JPH0769309B2 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH0769309B2
JPH0769309B2 JP63017312A JP1731288A JPH0769309B2 JP H0769309 B2 JPH0769309 B2 JP H0769309B2 JP 63017312 A JP63017312 A JP 63017312A JP 1731288 A JP1731288 A JP 1731288A JP H0769309 B2 JPH0769309 B2 JP H0769309B2
Authority
JP
Japan
Prior art keywords
wave
crack
ultrasonic
propagation time
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63017312A
Other languages
Japanese (ja)
Other versions
JPH01195361A (en
Inventor
勝也 梶本
実 八島
忠志 信重
拓 江草
隆澄 氏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63017312A priority Critical patent/JPH0769309B2/en
Publication of JPH01195361A publication Critical patent/JPH01195361A/en
Publication of JPH0769309B2 publication Critical patent/JPH0769309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば建設機械、圧延機、橋梁等の溶接止端
部の亀裂等の検出に適用される超音波探傷装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an ultrasonic flaw detector applied to detect cracks and the like at weld toes of construction machines, rolling mills, bridges and the like.

〔従来の技術〕[Conventional technology]

建設機械、圧延機、橋梁等のように繰返し荷重が作用す
る機器や構造物では、溶接部の止端部に疲労亀裂が発生
しやすいため、メンテナンス要員が主として外観検査に
より上記止端部の定期点検を行っているが、第5図
(a)に示すような塗装膜4によっておおわれた溶接部
2の止端部に発生した疲労亀裂3や第5図(b)に示す
ような検査員に見えない場所の溶接部2′の止端部に発
生した疲労亀裂3は外観検査によって検出することは困
難である。そのため外観検査に代る方法として超音波探
傷法が多く用いられている。
For equipment and structures such as construction machinery, rolling mills, bridges, etc. that are subjected to repeated loads, fatigue cracks tend to occur at the toes of welded parts, so maintenance personnel mainly perform visual inspections to periodically check the toes. Although inspected, the fatigue crack 3 generated at the toe of the weld 2 covered with the coating film 4 as shown in Fig. 5 (a) and the inspector as shown in Fig. 5 (b) It is difficult to detect the fatigue crack 3 generated at the toe of the welded portion 2'in an invisible place by visual inspection. Therefore, the ultrasonic flaw detection method is often used as an alternative to the visual inspection.

従来の上記疲労亀裂3の検出のために用いられる超音波
探傷法には横波斜角探傷法があるが、これは第6図に示
すように振動子6が発生した超音波をアクリル製のクサ
ビ材7を介して被検物1に36゜〜53゜の入射角θiで入
射させて屈折角θrが45゜〜70゜の横波を被検物1中に
伝播させ、亀裂3によって生じた上記横波の反射波を受
信して亀裂3を検出するものである。この他の超音波探
傷法としては入射角θiを約64゜とする横波表面波探傷
法や入射角θiを26.3゜〜26.8゜とし被検物中に屈折角
θrLが70゜〜90゜の縦波を入射させる縦波表面波探傷法
がある。
A conventional ultrasonic flaw detection method used for detecting the fatigue crack 3 is a transverse wave oblique angle flaw detection method. As shown in FIG. 6, the ultrasonic waves generated by the transducer 6 are transferred to an acrylic wedge. The transverse wave having a refraction angle θr of 45 ° to 70 ° is propagated in the object 1 by being incident on the object 1 through the material 7 at an incident angle θi of 36 ° to 53 °. The crack 3 is detected by receiving the reflected wave of the transverse wave. Other ultrasonic flaw detection methods include a transverse wave surface wave flaw detection method with an incident angle θi of about 64 ° and an incident angle θi of 26.3 ° to 26.8 ° and a refraction angle θ rL of 70 ° to 90 ° in the test object. There is a longitudinal wave surface wave flaw detection method in which a longitudinal wave is incident.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の超音波探傷法の1つである横波斜角探傷法では、
第7図に示すように亀裂からの反射波Fと溶接部2′の
表面からの反射波Nの識別が難しく、ベテランの検査員
でなければ判定困難であり、しかも従来の超音波探傷器
19はブラウン管20を内蔵しているため5〜10Kgの重量が
あり作業性が悪かった。従来の他の超音波探傷法の横波
表面波探傷法の場合は、塗装膜による超音波の減衰が大
きく、被検物の表面形状の影響を強く受ける等の弱点が
あって、第5図(a),(b)に示すような箇所の欠陥
検出は困難であった。
In the transverse wave oblique flaw detection method, which is one of the conventional ultrasonic flaw detection methods,
As shown in FIG. 7, it is difficult to discriminate between the reflected wave F from the crack and the reflected wave N from the surface of the welded portion 2 ', and it is difficult to judge unless a veteran inspector is used, and the conventional ultrasonic flaw detector is used.
Since 19 has a built-in cathode ray tube 20, it weighs 5 to 10 kg and has poor workability. In the case of the conventional ultrasonic wave surface wave detection method, which is another ultrasonic wave detection method, there is a weak point that the ultrasonic wave is largely attenuated by the coating film and is strongly influenced by the surface shape of the test object. It was difficult to detect defects at the locations shown in a) and (b).

また、縦波表面波探傷法の場合は、塗装膜による超音波
の減衰が少なく、溶接余盛表面からの雑エコーも殆んど
発生しないという利点があるが、第8図に示すようにこ
の入射条件では亀裂検出用の縦波表面波Lの他に、屈折
角θrSが32゜前後の横波Sを発生しかつその横波が底面
で反射する際に縦波L′を生じるモード変換現象がある
ため、ブラウン管20に現われる波形が複雑になり、極め
て経験の深い検査員でなければ判定困難であった。
Further, in the case of the longitudinal wave surface wave flaw detection method, there is an advantage that the ultrasonic wave is less attenuated by the coating film and almost no noise echo is generated from the surplus weld surface, but as shown in FIG. Under the incident conditions, in addition to the longitudinal wave surface wave L for crack detection, there is a mode conversion phenomenon that generates a transverse wave S having a refraction angle θ rS of about 32 ° and a longitudinal wave L ′ when the transverse wave is reflected on the bottom surface. Therefore, the waveform appearing on the cathode ray tube 20 is complicated, and it is difficult to make a judgment unless the examiner has an extremely experienced experience.

更に近年製品の高度化に伴い、非破壊検査技術への要求
も単に亀裂の検出ができるものから定量評価できるもの
へと移行しつつあり、疲労亀裂の場合も亀裂深さを知り
たいとのニーズが極めて強いが、現状ではその測定は最
高クラスのベテラン検査員の伎倆に依存しなければなら
ない状況にある。
Furthermore, with the sophistication of products in recent years, the demand for non-destructive inspection technology is shifting from those that can only detect cracks to those that can be quantitatively evaluated, and the need to know the crack depth in the case of fatigue cracks as well. Although it is extremely strong, at present the measurement must rely on the power of the best-in-class inspectors.

本発明は上記の課題を解決しようとするものである。The present invention is intended to solve the above problems.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は送信器からの電気信号を入力し被検物中に超音
波の縦波表面波を入射させ被検物中の表面亀裂からの反
射波を受波し電気信号に変換する探触子、同探触子から
の電気信号を入力する受信器、同受信器の出力を入力し
上記縦波表面波の被検物中の伝播時間を演算する伝播時
間計測回路、同伝播時間計測回路より伝播時間信号を入
力し上記の超音波入射位置から表面亀裂の位置までの距
離を演算しまた式 よりTsを算出し上記縦波表面波の被検物中の伝播時間と
比較する演算器、同演算器より表面亀裂からの反射波が
受波できなくなる超音波入射位置から表面亀裂までの距
離を表わす信号を入力し亀裂深さを判定する亀裂深さ判
定器、上記演算器より超音波入射位置から表面亀裂まで
の距離信号を入力して同距離をデイジタル表示しまた上
記亀裂深さ判定器より亀裂深さ信号を入力して同深さを
デイジタル表示するデイジタル表示器、および上記演算
器より上記の縦波表面波の被検物中の伝播時間とTsの比
較結果の信号を入力し上記伝播時間が上記Tsより大きい
場合には警報する警報器を備えている。
The present invention is a probe for inputting an electric signal from a transmitter, injecting an ultrasonic longitudinal surface wave into a test object, receiving a reflected wave from a surface crack in the test object and converting it into an electric signal. , A receiver for inputting an electric signal from the probe, a propagation time measuring circuit for calculating the propagation time of the longitudinal wave surface wave in the object by inputting the output of the receiver, from the propagation time measuring circuit Input the propagation time signal and calculate the distance from the ultrasonic wave incident position to the position of the surface crack. Calculate the Ts from the arithmetic unit to compare with the propagation time of the longitudinal wave surface wave in the test object, the distance from the ultrasonic wave incident position to the surface crack where the reflected wave from the surface crack cannot be received from the arithmetic unit A crack depth determiner that determines the crack depth by inputting a signal that represents the distance from the ultrasonic wave incident position to the surface crack from the above calculator and digitally displays the same distance. Input the crack depth signal to display the same depth digitally, and input the signal of the comparison result of the propagation time of the longitudinal wave surface wave in the test object and Ts from the above arithmetic unit and propagate the above. When the time is longer than the above Ts, an alarm device is provided to warn.

〔作用〕[Action]

上記において、送信器から送られた電気信号を入力した
探触子は、従来の縦波表面波探傷法におけると同様に被
検物中に縦波超音波を屈折角70〜90゜で入射させこれに
伴い横波超音波が屈折角32゜前後で入射する。上記探触
子より入射した縦波は、被検物中に表面亀裂がある場合
同亀裂によって反射し、入射経路を逆にたどって上記探
触子に受波され電気信号に変換され、上記受信器に受信
され更に伝播時間計測回路に送られる。同伝播時間計測
回路は上記電気信号より縦波超音波の被検物中の伝播時
間を計測しその伝播時間信号を演算器に出力する。同演
算器は上記伝播時間Tおよび被検物中の縦波音速VLと縦
波屈折角θrLより次式によって被検物の超音波入射点か
ら亀裂までの距離Yを算出する。
In the above, the probe to which the electric signal sent from the transmitter is input, causes longitudinal ultrasonic waves to enter the test object at a refraction angle of 70 to 90 °, as in the conventional longitudinal wave surface wave flaw detection method. Along with this, transverse ultrasonic waves are incident with a refraction angle of around 32 °. The longitudinal wave incident from the probe is reflected by the crack when there is a surface crack in the test object, is traced back in the incident path, is received by the probe, is converted into an electric signal, and is received. It is received by the vessel and sent to the propagation time measuring circuit. The propagation time measuring circuit measures the propagation time of the longitudinal ultrasonic wave in the test object from the electric signal and outputs the propagation time signal to the computing unit. The computing unit calculates the distance Y from the ultrasonic wave incident point of the test object to the crack according to the following equation from the propagation time T, the longitudinal wave sound velocity V L in the test object, and the longitudinal wave refraction angle θ rL .

上記の距離Yを算出した演算器は距離信号をデイジタル
表示器に出力し、デイジタル表示器は上記距離Yをデイ
ジタル表示する。
The calculator that calculates the distance Y outputs a distance signal to the digital display, and the digital display digitally displays the distance Y.

また上記演算器は、被検物の板厚l、横波音速Vsおよび
横波屈折角θrsより次式によって算出したTsを超音超音
波の被検物中の伝播時間Tと比較し、比較結果の信号を
警報器に出力する。
Further, the above-mentioned computing device compares Ts calculated by the following formula from the plate thickness l of the test object, the transverse wave sound velocity Vs and the transverse wave refraction angle θ rs with the propagation time T of the ultrasonic ultrasonic wave in the test object, and the comparison result The signal of is output to the alarm device.

上記比較結果の信号を入力した警報器は、TがTsより大
きい場合には探触子が雑音である横波超音波を受波して
いる恐れがあるため警報する。
The alarm device, to which the signal of the above comparison result is input, issues an alarm when T is larger than Ts because the probe may be receiving a transverse ultrasonic wave which is noise.

次に上記演算器を亀裂深さ判定器に接続し、同亀裂深さ
判定器が演算器から超音波入射点から亀裂までの距離信
号を入力しながら、探触子を亀裂から遠ざける方向にエ
コーが検出できなくなる位置まで移動する。上記亀裂深
さ判定器は上記エコーが検出できなくなる位置より亀裂
深さを判定し、その信号をデイジタル表示器に出力し、
デイジタル表示器は亀裂深さをデイジタル表示する。
Next, the above-mentioned computing unit is connected to a crack depth judging unit, and while the crack depth judging unit inputs a distance signal from the computing unit to the ultrasonic wave incident point to the crack, echoes in a direction of moving the probe away from the crack. Move to a position where can no longer be detected. The crack depth determiner determines the crack depth from a position where the echo cannot be detected, and outputs the signal to a digital display,
The digital indicator displays the crack depth digitally.

上記により、縦波超音波の伝播時間によって亀裂までの
距離を計測し同距離はデイジタル表示されるために装置
の取扱いが簡便で亀裂の位置が容易かつ確実に判定でき
るようになり、また探触子が横波を受波している恐れが
ある場合には警報器によって表示されるため横波による
雑音を回避できるようになり、更に亀裂深さ判定器を備
え亀裂深さを判定しデイジタル表示されるため亀裂の深
さも容易に判定できるようになった。
By the above, the distance to the crack is measured by the propagation time of the longitudinal ultrasonic wave, and the distance is displayed digitally, so the device can be handled easily and the position of the crack can be easily and surely determined. When there is a possibility that the child is receiving transverse waves, it will be displayed by an alarm device so that noise due to transverse waves can be avoided, and a crack depth determiner is further provided to judge the crack depth and be displayed digitally. Therefore, the depth of the crack can be easily determined.

〔実施例〕〔Example〕

本発明の一実施例を第1図および第2図に示す。 One embodiment of the present invention is shown in FIGS. 1 and 2.

第1図および第2図に示す本実施例は、クサビ材7に貼
付けられた振動子6、同振動子6を包む探触子5、およ
び同探触子5が接続された超音波検査器8を備えてお
り、上記超音波検査器8は上記探触子5が電線により接
続された送信器10および受信器11を有し、同受信器11に
は伝播時間計測回路12が接続され、同伝播時間計測回路
12にはゼロ点設定器13および演算器14が接続され、同演
算器14には初期条件設定器15と表示内容切替スイツチ16
を介してデイジタル表示器9、警告灯17および亀裂深さ
判定器18が接続されている。
The present embodiment shown in FIGS. 1 and 2 includes a transducer 6 attached to a wedge material 7, a probe 5 enclosing the transducer 6, and an ultrasonic inspector to which the probe 5 is connected. The ultrasonic tester 8 has a transmitter 10 and a receiver 11 to which the probe 5 is connected by an electric wire, and a propagation time measuring circuit 12 is connected to the receiver 11. Same propagation time measurement circuit
A zero-point setter 13 and a calculator 14 are connected to 12, and the calculator 14 has an initial condition setter 15 and a display content switching switch 16
A digital indicator 9, a warning light 17 and a crack depth determiner 18 are connected via the.

上記において、検査開始前に超音波がクサビ材7内を通
過する通過時間t0をゼロ点設定器13に入力し、また被検
物1中での超音波の縦波音速VL、横波音速VS、縦波屈折
角θrL、横波屈折角θrSおよび被検物1の板厚lを初期
条件設定器15に入力する。上記の諸条件を設定後、送信
器10より探触子5を介して振動子6に電気信号を送り超
音波を発生させる。上記超音波は、従来の縦波表面波探
傷法におけると同様に上記クザビ材7により26.3゜〜2
6.8゜の入射角θiで被検物1の表面に入射し、屈折角
θrLが70゜〜90゜で屈折した縦波と屈折角θrSが32゜前
後で屈折した横波Sを被検物1中に伝播させる。上記縦
波Lは、被検物1中に亀裂3がある場合同亀裂3によっ
て反射し、上記入射経路を逆にたどって振動子6に帰還
し電気信号に変換される。上記電気信号は受信器11を経
て伝播時間計測回路12に送られ、同伝播時間計測回路12
にて縦波超音波の往復時間t1が計測され、同往復時間t1
と上記のゼロ点設定器13に設定された設定時間t0との差
がデイジタル信号に変換され演算器14に伝送される。同
演算器14は初期条件設定器15に設定された被検物1中の
縦波音速VL、縦波屈折角θrLを用い、次式により被検物
1の超音波入射点から亀裂3までの距離Yを算出する。
In the above, the passage time t 0 of the ultrasonic wave passing through the wedge material 7 before the start of the inspection is input to the zero-point setter 13, and the longitudinal wave sound velocity V L and the transverse wave sound velocity of the ultrasonic wave in the DUT 1 are input. The V S , the longitudinal wave refraction angle θ rL , the transverse wave refraction angle θ rS, and the plate thickness 1 of the object 1 are input to the initial condition setting device 15. After setting the above-mentioned conditions, the transmitter 10 sends an electric signal to the transducer 6 via the probe 5 to generate an ultrasonic wave. The ultrasonic wave is 26.3 ° to 2 ° by the Kuzabi material 7 in the same manner as in the conventional longitudinal wave surface wave flaw detection method.
A longitudinal wave refracted at a refraction angle θ rL of 70 ° to 90 ° and a transverse wave S refracted at a refraction angle θ rS of about 32 ° are incident on the surface of the test object 1 at an incident angle θi of 6.8 °. Propagate into 1. The longitudinal wave L is reflected by the crack 3 in the test object 1 when the crack 1 exists in the test object 1, returns to the vibrator 6 by following the incident path in reverse, and is converted into an electric signal. The electric signal is sent to the propagation time measuring circuit 12 via the receiver 11, and the propagation time measuring circuit 12
Round trip time t 1 of the longitudinal ultrasonic waves are measured by, the round trip time t 1
And the set time t 0 set in the zero point setting device 13 is converted into a digital signal and transmitted to the calculator 14. The calculator 14 uses the longitudinal wave sound velocity V L and the longitudinal wave refraction angle θ rL in the test object 1 set in the initial condition setting device 15, and the crack 3 is generated from the ultrasonic wave incident point of the test object 1 by the following equation. The distance Y to is calculated.

上記演算器14に接続された表示内容切替スイツチ16をa
側に倒すと、上記(1)子により算出された距離Yの信
号はデイジタル表示器9に出力されデイジタル表示器9
は上記距離Yをデイジタル表示する。また上記距離Y
は、被検物の板厚l、縦波音速VL、横波音速VSおよび横
波屈折角θrSより次式によって求められ演算器14内に記
憶されているYcrと比較される。
Switch the display contents switching switch 16 connected to the arithmetic unit 14
When tilted to the side, the signal of the distance Y calculated by the above (1) child is output to the digital display 9 and the digital display 9
Displays the distance Y digitally. Also, the distance Y
Is calculated from the plate thickness 1 of the object to be tested, the longitudinal sound velocity V L , the transverse sound velocity V S, and the transverse wave refraction angle θ rS by the following equation, and is compared with Y cr stored in the calculator 14.

上記距離YがYcrより大きい場合には、縦波Lの往復時
間t1が横波Sの往復時間よりも大きくなり探触子5が雑
音である横波Sを受波している恐れがあるため、警告灯
17を点灯する。
When the distance Y is larger than Y cr , the round-trip time t 1 of the longitudinal wave L is longer than the round-trip time of the transverse wave S, and the probe 5 may receive the transverse wave S which is noise. , Warning light
Turn on 17

次に、上記表示内容切替スイツチ16をb側に倒し、演算
器14を亀裂深さ判定器18に接続し、同亀裂深さ判定器18
が演算器14より上記距離Y信号を入力しながら探触子5
を亀裂3から遠ざける方向にエコーが検出できなくなる
位置まで移動する。上記エコーが検出できなくなる位置
より亀裂深さ判定器18が亀裂深さdを判定し、デイジタ
ル表示器9に出力しデイジタル表示させる。上記距離Y
とエコー高さとの間には亀裂深さdをパラメータとして
第3図に示すような関係があるが、本実施例の受信器11
は12dBより高いエコーでなければ検出できないように設
定されているため亀裂深さdとエコーが消失する距離Ys
とは第4図に示すような関係となる。上記亀裂深さ判定
器18には第4図に示すデータが記憶させてあり、上記判
定器18は上記データを用いエコーが消失する距離Ysより
亀裂深さdを判定している。
Next, the display content changeover switch 16 is tilted to the b side, the arithmetic unit 14 is connected to the crack depth determining unit 18, and the crack depth determining unit 18 is connected.
While inputting the distance Y signal from the calculator 14, the probe 5
Is moved in a direction away from the crack 3 to a position where an echo cannot be detected. The crack depth determiner 18 determines the crack depth d from the position where the echo cannot be detected and outputs it to the digital display 9 for digital display. Above distance Y
There is a relation between the echo height and the echo height as shown in FIG. 3 with the crack depth d as a parameter.
Is set so that it can be detected only by an echo higher than 12 dB, the crack depth d and the distance Ys at which the echo disappears
And have a relationship as shown in FIG. The crack depth determiner 18 stores the data shown in FIG. 4, and the determiner 18 determines the crack depth d from the distance Ys at which the echo disappears, using the data.

上記により、縦波表面波の往復時間によって亀裂までの
距離を計測し同距離はデイジタル表示されるために装置
の取扱いが簡便で亀裂の位置が容易かつ確実に判定でき
るようになり、また探触子が横波を受波している恐れが
ある場合には警告灯によって表示されるため横波による
雑音を回避できるようになり、更に亀裂深さ判定器を備
え亀裂の深さを判定しデイジタル表示されるため亀裂の
深さも容易に判定できるようになった。
By the above, the distance to the crack is measured by the round-trip time of the longitudinal and surface waves, and the distance is displayed digitally, so the device can be handled easily and the position of the crack can be easily and surely determined. When there is a possibility that the child is receiving a transverse wave, it will be displayed by a warning light so that noise due to the transverse wave can be avoided, and a crack depth determiner is further provided to judge the depth of the crack and display it digitally. Therefore, the depth of the crack can be easily determined.

〔発明の効果〕〔The invention's effect〕

本発明は、被検物中に縦波表面波を入射させその伝播時
間により超音波入射位置と表面亀裂の間の距離を演算し
デイジタル表示し、また上記伝播時間は横波の被検物裏
側との間の伝播時間と比較され上記伝播時間が大きい場
合は警報器が作動し、更に亀裂深さ判定器によって亀裂
の深さを判定してデイジタル表示されることによって、
装置の取扱いが簡便となり、亀裂の位置が容易かつ確実
に判定できるようになり、また横波による雑音を回避で
きるようになり、更に亀裂の深さも容易に判定できるよ
うになった。
The present invention calculates the distance between the ultrasonic wave incident position and the surface crack by digitally displaying the longitudinal wave surface wave incident on the test object and its propagation time, and the propagation time is the backside of the test object of the transverse wave. If the above-mentioned propagation time is large compared with the propagation time between, the alarm is activated, and the crack depth determiner further determines the depth of the crack and is digitally displayed.
The device is easy to handle, the position of the crack can be easily and surely determined, noise due to transverse waves can be avoided, and the depth of the crack can be easily determined.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の説明図、第2図は上記一実
施例の詳細説明図、第3図は上記一実施例のエコー高さ
の特性図、第4図は上記一実施例の亀裂深さの特性図、
第5図は溶接部の説明図、第6図は従来の横波斜角探傷
法の説明図、第7図は上記横波斜角探傷装置の説明図、
第8図は従来の縦波表面波探傷法の説明図である。 1……被検物、2……溶接部、……亀裂、4……塗装
膜、5……探触子、6……振動子、7……クサビ材、8
……超音波検査器、9……デイジタル表示器、10……送
信器、11……受信器、12……伝播時間計測回路、13……
ゼロ点設定器、14……演算器、15……初期条件設定器、
16……表示内容切換器、17……警告灯、18……亀裂深さ
判定器、19……超音波探傷器、20……ブラウン管。
FIG. 1 is an explanatory view of an embodiment of the present invention, FIG. 2 is a detailed explanatory view of the above embodiment, FIG. 3 is a characteristic diagram of echo height of the above embodiment, and FIG. Example crack depth characteristic diagram,
FIG. 5 is an explanatory view of a welded portion, FIG. 6 is an explanatory view of a conventional shear wave oblique flaw detection method, and FIG. 7 is an explanatory view of the shear wave oblique flaw detection device.
FIG. 8 is an explanatory view of a conventional longitudinal wave surface wave flaw detection method. 1 ... Inspected object, 2 ... Welded part, ... Crack, 4 ... Paint film, 5 ... Probe, 6 ... Transducer, 7 ... Wedge material, 8
...... Ultrasonic tester, 9 …… Digital display, 10 …… Transmitter, 11 …… Receiver, 12 …… Transmission time measurement circuit, 13 ……
Zero point setter, 14 …… Calculator, 15 …… Initial condition setter,
16 …… Display content switcher, 17 …… Warning lamp, 18 …… Crack depth determiner, 19 …… Ultrasonic flaw detector, 20 …… CRT.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江草 拓 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 氏原 隆澄 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島製作所内 (56)参考文献 特開 昭53−74485(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Taku Egusa 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Works (72) Inventor Takasumi Ushihara 4-chome, Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture 6-22 No. 22 Hiroshima Works, Mitsubishi Heavy Industries, Ltd. (56) Reference JP-A-53-74485 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送信器からの電気信号を入力し被検物中に
超音波の縦波表面波を入射させ被検物中の表面亀裂から
の反射波を受波し電気信号に変換する探触子、同探触子
からの電気信号を入力する受信器、同受信器の出力を入
力し上記縦波表面波の被検物中の伝播時間を演算する伝
播時間計測回路、同伝播時間計測回路より伝播時間信号
を入力し上記の超音波入射位置から表面亀裂の位置まで
の距離を演算しまた式 よりTsを算出し上記縦波表面波の被検物中の伝播時間と
比較する演算器、同演算器より表面亀裂からの反射波が
受波できなくなる超音波入射位置から表面亀裂までの距
離を表わす信号を入力し亀裂深さを判定する亀裂深さ判
定器、上記演算器より超音波入射位置から表面亀裂まで
の距離信号を入力して同距離をデイジタル表示しまた上
記亀裂深さ判定器より亀裂深さ信号を入力して同深さを
デイジタル表示するデイジタル表示器、および上記演算
器より上記の縦波表面波の被検物中の伝播時間とTsの比
較結果の信号を入力し上記伝播時間が上記Tsより大きい
場合には警報する警報器を備えたことを特徴とする超音
波探傷装置。
1. A probe for inputting an electric signal from a transmitter, injecting an ultrasonic longitudinal surface wave into an object to be inspected, and receiving a reflected wave from a surface crack in the object to be converted into an electric signal. A probe, a receiver that receives an electric signal from the probe, a propagation time measurement circuit that inputs the output of the receiver and calculates the propagation time of the longitudinal wave surface wave in the test object, and the propagation time measurement Input the transit time signal from the circuit and calculate the distance from the above ultrasonic wave incident position to the position of the surface crack. Calculate the Ts from the arithmetic unit to compare with the propagation time of the longitudinal wave surface wave in the test object, the distance from the ultrasonic wave incident position to the surface crack where the reflected wave from the surface crack cannot be received from the arithmetic unit A crack depth determiner that determines the crack depth by inputting a signal that represents the distance from the ultrasonic wave incident position to the surface crack from the above calculator and digitally displays the same distance. Input the crack depth signal to display the same depth digitally, and input the signal of the comparison result of the propagation time of the longitudinal wave surface wave in the test object and Ts from the above arithmetic unit and propagate the above. An ultrasonic flaw detector equipped with an alarm device for alarming when the time is longer than the above Ts.
JP63017312A 1988-01-29 1988-01-29 Ultrasonic flaw detector Expired - Lifetime JPH0769309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63017312A JPH0769309B2 (en) 1988-01-29 1988-01-29 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63017312A JPH0769309B2 (en) 1988-01-29 1988-01-29 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPH01195361A JPH01195361A (en) 1989-08-07
JPH0769309B2 true JPH0769309B2 (en) 1995-07-26

Family

ID=11940492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63017312A Expired - Lifetime JPH0769309B2 (en) 1988-01-29 1988-01-29 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0769309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007145200A1 (en) * 2006-06-13 2009-10-29 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007145200A1 (en) * 2006-06-13 2009-10-29 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP4816731B2 (en) * 2006-06-13 2011-11-16 住友金属工業株式会社 Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
JPH01195361A (en) 1989-08-07

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
JPH07167842A (en) Method and device for measuring and controlling angle of refraction of ultrasonic wave
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
JP4094464B2 (en) Nondestructive inspection method and nondestructive inspection device
KR101882838B1 (en) Peeling inspection method of laminate and peeling inspection device
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP2001021542A (en) Measuring of weld line transverse crack defect length
JP2009058238A (en) Method and device for defect inspection
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JPH0769309B2 (en) Ultrasonic flaw detector
JPH0454447A (en) Fatigue damage measuring method
JP2002243703A (en) Ultrasonic flaw detector
JP3168946U (en) Ultrasonic flaw detector and penetration width acceptance / rejection determination system
Burhan et al. A guideline of ultrasonic inspection on butt welded plates
JP4632474B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JP4500391B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
JP2005147770A (en) Ultrasonic flaw detector
JPS62222160A (en) Strength measurement of seam-welding by means of supersonic wave
KR101144011B1 (en) Appratus for strain measurement using ultrasonic wave speed
Ganhao Sizing with time-of-flight diffraction
JPS61164154A (en) Detection of corrosion of steel structure
KR100780709B1 (en) Underwater ultrasonic flaw detection system
JP2006132981A (en) Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method
JPH0523127U (en) Ultrasonic flaw detector