ) on a quartz glass substrate (1) with a thickness of about 0.4 mm whose upper surface is mirror-polished. The film (2) was formed on the entire surface of the substrate. At this time, the forming temperature of the polycrystalline silicon film was set to about 650 ° C, but about 600 ° C.
It is known that the above becomes polycrystalline, and the grain size increases as the temperature becomes higher, and conversely becomes amorphous at less than about 600 ° C. Also, it was confirmed that equivalent results were obtained in the practice of the present invention.

第3図において、前記の多結晶シリコン膜をフォトリソ
グラフィーによって、パターニングし、島状多結晶シリ
コン膜(3)とした。
In FIG. 3, the polycrystalline silicon film was patterned by photolithography to form an island-shaped polycrystalline silicon film (3).

第4図において、前記島状多結晶シリコン膜を有する基
板全面にモノシランとアンモニア(NH3)及び二酸化炭
素(CO2)を用いた化学気相成長法により、シリコンオ
キシナイトライド膜を厚さ約100nm形成し、次いで、フ
ォトリソグラフィーにより島状多結晶シリコン膜の上面
部分にのみシリコンオキシナイトライド膜(4)をパタ
ーニングした。このとき、シリコンオキシナイトライド
膜をフォトリソグラフィーで除去しなくてもよい。
In FIG. 4, a silicon oxynitride film is formed on the entire surface of the substrate having the island-shaped polycrystalline silicon film by a chemical vapor deposition method using monosilane, ammonia (NH 3 ) and carbon dioxide (CO 2 ). Then, the silicon oxynitride film (4) was patterned only on the upper surface of the island-shaped polycrystalline silicon film by photolithography. At this time, the silicon oxynitride film does not have to be removed by photolithography.

第5図において、表面を連続発振のアルゴンレーザー光
を用いて走査しエネルギーを与えた。レーザー光のエネ
ルギーは約10Wでよく、走査速度は約100mm/secであっ
た。このエネルギーを与える方法として、他のレーザー
光を用いてもよいし、リボンヒーターやストリップヒー
ターを用いてもよい。これによって前記島状の多結晶シ
リコン膜が熔融状態(5)となり次いで冷却し再結晶化
できる。
In FIG. 5, the surface was scanned with a continuous wave argon laser beam to give energy. The energy of the laser beam was about 10 W, and the scanning speed was about 100 mm / sec. As a method of applying this energy, another laser beam may be used, or a ribbon heater or a strip heater may be used. As a result, the island-shaped polycrystalline silicon film is brought into a molten state (5) and then cooled and recrystallized.

第1図に、再結晶化が完了した状態を示す。ここで島状
単結晶シリコン膜(6)は、変形がみられず凹凸が起っ
ていなく、又、亀裂の発生もなく、さらに剥離等も起っ
ていないことが判明した。又、上面にあるオキシナイト
ライド膜はフロンガス(CHF3)を用いたドライエッチン
グ工程により簡単に除去でき、得られた島状単結晶シリ
コン膜に半導体素子を形成し半導体装置となすことがで
きた。
FIG. 1 shows a state in which recrystallization is completed. Here, it was found that the island-shaped single crystal silicon film (6) was not deformed, had no irregularities, had no cracks, and had no peeling or the like. The oxynitride film on the upper surface could be easily removed by a dry etching process using Freon gas (CHF 3 ), and a semiconductor device could be formed by forming a semiconductor element on the obtained island-shaped single crystal silicon film. .

第2図において多結晶シリコン膜を形成する場合基板に
石英ガラスでなく、表面に二酸化シリコン膜を形成した
単結晶シリコン基板を用いても本発明の実施において同
等の結果が得られる。
In the case of forming a polycrystalline silicon film in FIG. 2, equivalent results can be obtained in the practice of the present invention even if a single crystal silicon substrate having a silicon dioxide film formed on the surface thereof is used as the substrate instead of quartz glass.

又、第4図において、シリコンオキシナイトライド膜の
厚さは多結晶シリコン膜上に形成された誘電体薄膜とし
て各界面からの干渉反射率を決定づけるので、レーザー
エネルギーの反射をできるだけ少なくする様に光学条件
から詳細に導いた膜厚を決定することが好ましい。
Also, in FIG. 4, the thickness of the silicon oxynitride film determines the interference reflectance from each interface as a dielectric thin film formed on the polycrystalline silicon film, so that the reflection of laser energy should be minimized. It is preferable to determine the film thickness derived in detail from the optical conditions.

[発明の効果] 以上の如く本発明はエネルギーを与えることにより島状
単結晶シリコン膜となすための島状非単結晶シリコン膜
の上面にシリコンオキシナイトライド膜を形成しておく
ことを特徴とするもので、変形や亀裂剥離のない島状単
結晶シリコン膜を得ることができる優れたものである。
As described above, the present invention is characterized in that the silicon oxynitride film is formed on the upper surface of the island-shaped non-single-crystal silicon film for forming the island-shaped single-crystal silicon film by applying energy. Therefore, it is an excellent one that can obtain an island-shaped single crystal silicon film without deformation or crack separation.

実施例として、島状非単結晶シリコン膜にエネルギーを
与えることにより島状非単結晶シリコン膜となす場合に
ついてのみ示したが、本発明の実施においては、島状非
単結晶シリコン膜にエネルギーを与えることによって、
結晶成長させて、島状単結晶シリコン膜に至らしめず、
粒径の大きい島状多結晶シリコン膜となす場合にも適用
可能である。
As an example, only the case of forming an island-shaped non-single-crystal silicon film by applying energy to the island-shaped non-single-crystal silicon film is shown, but in the practice of the present invention, energy is applied to the island-shaped non-single-crystal silicon film. By giving
Crystal growth did not reach the island-shaped single crystal silicon film,
It can also be applied to the case of forming an island-shaped polycrystalline silicon film having a large grain size.

【図面の簡単な説明】[Brief description of drawings]

第1図から第5図は、本発明の一実施例を示している。
図中(1)は石英ガラス基板、(2)は多結晶シリコン
膜、(3)は、島状多結晶シリコン膜、(4)はシリコ
ンオキシナイトライド膜(5)は熔融状態の島状シリコ
ン膜、(6)は再結晶化後の島状単結晶シリコン膜であ
る。
1 to 5 show an embodiment of the present invention.
In the figure, (1) is a quartz glass substrate, (2) is a polycrystalline silicon film, (3) is an island-shaped polycrystalline silicon film, (4) is a silicon oxynitride film (5) is an island-shaped silicon in a molten state. The film, (6), is an island-shaped single crystal silicon film after recrystallization.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板或は絶縁膜上に非単結晶シリコン
膜を島状に形成し、エネルギーを与えることにより前記
島状の非単結晶シリコン膜を単結晶膜または多結晶膜と
なし、この島状単結晶または多結晶シリコン膜に半導体
素子を形成する半導体装置の製造方法において、 前記島状の非単結晶膜の厚みを1000nm以下とし、 その上面に50〜500nmの膜厚のシリコンオキシナイトラ
イド膜を形成して、エネルギーを与え、 さらに、シリコンオキシナイトライド膜を除去し、 島状単結晶または多結晶シリコン膜を形成することを特
徴とする半導体装置の製造方法。
1. An island-shaped non-single-crystal silicon film is formed on an insulating substrate or an insulating film, and the island-shaped non-single-crystal silicon film is formed into a single-crystal film or a polycrystalline film by applying energy. In the method for manufacturing a semiconductor device in which a semiconductor element is formed on the island-shaped single crystal or polycrystalline silicon film, the island-shaped non-single-crystal film has a thickness of 1000 nm or less, and a silicon oxide film having a thickness of 50 to 500 nm is formed on the upper surface thereof. A method for manufacturing a semiconductor device, comprising forming a nitride film, applying energy, and further removing the silicon oxynitride film to form an island-shaped single crystal or polycrystalline silicon film.
【請求項2】シリコンオキシナイトライド膜の厚みを10
0nmとする特許請求の範囲第1項記載の半導体装置の製
造方法。
2. A silicon oxynitride film having a thickness of 10
The method for manufacturing a semiconductor device according to claim 1, wherein the thickness is 0 nm.
JP60025189A 1985-02-14 1985-02-14 Method for manufacturing semiconductor device Expired - Fee Related JPH0770479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025189A JPH0770479B2 (en) 1985-02-14 1985-02-14 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025189A JPH0770479B2 (en) 1985-02-14 1985-02-14 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61185917A JPS61185917A (en) 1986-08-19
JPH0770479B2 true JPH0770479B2 (en) 1995-07-31

Family

ID=12159018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025189A Expired - Fee Related JPH0770479B2 (en) 1985-02-14 1985-02-14 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0770479B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311754B2 (en) * 2006-03-20 2013-10-09 株式会社半導体エネルギー研究所 Crystalline semiconductor film, semiconductor device and manufacturing method thereof
JP2008085317A (en) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd Crystalline semiconductor film, and manufacturing method of semiconductor device
US7960261B2 (en) * 2007-03-23 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor
US9177811B2 (en) 2007-03-23 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812320A (en) * 1981-07-15 1983-01-24 Fujitsu Ltd Manufacture of semiconductor device
JPS59132120A (en) * 1983-01-18 1984-07-30 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS61185917A (en) 1986-08-19

Similar Documents

Publication Publication Date Title
USRE33096E (en) Semiconductor substrate
JPS60105216A (en) Manufacture of thin film semiconductor device
JPH0770479B2 (en) Method for manufacturing semiconductor device
JPH0343769B2 (en)
JPH06140321A (en) Method of crystallizing of semiconductor film
JPS59148322A (en) Manufacture of semiconductor device
JP2532252B2 (en) Method for manufacturing SOI substrate
EP0319082A1 (en) Method of forming a thin monocrystalline layer of a semiconductor material on a substrate
JPS58114419A (en) Manufacture of substrate for semiconductor device
JPH0744149B2 (en) Method for single crystallization of silicon film
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JPH0442358B2 (en)
JPH04214615A (en) Manufacture of semiconductor device
JPH0396224A (en) Manufacture of soi substrate
JPS59158515A (en) Manufacture of semiconductor device
JPS59132120A (en) Manufacture of semiconductor device
JPS6351370B2 (en)
JP2605286B2 (en) Method for manufacturing semiconductor device
JP3144707B2 (en) Manufacturing method of crystal base material
JPS61106484A (en) Substrate for semiconductor device and its preparation
JPS63108A (en) Manufacture of semiconductor element
JPS62179112A (en) Formation of soi structure
JPH05152205A (en) Forming method of semiconductor crystallized film
JPS6239009A (en) Soi substrate forming method
JPH0396225A (en) Manufacture of semiconductor substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees