JPH0770311B2 - Battery electrode manufacturing method - Google Patents

Battery electrode manufacturing method

Info

Publication number
JPH0770311B2
JPH0770311B2 JP60277150A JP27715085A JPH0770311B2 JP H0770311 B2 JPH0770311 B2 JP H0770311B2 JP 60277150 A JP60277150 A JP 60277150A JP 27715085 A JP27715085 A JP 27715085A JP H0770311 B2 JPH0770311 B2 JP H0770311B2
Authority
JP
Japan
Prior art keywords
active material
electrode
metal
base
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60277150A
Other languages
Japanese (ja)
Other versions
JPS62136759A (en
Inventor
英男 海谷
収 高橋
信吾 津田
実 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60277150A priority Critical patent/JPH0770311B2/en
Publication of JPS62136759A publication Critical patent/JPS62136759A/en
Publication of JPH0770311B2 publication Critical patent/JPH0770311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルカドミウム蓄電池などの二次電池に
用いる電極の製造法に関し、さらに詳しくは、多孔性の
金属支持体中に活物質を充填して渦巻状に捲回して構成
する電池用電極に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an electrode used in a secondary battery such as a nickel-cadmium storage battery, and more specifically, to a porous metal support filled with an active material. The present invention relates to a battery electrode formed by spirally winding.

従来の技術 二次電池の電極は、金属製の筒状,袋状,または格子の
支持体に活物質を充填したり、金属焼結体に活物質を充
填したものが一般的である。前者の筒状,袋状、あるい
は格子の支持体を使用するものは、充填要領が大きくで
きるという利点があるが、高率の放電特性が悪いという
欠点がある。また後者の金属焼結体の支持体を使用する
ものは高率放電特性が優れているという利点があるが、
充填容量が小さいという欠点がある。この両者の欠点を
改善するため最近では高多孔度を有する連続した三次元
的な網目構造を持った発泡メタルを支持体に使用する電
池用電極が提案されている。この発泡メタルに活物質を
充填する方法は、高容量,高率放電に適した電極であ
る。
2. Description of the Related Art Electrodes of secondary batteries are generally formed by filling a metal cylindrical, bag-shaped, or lattice support with an active material, or a metal sintered body with an active material. The former one using a cylindrical, bag-shaped, or lattice support has an advantage that the filling procedure can be increased, but has a drawback that the high-rate discharge characteristic is poor. Also, the latter one using the support of the metal sintered body has an advantage that the high rate discharge characteristic is excellent,
There is a drawback that the filling capacity is small. In order to remedy these two drawbacks, a battery electrode using a foamed metal having a high porosity and a continuous three-dimensional network structure as a support has recently been proposed. The method of filling the foam metal with the active material is an electrode suitable for high capacity and high rate discharge.

一方、とくに最近の用途面からの要求で、さらに高率放
電特性の向上が望まれ、従来の焼結式電極の場合には、
電極の一辺を活物質層を含まない芯材部を露出させ、こ
の部分に、リード片を溶着するタブレス方式により集電
特性を向上させ、上記の要望に対応している。
On the other hand, especially in the recent demands for use, further improvement in high rate discharge characteristics is desired, and in the case of the conventional sintered electrode,
In order to meet the above demands, the core material portion not including the active material layer is exposed on one side of the electrode, and the current collecting characteristic is improved by a tabless method in which a lead piece is welded to this portion.

発明が解決しようとする問題点 しかし、発泡メタルを使用する電極の場合、焼結式の芯
材に相当する強固な金属部が存在しないため、焼結式の
場合のように、芯材部にリード片を直接溶接することが
出来ない。そのため、発泡メタルを使用する電極では、
タブレス方式をとる場合には、リード片を溶接する電極
端縁に、金属溶射層を設けるか、あるいは金属箔をあら
かじめ溶着しておく(特開昭56−86459号公報)などに
より、溶接部の補強を行っていた。このような方法によ
りタブレス方式は可能になるが、生産性,コストの面に
おいて問題があった。
Problems to be Solved by the Invention However, in the case of an electrode using a foam metal, since there is no strong metal part corresponding to the sintering type core material, the core material part is different from that of the sintering type core material. The lead piece cannot be welded directly. Therefore, in electrodes that use foam metal,
When the tabless method is adopted, a metal sprayed layer is provided on the edge of the electrode for welding the lead piece, or a metal foil is pre-welded (Japanese Patent Laid-Open No. 56-86459), etc. It was reinforcing. Although such a method enables the tabless method, it has a problem in terms of productivity and cost.

問題点を解決するための手段 本発明は、上記の問題点を解決するために、発泡メタル
を用いた電極周辺の全部又は一部を活物質を含まない電
極としてこの物質を加圧してほぼ同一の厚さを有する活
物質を含む部分と連続させかつ電極の幅方向、すなわち
電極の厚さ方向に対して直角方向に圧縮された発泡メタ
ルの密な層とすることにより、リード片との溶接強度を
確保したものである。
Means for Solving the Problems In order to solve the above problems, the present invention applies substantially the same material by pressurizing all or part of the periphery of an electrode using a foam metal as an electrode containing no active material. Welding with a lead piece by forming a dense layer of foam metal that is continuous with a portion containing an active material having a thickness of and is compressed in the width direction of the electrode, that is, in the direction perpendicular to the thickness direction of the electrode. The strength is secured.

作 用 このように構成することで以下のような作用が得られ
る。
Operation With this configuration, the following effects can be obtained.

すなわち、第1図(B)はこれまでの発泡メタルを用い
た電池溶電極の断面概略図の一例で図中1が活物質を含
む部分、3が4で示す部分の発泡メタルからなる基体を
圧縮して形成した発泡メタルの密な部分である。この第
1図(B)の構造がタブレス方式の溶接を行なう場合に
は図中2の部分の上端部にリード片を溶接する。一般的
に用いられている多孔度95%厚さ2mm程度の発泡メタル
を使用する場合、図中2の部分の加圧後の厚さは0.01mm
程度になり十分な溶接強度が得られないため、図中3に
示す金属の補強材を溶着させる必要がある。一方第1図
(A)は本発明による電極の断面概略図であり、図中1
は同様に活物質を含む部分、2は4で示す部分の発泡メ
タルを圧縮した活物質を含まない発泡メタルの密な部分
である。本発明では4の部分の体積を任意に選べるた
め、2の部分の純金属部の強度は十分に確保され、補強
材を用いなくても、リード片との十分な溶接強度が確保
できる。
That is, FIG. 1 (B) is an example of a schematic cross-sectional view of a battery melting electrode using a foam metal so far, in which 1 is a part containing an active material, and 3 is a base made of foam metal. It is a dense part of foam metal formed by compression. When the structure of FIG. 1 (B) performs tabless welding, a lead piece is welded to the upper end of the portion 2 in the drawing. When using a commonly used foam metal with a porosity of 95% and a thickness of about 2 mm, the thickness of part 2 in the figure after pressing is 0.01 mm.
However, since a sufficient welding strength cannot be obtained, it is necessary to weld the metal reinforcing material shown in FIG. On the other hand, FIG. 1 (A) is a schematic sectional view of an electrode according to the present invention.
Similarly, is a portion containing the active material, and 2 is a dense portion of the foamed metal containing no active material, which is obtained by compressing the foamed metal in the portion indicated by 4. In the present invention, since the volume of the portion 4 can be arbitrarily selected, the strength of the pure metal portion of the portion 2 can be sufficiently secured, and sufficient welding strength with the lead piece can be secured without using a reinforcing material.

実施例 以下本発明の一実施例を密閉型ニッケルカドミウム蓄電
池を例にとり図面とともに説明する。まず多孔度約95
%,厚さ約2mmの発泡メタルに水酸化ニッケルを主体と
する活物質を充填する。第2図(A)はこのようにして
活物質を充填した発泡メタルの概略図である。第3図
(A)は第2図(A)の断面概略図を示す。次にこの電
極上の一部に線状の凸部4(第2図(B)に示す)を残
し、残りの部分1をx方向に加圧成形するとともに、凸
部4の活物質をブラッシングにより除去した。発泡メタ
ルに充填された活物質は、発泡メタルの空孔径が大きい
ため加圧成形をしない場合非常に脱落しやすく、例えば
4の部分の活物質は、ブラッシング等により簡単に除去
できる。第3図(B)はこの際の電極の断面概略図であ
り斜線の部分は、活物質の存在を表わし、空白の部分は
活物質の存在しないことを表わす。次に再度電極面と直
角方向(x方向)に加圧成形し、第2図(B)の凸部4
を活物質の存在する1の部分の厚さと同等以下にする。
第2図(C)は上記加圧成形を行った後の状態を示す。
この第2図(C)は全体の概略図であり、第3図(C)
はその断面概略図である。図中5の部分は、発泡メタル
の活物質を含まない基体部分を示す。次に、この5の部
分を、電極の厚さ方向に対して直角方向(y方向)に加
圧成形を行ない発泡メタルの密な部分6を形成する。第
2図(D)は上記加圧成形終了後の電極の概略図、第3
図(D)はその断面概略図を示す。
EXAMPLE One example of the present invention will be described below with reference to the drawings by taking a sealed nickel-cadmium storage battery as an example. First porosity about 95
%, About 2 mm thick foam metal is filled with active material mainly nickel hydroxide. FIG. 2 (A) is a schematic view of the foam metal filled with the active material in this way. FIG. 3 (A) shows a schematic sectional view of FIG. 2 (A). Next, a linear convex portion 4 (shown in FIG. 2B) is left on a part of this electrode, the remaining portion 1 is pressure-molded in the x direction, and the active material of the convex portion 4 is brushed. Removed by. The active material filled in the foam metal is very likely to fall off without pressure molding because the pore diameter of the foam metal is large. For example, the active material in the portion 4 can be easily removed by brushing or the like. FIG. 3 (B) is a schematic cross-sectional view of the electrode in this case, in which the shaded portion represents the presence of the active material and the blank portion represents the absence of the active material. Next, pressure molding is performed again in the direction perpendicular to the electrode surface (x direction), and the convex portion 4 in FIG.
To be equal to or less than the thickness of the portion 1 where the active material is present.
FIG. 2 (C) shows a state after performing the above pressure molding.
This FIG. 2 (C) is an overall schematic view, and FIG. 3 (C).
Is a schematic cross-sectional view thereof. A portion 5 in the figure shows a base portion which does not contain a foam metal active material. Next, the portion 5 is subjected to pressure molding in a direction (y direction) perpendicular to the thickness direction of the electrode to form a dense portion 6 of foam metal. FIG. 2 (D) is a schematic view of the electrode after completion of the pressure molding, and FIG.
FIG. (D) shows a schematic cross section thereof.

次にこのようなニッケル正極と、通常のペースト式カド
ミウム負極と、セパレータを用いて極板群を捲回後、ケ
ースに挿入し、第4図に示すように、円盤状リード片7
を発泡メタルの密な電極の上端部6にタブレス方式で溶
接し、SCサイズの密閉型ニッケルカドミウム蓄電池aを
形成した。なお第4図中8はセパレータ、9は負極であ
る。これと同様に従来の発泡メタルを用いた場合のタブ
レス方式用電極(第1図B)を用いた電池bを構成し
た。また、これこれと合せて、従来の発泡メタルのリー
ド集電方式のものも同様な条件で構成し電池cとした。
これらa,b,cの電池について、電池の放電特性の比較を
行った。第5図はa,b,cの電池についての放電特性の比
較である。図から明らかなように従来のリード集電方式
のものcは、タブレス方式に比べ放電特性が悪い。ま
た、タブレス方式のものa,bはいずれもcに比べて放電
特性が改良され、本発明の電池aは溶接部の補強材がな
いにもかかわらず、従来の補強材が存在するものと同等
の放電特性を有することが分る。
Next, after winding the electrode plate group using such a nickel positive electrode, an ordinary paste type cadmium negative electrode, and a separator, the electrode plate group was inserted into a case, and as shown in FIG.
Was welded to the upper end 6 of the dense electrode made of foam metal by the tabless method to form an SC size sealed nickel-cadmium storage battery a. In FIG. 4, 8 is a separator and 9 is a negative electrode. Similarly, a battery b was constructed using the tabless electrode (FIG. 1B) when the conventional foam metal was used. Along with this, a conventional foamed metal lead current collecting system was also constructed under the same conditions as a battery c.
The discharge characteristics of the batteries a, b, and c were compared. FIG. 5 is a comparison of the discharge characteristics of the batteries a, b and c. As is apparent from the figure, the conventional lead current collecting type c has a worse discharge characteristic than the tabless type. Further, both of the tabless type a and b have improved discharge characteristics as compared to c, and the battery a of the present invention has the same reinforcement as the conventional one even though there is no reinforcement for the welded portion. It can be seen that it has a discharge characteristic of.

発明の効果 以上のように本発明によれば、発泡メタルを用いた電極
のタブレス方式の集電が容易に行なえ、高容量でかつ高
率放電特性の優れた電池の製造を容易かつ、効率的に行
なうことができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to easily perform tabless current collection of an electrode using a foam metal, and to easily and efficiently manufacture a battery having high capacity and excellent high rate discharge characteristics. Can be done

【図面の簡単な説明】[Brief description of drawings]

第1図(A),(B)は本発明による電極と従来の電極
の断面概略図、第2図(A)〜(D)は本発明による電
極の製造過程を示す全体概略図、第3図(A)〜(D)
は第2図(A)〜(D)に対応した断面概略図、第4図
は同電極を用いた密閉型ニッケルカドミウム蓄電池の概
略図、第5図は同電池の放電特性比較図である。 1……活物質を充填した発泡メタル、4……活物質が除
去された発泡メタルからなる凸部、5……加圧された発
泡メタル、6……電極の厚さ方向に対して直角方向に加
圧された発泡メタル。
1 (A) and 1 (B) are schematic cross-sectional views of an electrode according to the present invention and a conventional electrode, and FIGS. 2 (A) to 2 (D) are schematic overall views showing a manufacturing process of the electrode according to the present invention. Figures (A)-(D)
2 is a schematic cross-sectional view corresponding to FIGS. 2A to 2D, FIG. 4 is a schematic view of a sealed nickel-cadmium storage battery using the same electrode, and FIG. 5 is a discharge characteristic comparison view of the same battery. 1 ... Foamed metal filled with active material, 4 ... Convex part made of foamed metal from which active material is removed, 5 ... Pressed foamed metal, 6 ... Direction perpendicular to electrode thickness direction Foamed metal pressed to.

フロントページの続き (72)発明者 山賀 実 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭55−39179(JP,A) 特開 昭57−43362(JP,A) 実公 昭38−5245(JP,Y1)Front Page Continuation (72) Inventor Minoru Yamaga 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-55-39179 (JP, A) JP-A-57-43362 (JP, A) Jikkou 38-5245 (JP, Y1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続した三次元網目構造の発泡メタルから
なる基体に活物質を充填する工程と、この基体を一部に
帯状の凸部を残して基体の厚さ方向に加圧成形する工程
と、前記凸部に充填された活物質を除去する工程と、凸
部の基体を活物質を含む部品の厚さと同等以下に加圧す
る工程と、次にこの活物質を含まない基体部分を電極の
幅方向に加圧成形して活物質を含む基体部分と同等の厚
さを有する発泡メタルの密な部分を形成する工程とを有
することを特徴とするアルカリ蓄電池用電極の製造法。
1. A step of filling an active material into a base made of foamed metal having a continuous three-dimensional network structure, and a step of press-molding the base in the thickness direction of the base leaving a band-shaped convex portion as a part. A step of removing the active material filled in the convex portion, a step of pressurizing the base material of the convex portion to a thickness equal to or less than the thickness of a component containing the active material, and then the base material portion not containing the active material being an electrode And a step of forming a dense portion of a foam metal having a thickness equivalent to that of the base portion containing the active material by pressure molding in the width direction.
JP60277150A 1985-12-10 1985-12-10 Battery electrode manufacturing method Expired - Lifetime JPH0770311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277150A JPH0770311B2 (en) 1985-12-10 1985-12-10 Battery electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277150A JPH0770311B2 (en) 1985-12-10 1985-12-10 Battery electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPS62136759A JPS62136759A (en) 1987-06-19
JPH0770311B2 true JPH0770311B2 (en) 1995-07-31

Family

ID=17579495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277150A Expired - Lifetime JPH0770311B2 (en) 1985-12-10 1985-12-10 Battery electrode manufacturing method

Country Status (1)

Country Link
JP (1) JPH0770311B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652450B1 (en) * 1989-09-22 1991-11-29 Accumulateurs Fixes METHOD FOR MANUFACTURING A FOAM TYPE SUPPORT ELECTRODE FOR ELECTROCHEMICAL GENERATOR AND ELECTRODE OBTAINED BY THIS METHOD.
FR2714212B1 (en) * 1993-12-17 1996-02-02 Accumulateurs Fixes Electrode plate with a metal foam type support for an electrochemical generator and method for manufacturing such an electrode plate.
JP4023990B2 (en) * 2000-08-30 2007-12-19 松下電器産業株式会社 Method and apparatus for manufacturing battery electrode plate
JP4754094B2 (en) * 2001-05-18 2011-08-24 パナソニック株式会社 Manufacturing method of battery electrode plate
JP5004452B2 (en) * 2005-03-31 2012-08-22 三洋電機株式会社 Battery manufacturing method
JP4873406B2 (en) * 2006-03-31 2012-02-08 三洋電機株式会社 Method for producing non-sintered electrode for battery
JP5883288B2 (en) * 2011-02-18 2016-03-09 住友電気工業株式会社 Three-dimensional network aluminum porous body for current collector, current collector using the aluminum porous body, electrode, non-aqueous electrolyte battery, capacitor, and lithium ion capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPS5743362A (en) * 1980-08-28 1982-03-11 Yuasa Battery Co Ltd Manufacture of conductor core for alkaline cell

Also Published As

Publication number Publication date
JPS62136759A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
US20020182483A1 (en) Method and device for manufacturing electrode plate for cell, and cell using the electrode plate
JPH0927342A (en) Cylindrical battery
JP2637949B2 (en) Battery
JPS6161230B2 (en)
JPH0770311B2 (en) Battery electrode manufacturing method
JPH10125348A (en) Battery
JP4754094B2 (en) Manufacturing method of battery electrode plate
JP3424482B2 (en) Alkaline storage battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
JPH04123757A (en) Preparation of nickel electrode
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP3893856B2 (en) Square alkaline storage battery
JP2708123B2 (en) Manufacturing method of paste electrode
JPS6310864B2 (en)
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JPH056762A (en) Manufacture of spongy metal porous body for electrode plate
JP2001043844A (en) Long electrode plate for cylindrical storage battery
JP2822443B2 (en) Electrode group for storage battery
JP3952489B2 (en) Alkaline storage battery
JPS63261672A (en) Electrode for alkaline storage battery and its manufacture
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPS61259454A (en) Manufacture of battery plate
JPS635176Y2 (en)
JPS63124361A (en) Plate for battery
JPH09283131A (en) Manufacture of battery electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term