JPH076914B2 - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH076914B2
JPH076914B2 JP61289204A JP28920486A JPH076914B2 JP H076914 B2 JPH076914 B2 JP H076914B2 JP 61289204 A JP61289204 A JP 61289204A JP 28920486 A JP28920486 A JP 28920486A JP H076914 B2 JPH076914 B2 JP H076914B2
Authority
JP
Japan
Prior art keywords
air
enzyme
sensor
water
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61289204A
Other languages
Japanese (ja)
Other versions
JPS63140943A (en
Inventor
忠泰 光亦
仁誠 宮崎
誠 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61289204A priority Critical patent/JPH076914B2/en
Publication of JPS63140943A publication Critical patent/JPS63140943A/en
Publication of JPH076914B2 publication Critical patent/JPH076914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気中に極く微量に存在する有機物質を分
析、検知するためのバイオセンサーに関し、環境汚染物
質や危険物の検知,探知,分析および健康管理などの産
業分野で広く利用できる。
Description: TECHNICAL FIELD The present invention relates to a biosensor for analyzing and detecting an organic substance existing in a very small amount in air, and detecting, detecting and analyzing environmental pollutants and dangerous substances. And widely used in industrial fields such as health care.

従来の技術 酵素センサー,酵素免疫センサー,微生物センサーなど
のバイオセンサーが次第に開発されるようになり、従来
測定が困難であった有機物質も、比較的高感度で簡便に
測定できるようになった。たとえば、空気中の極く微量
の成分を分析する場合、このようなセンサーを働かせる
ために、通常、水溶液中にバッブルさせて通して濃縮,
収集したり、またはゼオライトのような吸着剤を充填し
たカラム中を通して捕集し、その後カラムを加熱して脱
着させるか、あるいは溶剤で溶出させるなどの操作によ
り、試料を濃縮している。しかし、これらの操作を要す
るので、一層簡便で、高感度なセンサーの開発が待たれ
ている。
Conventional technology Biosensors such as enzyme sensors, enzyme immunosensors, and microbial sensors have been gradually developed, and organic substances, which were difficult to measure in the past, can be easily measured with relatively high sensitivity. For example, when analyzing a very small amount of a component in the air, in order to activate such a sensor, it is usually bubbled through an aqueous solution and concentrated,
The sample is concentrated by an operation such as collection or collection through a column packed with an adsorbent such as zeolite, and then heating the column for desorption or eluting with a solvent. However, since these operations are required, the development of a simpler and more sensitive sensor is awaited.

発明が解決しようとする問題点 そこで、空気中の極く微量物質を分析,検知するため
に、湿った多孔湿素子に空気を流し、これにより試料を
濃縮,収集するとともに、この素子で生化学反応を行な
わせて、高感度で簡便なバイオセンサーをすでに提案し
た(特願昭61−166909)。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Therefore, in order to analyze and detect a very small amount of substances in the air, air is passed through a wet porous wet element to concentrate and collect a sample, and the biochemical element is used in this element. We have already proposed a high-sensitivity and simple biosensor by carrying out a reaction (Japanese Patent Application No. 61-166909).

しかし、長期間にわたる測定の場合に生じる問題点とし
て、酵素などの活性が次第に低下するとともに、空気を
多孔性素子中を通すことにより、素子が湿った状態でな
くなり、次第に乾燥してくる。これにより、試料の収集
効率が低下し、さらに、酵素や抗原抗体反応速度の低下
が生じる。これを防ぐ手段として、空気を加湿するため
のフィルターを前に設けることも考えられるが、この部
分に目的とする試料が捕集されるので不都合がある。ま
た、湿度の大きい空気を試料を含んだ空気と事前に混合
することも考えられるが、試料濃度を減少させるので好
ましくない。
However, as a problem that arises in the case of measurement over a long period of time, the activity of enzymes and the like gradually decreases, and when air is passed through the porous element, the element is not wet and gradually dry. As a result, the collection efficiency of the sample is reduced, and further the reaction rate of the enzyme and the antigen-antibody reaction is reduced. As a means for preventing this, a filter for humidifying the air may be provided in front, but this is disadvantageous because the target sample is collected in this portion. It is also conceivable to preliminarily mix air with high humidity with air containing a sample, but this is not preferable because it reduces the sample concentration.

問題点を解決するための手段 使用中には空気を通す多孔性素子に常に一定量の水分を
補充する。その具体的手段として、超音波加湿器を用
い、さらに水分量を検知,制御するためのセンサーを用
いる。これにより、長期にわたり安定で、比較的長時間
の試料収集を要する極く微量の物質の分析,検出が可能
となる。
Means for Solving the Problems During use, the air-permeable porous element is constantly replenished with a certain amount of water. As a concrete means, an ultrasonic humidifier is used, and a sensor for detecting and controlling the water content is used. This makes it possible to analyze and detect a very small amount of a substance that is stable for a long period of time and that requires sample collection for a relatively long period of time.

作用 このような構成とすることにより、空気中に浮遊してい
る有機化合物を連続的に高感度でしかも応答性がよく分
析,検知することができる。
Action With such a configuration, it is possible to continuously analyze and detect an organic compound floating in the air with high sensitivity and good responsiveness.

実 施 例 本発明のセンサーによる測定方法を実施例を参照して説
明する。第1図は本発明によるバイオセンサーの一実施
例を示す断面概略図である。吸水多孔性素子1には、抗
体と酵素標識抗原(あるいは抗原と酵素標識抗体)、基
質、および酵素活性度表示物質、例えば発色剤,発光
剤、さらに必要に応じて補酵素などを担持している。ま
た、空気中の被測定物質をこのセンサーに導くための空
気導入管2を設け、この管中にファン3、導入空気を加
湿する超音波加湿器4、および多孔性素子1の含水率を
電導度で測定する水分量検知用センサー5、吸光度測定
用の光源6、ミラー7、さらに多孔性素子の他の側には
受光素子8を備えている。
Practical Example A measuring method using the sensor of the present invention will be described with reference to an example. FIG. 1 is a schematic sectional view showing an embodiment of the biosensor according to the present invention. The water-absorbing porous element 1 carries an antibody and an enzyme-labeled antigen (or an antigen and an enzyme-labeled antibody), a substrate, and an enzyme activity indicating substance such as a color former, a luminescent agent, and if necessary, a coenzyme. There is. Further, an air introducing pipe 2 for guiding the substance to be measured in the air to the sensor is provided, and the water content of the fan 3, the ultrasonic humidifier 4 for humidifying the introduced air, and the porous element 1 is conducted in the pipe. The sensor 5 for detecting the amount of water to be measured in degrees, the light source 6 for measuring the absorbance, the mirror 7, and the light receiving element 8 on the other side of the porous element.

連続的に測定するためには、空気導入管2、水分検知用
センサー5、受光素子8などを固定して多孔性素子1を
連続的に移動させ、連続的にセンサーを作動させること
ができる。
For continuous measurement, the air introduction tube 2, the moisture detection sensor 5, the light receiving element 8 and the like can be fixed, the porous element 1 can be continuously moved, and the sensor can be continuously operated.

次に、ジゴキシンの濃度測定例を説明する。Next, an example of measuring the concentration of digoxin will be described.

酵素を標識した抗原としてグルコース−6−リン酸脱水
素酵素標識ジゴキシン(2×10-2mM)を作製し、ポリプ
ロピレン不織布(厚さ0.2mm)に公知の方法で固定化し
た抗ジゴキシンモノクロナル抗体と上記の標識抗原を予
め結合させた。さらに、基質としてグルコース−6−リ
ン酸(以下G6Pで表す)を2wt%、補酵素としてニコチン
アミドアデニンジヌクレオチド(以下NADで表す)を4
×10-2mM含む0.05Mトリス塩酸緩衝液(pH=7.4)を上記
の多孔膜に含水率が約20%になるように含浸させた。そ
して、この含水率を維持するために、水分量検知用セン
サーにより制御された超音波加湿器を設けた。なお、こ
の状態では、抗原は抗体と結合していて、抗原に標識さ
れている酵素は不活性であり、基質があるにもかかわら
ず酵素反応は生じない。
Glucose-6-phosphate dehydrogenase-labeled digoxin (2 × 10 -2 mM) was prepared as an enzyme-labeled antigen and immobilized on a polypropylene nonwoven fabric (thickness 0.2 mm) by a known method. And the labeled antigen described above was bound in advance. Further, glucose-6-phosphate (hereinafter referred to as G 6 P) was used as a substrate at 2% by weight, and nicotinamide adenine dinucleotide (hereinafter referred to as NAD) was used as a coenzyme at 4% by weight.
The above porous membrane was impregnated with 0.05 M Tris-HCl buffer (pH = 7.4) containing × 10 -2 mM so that the water content was about 20%. Then, in order to maintain this water content, an ultrasonic humidifier controlled by a water content detection sensor was provided. In this state, the antigen is bound to the antibody, the enzyme labeled with the antigen is inactive, and the enzyme reaction does not occur despite the presence of the substrate.

25℃で相対湿度約60%のジゴキシン含有標準空気(0ng/
ml,100ng/ml,200ng/ml,400ng/ml,600ng/ml,800ng/ml,10
00ng/ml)を順次、各8分間隔で、直径5mmの空気導入管
を通して約2m/secの速度で、上記の多孔性素子を通過さ
せた。すると、このジゴキシンは、酵素の付いたジゴキ
シンと置換反応し、酵素標識しているジゴキシンは抗体
から離れる。するとこの酵素は再び活性を示した。すな
わち、次式によりG6Pは酸化され、NADは還元されてNADH
となる。
Digoxin-containing standard air (0 ng /
ml, 100ng / ml, 200ng / ml, 400ng / ml, 600ng / ml, 800ng / ml, 10
00 ng / ml) was sequentially passed through the porous element at a rate of about 2 m / sec through an air inlet tube having a diameter of 5 mm at intervals of 8 minutes. Then, this digoxin undergoes a substitution reaction with the enzyme-attached digoxin, and the enzyme-labeled digoxin is separated from the antibody. The enzyme was then active again. That is, according to the following equation, G 6 P is oxidized and NAD is reduced to give NADH.
Becomes

G6P+NAD→6PGA+NADH このNADHの生成量を、分光光度計で340nmでの吸収によ
り求めた。各標準空気に切りかえてから8分後の測定結
果を第2図の直線Aに示す。この直線Aより、標準空気
中に含まれている量にほぼ比例した検量線を作製するこ
とができた。その誤差は約±5%であった。
G 6 P + NAD → 6 PGA + NADH The production amount of this NADH was determined by absorption at 340 nm with a spectrophotometer. The measurement result 8 minutes after switching to each standard air is shown by the straight line A in FIG. From this straight line A, it was possible to prepare a calibration curve that was approximately proportional to the amount contained in standard air. The error was about ± 5%.

なお、実施例と比較のために、超音波加湿器を用いない
場合の8分後の測定結果を第2図の直線Bに示す。その
結果、吸光度の増加率が極端に低下した。この原因は多
孔性素子の水分が減少し、酵素および免疫反応の速度が
低下したことにもとづいていた。測定時間を約2分間と
すると、この間は補水装置がなくても必要な水分はほぼ
保持していて、加湿器を用いなくてもほぼ同一の結果が
得られた。しかし、測定時間が短いので、この間に集め
た試料が必然的に少なくなり、測定感度は低下した。
For comparison with the examples, the measurement result after 8 minutes when the ultrasonic humidifier is not used is shown by the straight line B in FIG. As a result, the rate of increase in absorbance was extremely reduced. This was based on the fact that the water content of the porous element decreased and the enzyme and immune reaction rates decreased. When the measurement time was set to about 2 minutes, the required water content was substantially retained during this period without using a rehydration device, and almost the same results were obtained without using a humidifier. However, since the measurement time was short, the sample collected during this period was inevitably small, and the measurement sensitivity decreased.

つぎに未知量のジゴキシンを含む空気を同一量通過させ
ると、上記と同様に一定量の吸光度の増加が生じ、上記
の検量線より、未知濃度を求めることができた。
Next, when the same amount of air containing an unknown amount of digoxin was passed through, a certain amount of increase in absorbance occurred as in the above, and the unknown concentration could be determined from the above calibration curve.

上記実施例に用いた均一系酵素免疫センサーの組み合わ
せのほかに、その他の酵素免疫センサー、さらに各種の
酵素センサー、微生物センサーでも、同様にこの方法を
適用することができる。被測定物としては空気中に浮遊
している有機化合物、たとえば有機薬品,毒素,生理活
性物質などが有効である。なお、酵素活性の測定法に応
じて、検出法は吸光度,螢光強度,発光強度,電流値,
電圧などを適宜選ぶことができる。
In addition to the combination of the homogeneous enzyme immunosensors used in the above examples, this method can be similarly applied to other enzyme immunosensors, various enzyme sensors, and microorganism sensors. Organic compounds floating in the air, such as organic chemicals, toxins and physiologically active substances, are effective as the object to be measured. In addition, according to the measuring method of the enzyme activity, the detection method is absorbance, fluorescence intensity, luminescence intensity, current value,
The voltage and the like can be appropriately selected.

また多孔膜の材質はポリプロピレン樹脂にかぎらず、ポ
リアクリル樹脂,ポリアミド樹脂などの光の透過度の比
較的よいもの、また光の反射,螢光,発光さらには電
流,電圧などで計測する場合には、それぞれその方式に
最適の材質の織布,不織布などを用いるべきである。
Also, the material of the porous film is not limited to polypropylene resin, but a material with relatively good light transmittance such as polyacrylic resin or polyamide resin, or when measuring with reflection, fluorescence, light emission, or current or voltage. Should use woven or non-woven fabric made of the optimum material for each method.

さらにサンプル収集の形式として、実施例では多孔性膜
に空気を吹き付けたが、これとは異なり、空気の吸引に
より行なってもよい。また多孔性素子中に担持させる酵
素,抗体,微生物などは固定化または含有させればよ
く、使用状況に応じて選ぶことができる。
Further, as a form of sample collection, air was blown to the porous membrane in the example, but unlike this, it may be performed by suction of air. Further, the enzyme, antibody, microorganism, etc. to be carried in the porous element may be immobilized or contained, and can be selected according to the use situation.

発明の効果 以上のように、空気中の極く微量の有機物質のサンプリ
ング素子を兼ねた各種バイオセンサーの素子に超音波加
湿器などで水分を補給することにより、高感度で、連続
的に、しかも比較的簡便に分析,検出することができ
る。
Effects of the Invention As described above, by replenishing water with an ultrasonic humidifier to the elements of various biosensors that also serve as sampling elements for trace amounts of organic substances in the air, with high sensitivity, continuously, Moreover, it can be analyzed and detected relatively easily.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例であるセンサー部の断面概略
図、第2図は同センサーを用いて得た分析結果と従来例
を示すグラフである。 1……吸水多孔性素子、2……空気導入管、3……ファ
ン、4……超音波加湿器、5……水分量検知用センサ
ー、6……光源、8……受光素子。
FIG. 1 is a schematic cross-sectional view of a sensor portion which is an embodiment of the present invention, and FIG. 2 is a graph showing an analysis result obtained using the sensor and a conventional example. 1 ... Water-absorbing porous element, 2 ... Air introducing tube, 3 ... Fan, 4 ... Ultrasonic humidifier, 5 ... Moisture amount detecting sensor, 6 ... Light source, 8 ... Light receiving element.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酵素,抗体、または微生物を担持した吸水
多孔性素子と、この素子に大気を導入する通路と、前記
通路に水分を補給する手段とを備えたことを特徴とする
バイオセンサー。
1. A biosensor comprising a water-absorbing porous element supporting an enzyme, an antibody, or a microorganism, a passage for introducing air into the element, and a means for replenishing the passage with water.
【請求項2】前記水分を補給する手段が超音波加湿器で
ある特許請求の範囲第1項記載のバイオセンサー。
2. The biosensor according to claim 1, wherein the means for supplying water is an ultrasonic humidifier.
【請求項3】前記素子の含水率を検知するセンサーと、
このセンサーの出力により前記超音波加湿器の出力を制
御する制御装置とを有する特許請求の範囲第2項記載の
バイオセンサー。
3. A sensor for detecting the water content of the element,
The biosensor according to claim 2, further comprising: a control device that controls the output of the ultrasonic humidifier based on the output of the sensor.
JP61289204A 1986-12-04 1986-12-04 Biosensor Expired - Fee Related JPH076914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289204A JPH076914B2 (en) 1986-12-04 1986-12-04 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289204A JPH076914B2 (en) 1986-12-04 1986-12-04 Biosensor

Publications (2)

Publication Number Publication Date
JPS63140943A JPS63140943A (en) 1988-06-13
JPH076914B2 true JPH076914B2 (en) 1995-01-30

Family

ID=17740126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289204A Expired - Fee Related JPH076914B2 (en) 1986-12-04 1986-12-04 Biosensor

Country Status (1)

Country Link
JP (1) JPH076914B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291550A (en) * 1988-09-29 1990-03-30 Matsushita Electric Ind Co Ltd Biosensor and operating method therefor
JP4294421B2 (en) * 2003-04-16 2009-07-15 株式会社堀場製作所 Filter for collecting suspended particulate matter in the atmosphere and analysis method using the same
CN100491957C (en) 2003-04-16 2009-05-27 株式会社崛场制作所 Filtering membrane for trapping granular substance and sampler using same and analyzer for granular substance

Also Published As

Publication number Publication date
JPS63140943A (en) 1988-06-13

Similar Documents

Publication Publication Date Title
US4859583A (en) Chemiluminescent immunochemical technique for low molecular weight antigens
Lowe Biosensors
Arnold et al. Recent advances in the development and analytical applications of biosensing probes
US4973561A (en) Method for non-segmented continuous flow analysis based on the interaction of radiation with a solid material situated in a flow-through cell
JP4672263B2 (en) Simple detection method, detection device, detection kit and production method thereof
Kudo et al. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring
García-Campaña et al. Principles and recent analytical applications of chemiluminescence
Wolfbeis Optical sensing based on analyte recognition by enzymes, carriers and molecular interactions
Kudo et al. Fiber-optic biochemical gas sensor (bio-sniffer) for sub-ppb monitoring of formaldehyde vapor
Zhang et al. Recent developments in chemiluminescence sensors
Kawashima et al. Potentiometric enzyme electrode for uric acid
Jeppesen et al. Determination of creatinine in undiluted blood serum enzymatic flow injection analysis with optosensing
JPH076914B2 (en) Biosensor
Toyota et al. Determination of total protein in serum using a tyrosinase enzyme electrode
Aboul-Enein et al. Chemiluminescence-based (bio) sensors—an overview
Hansen Principles and applications of flow injection analysis in biosensors
US5147781A (en) Enzyme electrode and assay for determining LDH5
US5925318A (en) Iron detecting sensors
Zhou et al. Periplasmic binding protein based biosensors 1. Preliminary study of maltose binding protein as sensing element for maltose biosensor
US5516697A (en) Biosensor for detecting iron
Cooper et al. The nature of biosensor technology
Collins Gas-phase chemical sensing using electrochemiluminescence
Davis Advances in biomedical sensor technology: a review of the 1985 patent literature
JP2000155122A (en) Specifical combination pair measurement method utilizing minute oxygen electrode
Nistor et al. A capillary-based amperometric flow immunoassay for 2, 4, 6-trichlorophenol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees