JPH076631B2 - Catalytic combustion type gas turbine combustor - Google Patents

Catalytic combustion type gas turbine combustor

Info

Publication number
JPH076631B2
JPH076631B2 JP1184539A JP18453989A JPH076631B2 JP H076631 B2 JPH076631 B2 JP H076631B2 JP 1184539 A JP1184539 A JP 1184539A JP 18453989 A JP18453989 A JP 18453989A JP H076631 B2 JPH076631 B2 JP H076631B2
Authority
JP
Japan
Prior art keywords
catalyst
gas
gas turbine
turbine combustor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1184539A
Other languages
Japanese (ja)
Other versions
JPH0350406A (en
Inventor
矢 山中
富明 古屋
輝信 早田
裕 古瀬
利明 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP1184539A priority Critical patent/JPH076631B2/en
Publication of JPH0350406A publication Critical patent/JPH0350406A/en
Publication of JPH076631B2 publication Critical patent/JPH076631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガスタービン燃焼器に係わり、詳しくは、窒
素酸化物(以下、NOという)の発生量が少ない触媒燃
焼方式のガスタービン燃焼器の改良に関する。
The present invention relates to a gas turbine combustor, and more specifically, to catalytic combustion in which the amount of nitrogen oxides (hereinafter referred to as NO x ) is small. Type gas turbine combustor improvement.

(従来の技術) 近年、石油資源等の枯渇化に伴い、種々の代替エネルギ
ーが要求されているが、同時に、エネルギー資源の効果
的使用も要求されている。これらの要求に応えるものの
中に、例えば燃料として天然ガスを使用するガスタービ
ン・スチームタービン複合サイクル発電システム,ある
いは石炭ガス化ガスタービン・スチームタービン複合サ
イクル発電システムがある。これらのガスタービン発電
システムは、化石燃料を使用した従来のスチームタービ
ンによる発電システムに比較してその発電効率が高いの
で、将来その生産量の増加が予想される天然ガスや石炭
ガス等の燃料を有効に電力に変換できる発電システムと
して期待されている。
(Prior Art) In recent years, with the depletion of petroleum resources and the like, various alternative energies are required, but at the same time, effective use of energy resources is also required. Among those that meet these demands are, for example, a gas turbine / steam turbine combined cycle power generation system that uses natural gas as a fuel, or a coal gasification gas turbine / steam turbine combined cycle power generation system. These gas turbine power generation systems have higher power generation efficiency than conventional steam turbine power generation systems that use fossil fuels. It is expected as a power generation system that can be effectively converted into electric power.

この種のガスタービン発電システムに使用されているガ
スタービン燃焼器には、複数の空気供給用開口を周側面
に配設される燃焼管(内筒またはライナ)が外筒内部に
具備されており、この燃焼管内で燃料と酸化性気体(一
般には空気、以下空気という)との混合ガスをスパーク
プラグ等を用いて着火し、燃焼を行っている。
In a gas turbine combustor used in this type of gas turbine power generation system, a combustion pipe (inner cylinder or liner) having a plurality of air supply openings on its peripheral side surface is provided inside an outer cylinder. In this combustion pipe, a mixed gas of a fuel and an oxidizing gas (generally referred to as air, hereinafter referred to as air) is ignited by using a spark plug or the like to perform combustion.

この種のガスタービン燃焼器における重大な問題点の一
つは、燃料の燃焼時に2000℃を越えるような高温部が存
在することにより、環境汚染等の原因となるNOが多量
に生成されることにあった。このNO発生量を極めて少
なくする方法として、固相触媒を用いた不均一燃焼方式
である触媒燃焼方式をガスタービン燃焼器に適用する提
案がなされている。
One of the serious problems in this type of gas turbine combustor is that a large amount of NO x, which causes environmental pollution, is generated due to the presence of a high temperature portion exceeding 2000 ° C. during the combustion of fuel. I was there. As a method for extremely reducing the amount of NO x generated, it has been proposed to apply a catalytic combustion method, which is a non-uniform combustion method using a solid-phase catalyst, to a gas turbine combustor.

この従来の提案にかかるガスタービン燃焼器において
は、第4図に示すように、燃料供給口1からの燃料と、
エアダクト2から空気供給口3を介して圧送されてくる
空気A2を、燃焼ガス(空気供給口4からの空気A1+燃料
供給口5からの燃料)との希薄混合ガスを、ハニカム構
造の燃焼用触媒が装填されている触媒6で触媒燃焼させ
ている。
In the gas turbine combustor according to this conventional proposal, as shown in FIG. 4, the fuel from the fuel supply port 1
Air A 2 that is pressure-fed from the air duct 2 through the air supply port 3 is mixed with a combustion gas (air A 1 from the air supply port 4 + fuel from the fuel supply port 5) into a lean mixed gas of a honeycomb structure. The catalyst 6 loaded with the combustion catalyst is catalytically burned.

また、この触媒6の下流においては、触媒6から排出さ
れ未燃燃料を含む燃焼ガスに対し、触媒6の下流に設け
られた燃料供給口7により新たに燃料を加えてこの燃焼
ガス中における燃料濃度を高め、触媒6の下流で気相燃
焼を生起させ、この燃焼による燃焼ガスをタービンノズ
ル8からタービン内に噴射させている。なお、9は前記
外筒、10は前記燃焼管、11はスワラーである。
Further, downstream of the catalyst 6, fuel is newly added to the combustion gas discharged from the catalyst 6 and containing unburned fuel by a fuel supply port 7 provided downstream of the catalyst 6, and the fuel in the combustion gas is discharged. The concentration is increased to cause gas phase combustion downstream of the catalyst 6, and the combustion gas resulting from this combustion is injected from the turbine nozzle 8 into the turbine. In addition, 9 is the outer cylinder, 10 is the combustion tube, and 11 is a swirler.

この種の触媒6を具備するガスタービン燃焼器において
は、触媒6が劣化すると、前記触媒燃焼が適切に行われ
ず、未燃ガスが発生することになりかねない。したがっ
て、触媒活性の熱劣化抑制のため、触媒6においては、
高温となる気相燃焼の生起を防止し、比較的低温で行わ
れる触媒燃焼のみを生起できるように、燃料の供給量等
を設定している。しかし、触媒6は800℃以上の高温に
なることもあって、触媒6の活性を永久に維持すること
は困難であるため、触媒6は適切な時期に交換されるこ
とが望ましい。
In a gas turbine combustor equipped with this type of catalyst 6, if the catalyst 6 deteriorates, the catalytic combustion may not be performed properly and unburned gas may be generated. Therefore, in order to suppress the thermal deterioration of the catalyst activity, in the catalyst 6,
The fuel supply amount and the like are set so as to prevent the occurrence of high-temperature gas-phase combustion and to cause only catalytic combustion performed at a relatively low temperature. However, since the catalyst 6 may reach a high temperature of 800 ° C. or higher, it is difficult to maintain the activity of the catalyst 6 permanently. Therefore, it is desirable to replace the catalyst 6 at an appropriate time.

(発明が解決しようとする課題) しかしながら、触媒6の活性劣化の程度は外観から感知
できず、そして感知できないにもかかわらず、ガスター
ビン燃焼器において、触媒活性の劣化の程度を把握する
手段が何ら設けられていない。このため、触媒6の交換
の時期を遅延して、多量の未燃ガスが発生してしまうこ
とになりかねなかった。
(Problems to be Solved by the Invention) However, the degree of activity deterioration of the catalyst 6 cannot be sensed from the outside, and even though it cannot be sensed, a means for grasping the degree of catalyst activity deterioration in the gas turbine combustor is provided. There is no provision. For this reason, the replacement of the catalyst 6 may be delayed, and a large amount of unburned gas may be generated.

本発明は、従来のかかる問題を解消し、触媒活性の劣化
の程度を把握できる触媒燃焼方式のガスタービン燃焼器
を提供することを目的とする。
An object of the present invention is to provide a gas turbine combustor of a catalytic combustion type, which solves the conventional problems and can grasp the degree of deterioration of catalytic activity.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段および作用) 本発明者らは、上記目的を達成すべく鋭意研究を重ねる
中で、触媒へ流入するガス流速は触媒への流入ガス温度
により求め得るが、このガス流速が同じ際の、触媒の上
流側と下流側との圧力差が、触媒の劣化の程度により変
化することを見出し、本発明を完成するに到った。
(Means and Actions for Solving the Problems) While the inventors of the present invention have conducted extensive studies to achieve the above object, the gas flow velocity flowing into the catalyst can be determined by the temperature of the gas flowing into the catalyst. The present invention has been completed by finding that the pressure difference between the upstream side and the downstream side of the catalyst at the same flow velocity changes depending on the degree of deterioration of the catalyst.

すなわち、本発明は、内部に触媒が配設されるガスター
ビン燃焼器であって、前記触媒への流入ガス温度を検出
する手段と、前記触媒の上流側と下流側との圧力差を検
出する手段と、前記流入ガス温度および圧力差に基づい
て前記触媒の劣化の程度を求める手段とを具備すること
を要旨とする。
That is, the present invention is a gas turbine combustor in which a catalyst is disposed, and a means for detecting the temperature of gas flowing into the catalyst and a pressure difference between the upstream side and the downstream side of the catalyst. The gist of the present invention is to include means and means for determining the degree of deterioration of the catalyst based on the inflow gas temperature and the pressure difference.

以下、本発明にかかる触媒燃焼方式のガスタービン燃焼
器について第1図に基づいて説明する。
A catalytic combustion type gas turbine combustor according to the present invention will be described below with reference to FIG.

この第1図は、触媒燃焼方式のガスタービン燃焼器の基
本構成の一例を示す図であり、図中、第3図と同一また
は同等の構成要素には同一の符合を付した。
FIG. 1 is a diagram showing an example of the basic configuration of a catalytic combustion type gas turbine combustor. In the figure, the same or equivalent constituent elements as in FIG. 3 are designated by the same reference numerals.

このガスタービン燃焼器において、触媒6の上流側に
は、燃料供給口1,5、スワラー11および燃料供給口5か
らの燃料を着火させるときに使用するスパークプラグ21
が配設されているとともに、燃焼管10に複数の空気供給
口3,4が形成され、また触媒6の下流側には、燃料供給
口7が配設されている。
In this gas turbine combustor, a spark plug 21 used when igniting the fuel from the fuel supply ports 1 and 5, the swirler 11 and the fuel supply port 5 is provided upstream of the catalyst 6.
Is provided, a plurality of air supply ports 3 and 4 are formed in the combustion pipe 10, and a fuel supply port 7 is provided downstream of the catalyst 6.

前記空気供給口3,4,20それぞれには、1つのエアダクト
2から空気が供給される。そして空気供給口3,4を介し
て燃焼管10内に供給される空気A2,A1の量は、これら空
気供給口3,4の開口面積Sおよびその位置での燃焼管10
内外の圧力差によって決定される。
Air is supplied from one air duct 2 to each of the air supply ports 3, 4, 20. The amount of air A 2 , A 1 supplied into the combustion pipe 10 through the air supply ports 3 and 4 is determined by the opening area S of the air supply ports 3 and 4 and the combustion pipe 10 at that position.
It is determined by the pressure difference between the inside and outside.

このガスタービン燃焼器においては、触媒6入口に配設
されて触媒6への流入ガス温度を検出する手段、例えば
熱電対等の温度検出器23と、触媒6の上流側と下流側と
の圧力差を検出する手段である圧力差検出器27と、前記
流入ガス温度および圧力差に基づいて触媒6の劣化の程
度を求める手段である触媒劣化度算出部28と、が具備さ
れている。前記圧力差検出器27は、例えば触媒6の上流
側および下流側それぞれに配設されて触媒6の上流側お
よび下流側それぞれの圧力を検出する圧力検出器24,25
と、これら圧力検出器24,25により検出された圧力値P1,
P2から、これらの値の差(P1−P2)、すなわち、後述す
る触媒6での圧力損失ΔPを求める演算器26とから構成
される。なお、前記触媒劣化度算出部28としては、後述
する演算を行うものであり、この演算はコンピュータ等
で自動的に求めるとよいが、人手による計算で求めるよ
うにしてもよい。
In this gas turbine combustor, means arranged at the inlet of the catalyst 6 to detect the temperature of gas flowing into the catalyst 6, for example, a temperature detector 23 such as a thermocouple, and a pressure difference between the upstream side and the downstream side of the catalyst 6. A pressure difference detector 27, which is a means for detecting the above, and a catalyst deterioration degree calculating section 28, which is a means for obtaining the degree of deterioration of the catalyst 6 based on the inflow gas temperature and the pressure difference. The pressure difference detector 27 is provided, for example, on each of the upstream side and the downstream side of the catalyst 6 and detects pressures on the upstream side and the downstream side of the catalyst 6, respectively.
And the pressure value P 1 , detected by these pressure detectors 24, 25,
It is composed of a calculator 26 for obtaining a difference (P 1 −P 2 ) between these values from P 2 , that is, a pressure loss ΔP in the catalyst 6 described later. It should be noted that the catalyst deterioration degree calculation unit 28 performs a calculation described later, and this calculation may be automatically calculated by a computer or the like, but may be calculated manually.

なお、触媒下流側の燃料供給口7は、触媒6を通過した
ガスにさらに燃料を供給して触媒下流側の気相燃焼をよ
り安定にする機能を有するもので、触媒上流側の混合ガ
ス中の燃料流量と空気流量との比(以下、F/Aと略記す
る)に応じてその燃料供給量が調節されるように設定さ
れている。すなわち、温度が1500〜1600℃以上になると
NOが急増するため、燃焼温度がこれ以下になるように
調節されている。なお、本発明は、このようなガスター
ビン燃焼器の各構成要素を全て具備せず、燃料供給口1,
7等を具備しない簡単な構成のガスタービン燃焼器にお
いても適用されることはいうまでもない。
The fuel supply port 7 on the downstream side of the catalyst has a function of further supplying fuel to the gas that has passed through the catalyst 6 to make gas phase combustion on the downstream side of the catalyst more stable. The fuel supply amount is set according to the ratio of the fuel flow rate to the air flow rate (hereinafter abbreviated as F / A). That is, when the temperature rises above 1500-1600 ℃
Due to the rapid increase in NO x , the combustion temperature is adjusted to be below this. The present invention does not include all the constituent elements of such a gas turbine combustor, and the fuel supply port 1,
It goes without saying that the present invention is also applied to a gas turbine combustor having a simple structure that does not include 7 or the like.

上述したような構成を有するガスタービン燃焼器におい
て、その始動時には、燃料供給ノズル5および空気供給
口4それぞれから、燃料および空気A1が供給される。そ
して、この燃料と空気A1との混合による燃焼ガスがスパ
ークプラグ21により着火され、スワラー11で保炎され安
定化が図られながらある程度まで昇温される。なお、こ
の燃焼による昇温は、ガスの温度を触媒6の作用温度ま
で高めて触媒燃焼を円滑に進行させるために行うもので
ある。この昇温されたガスに、燃料供給口1からの燃料
および空気供給口3からの空気A2が供給混合され、この
混合による混合ガスが触媒6へ供給され、触媒燃料が生
起されるものである。なお、スワラー11で保炎されるこ
とにより、燃焼の安定化が得られる。
In the gas turbine combustor having the above-described configuration, fuel and air A 1 are supplied from the fuel supply nozzle 5 and the air supply port 4 at the time of starting. Then, the combustion gas produced by mixing the fuel and the air A 1 is ignited by the spark plug 21, and flame is held by the swirler 11 to be stabilized and the temperature thereof is raised to a certain degree. The temperature rise due to this combustion is performed in order to raise the temperature of the gas to the working temperature of the catalyst 6 so that the catalytic combustion proceeds smoothly. The fuel from the fuel supply port 1 and the air A 2 from the air supply port 3 are supplied and mixed with the heated gas, and the mixed gas resulting from this mixing is supplied to the catalyst 6 to generate catalytic fuel. is there. In addition, the combustion is stabilized by the flame holding by the swirler 11.

この触媒燃焼が生起されている際に、触媒6の活性が低
下すると、触媒6の温度が低くなる。この触媒6の温度
低下によりガス温度も低下し、触媒6内を通過するガス
の流速uINが低下する。このガスの流速uINの低下によ
り、摩擦による圧力損失の低減つまり触媒6での圧力損
失ΔPの低減が起きる。この圧力損失ΔPは、一般に次
式 ΔP=4・f・L・(uIN・uIN)/D/2g0 で表される(層流および乱流において)。ここで、fは
摩擦係数,Lは触媒長さ,Dはハニカム構造の触媒6のセル
径,g0は重力換算係数である。したがって、触媒6での
圧力損失ΔPの低下が触媒6の活性劣化を表すため、圧
力損失ΔPを調べることにより、触媒6の活性劣化の程
度を把握できる。
When the activity of the catalyst 6 is lowered while the catalytic combustion is occurring, the temperature of the catalyst 6 is lowered. Due to the decrease in the temperature of the catalyst 6, the gas temperature also decreases, and the flow velocity u IN of the gas passing through the inside of the catalyst 6 decreases. This decrease in the gas flow rate u IN causes a reduction in pressure loss due to friction, that is, a reduction in pressure loss ΔP in the catalyst 6. This pressure loss ΔP is generally expressed by the following equation ΔP = 4 · f · L · (u IN · u IN ) / D / 2g 0 (in laminar flow and turbulent flow). Here, f is a friction coefficient, L is a catalyst length, D is a cell diameter of the catalyst 6 having a honeycomb structure, and g 0 is a gravity conversion coefficient. Therefore, since the decrease in the pressure loss ΔP in the catalyst 6 indicates the activity deterioration of the catalyst 6, the degree of the activity deterioration of the catalyst 6 can be grasped by examining the pressure loss ΔP.

ところで、圧力損失ΔPは、上述のように、圧力検出器
24,25により検出された圧力値P1,P2の差(P1−P2)から
求められるが、圧力損失ΔPはガス流速uINの大きさに
よって変化するものであるため、ガス流速uINを調べる
必要がある。
By the way, the pressure loss ΔP is determined by the pressure detector as described above.
It is calculated from the difference (P 1 −P 2 ) between the pressure values P 1 and P 2 detected by 24 and 25, but since the pressure loss ΔP changes depending on the magnitude of the gas flow rate u IN , the gas flow rate u Need to look up IN .

ところが、ガス流速uINは触媒6を通過するガス流速で
あるため測定が難しい。また、触媒6を内部に具備する
ガスタービン燃焼器の燃焼管10においては、触媒6の圧
力損失ΔPが他での圧力損失に比べて大きく、燃焼管10
内の空気配分つまり触媒6へ流入するガス流速uENが圧
力損失ΔPに依存するという背景がある。このため、本
発明においては、ガス流速uINの代わりに、前記ガス流
速uENを、触媒6への流入ガス温度Tにより調べるよう
にしている。
However, since the gas flow rate u IN is the gas flow rate passing through the catalyst 6, it is difficult to measure. Further, in the combustion pipe 10 of the gas turbine combustor having the catalyst 6 inside, the pressure loss ΔP of the catalyst 6 is larger than the pressure loss of the others, and the combustion pipe 10
There is a background that the air distribution in the inside, that is, the gas flow velocity u EN flowing into the catalyst 6 depends on the pressure loss ΔP. For this reason, in the present invention, instead of the gas flow rate u IN , the gas flow rate u EN is checked by the temperature T of the gas flowing into the catalyst 6.

すなわち、ガス流速uENは、ガス流量A(本来は空気供
給口から供給される空気流量であるが、ガス中における
空気流量に比較して燃料流量が極小さいため、ガス流量
とみなせる。)に比例する(uEN=A/S ただし、Sは
触媒入口の燃焼管10の断面積)ものであり、さらにこの
ガス流量Aは、燃料流量Fが通常制御されて一定である
ことから触媒6への流入ガス温度Tにほぼ反比例(T∝
F/A)する。このことから、ガス温度Tを検出し演算を
行うことにより、ガス流速uENを求めることができるも
のである。
That is, the gas flow rate u EN is the gas flow rate A (which is originally the flow rate of air supplied from the air supply port, but can be regarded as the gas flow rate because the fuel flow rate is extremely small compared to the air flow rate in the gas). They are proportional (u EN = A / S, where S is the cross-sectional area of the combustion tube 10 at the catalyst inlet), and this gas flow rate A is constant because the fuel flow rate F is normally controlled, so that Is almost inversely proportional to the inflow gas temperature T (T∝
F / A) Therefore, the gas flow velocity u EN can be obtained by detecting the gas temperature T and performing the calculation.

以下、触媒6活性の変化すなわち触媒6の劣化の程度を
知る手順例について、詳しく述べる。
Hereinafter, an example of a procedure for knowing the change in the activity of the catalyst 6, that is, the degree of deterioration of the catalyst 6, will be described in detail.

まず、触媒劣化が生じていない触媒を用い、前記ガス温
度Tを検出し、この検出値Tから前記ガス流量Aを求
め、さらにこのガス流量Aからガス流量uENを求める。
実際は熱損失があり、この熱損失はガスタービン燃焼器
の構造、サイズ等によって異なるため、予め実験で熱損
失の大きさを確認し、より正確なガス流速uENを求める
とよい。そして、前記ガス温度Tの検出とともに、圧力
検出器24,25により圧力P1,P2の検出を行い、圧力損失Δ
Pを求める(P1−P2)。これらの測定および演算によ
り、第2図に示すように、F/Aをパラメータとした圧力
損失百分率ΔP/P0と流速uENとの関係を表す図を得る。
なおここで、P0は燃焼器10入口圧力であり、燃焼条件に
より変化しない値をとる。
First, the gas temperature T is detected using a catalyst in which catalyst deterioration has not occurred, the gas flow rate A is obtained from the detected value T, and the gas flow rate u EN is obtained from the gas flow rate A.
Actually, there is a heat loss, and this heat loss differs depending on the structure, size, etc. of the gas turbine combustor, so it is advisable to confirm the magnitude of the heat loss in advance by experiments and obtain a more accurate gas flow velocity u EN . Then, the pressures P 1 and P 2 are detected by the pressure detectors 24 and 25 together with the detection of the gas temperature T, and the pressure loss Δ
Determine the P (P 1 -P 2). From these measurements and calculations, as shown in FIG. 2, a diagram showing the relationship between the pressure loss percentage ΔP / P 0 and the flow velocity u EN with F / A as a parameter is obtained.
Here, P 0 is the inlet pressure of the combustor 10, and takes a value that does not change depending on the combustion conditions.

この関係図は、触媒劣化が生じていない際の基準となる
関係を表すものであり、この関係図を予め求めておき、
ガス流速uENおよびF/Aが同じときの圧力損失ΔPの変
化を関係図で確認することにより、触媒6の劣化の程度
を把握できる。
This relationship diagram represents a reference relationship when catalyst deterioration has not occurred, and this relationship diagram is obtained in advance,
By confirming the change of the pressure loss ΔP when the gas flow rates u EN and F / A are the same, the degree of deterioration of the catalyst 6 can be grasped.

なお、触媒6へ流入するガス温度Tの設定は、燃料,触
媒等の種類によって異なるが、最高でも500℃程度であ
る。したがって、温度検出器23としては、特殊な検出器
を使用する必要がなく、例えば熱電対で充分に信頼して
使用できる。ここで、前記ガス温度Tをより正確に検出
するためには、触媒6入口断面での平均値を知ることが
好ましいことから、温度検出器22の数は多い方が望まし
い。
The setting of the gas temperature T flowing into the catalyst 6 varies depending on the type of fuel, catalyst, etc., but is about 500 ° C. at the maximum. Therefore, it is not necessary to use a special detector as the temperature detector 23, and a thermocouple, for example, can be used with sufficient reliability. Here, in order to detect the gas temperature T more accurately, it is preferable to know the average value at the inlet cross section of the catalyst 6, so it is desirable that the number of temperature detectors 22 is large.

(実施例) 第3図に示すようなガスタービン燃焼器を試作した。こ
の図において、第1図と同一または同等の構成要素には
同一の符合を付して示した。なお、触媒6下流に配設さ
れた空気供給口20は、燃焼ガスに空気を供給し、ガスタ
ービン燃焼器出口ガス温度を所定の温度に調整するため
のものであり、前記供給する空気量はこの空気供給口20
に配設される電磁弁28の開度コントロールにより行われ
るものである。また、スパークプラグ22は、触媒6下流
の気相燃焼を生起させる際に使用するものであるが、用
いる燃料等によっては必ずしも必要でない。
(Example) A gas turbine combustor as shown in FIG. 3 was prototyped. In this figure, constituent elements that are the same as or equivalent to those in FIG. 1 are designated by the same reference numerals. The air supply port 20 arranged downstream of the catalyst 6 is for supplying air to the combustion gas and adjusting the gas temperature at the gas turbine combustor outlet to a predetermined temperature. This air supply port 20
The control is performed by controlling the opening degree of the solenoid valve 28 disposed in the. Further, the spark plug 22 is used when causing gas phase combustion downstream of the catalyst 6, but it is not always necessary depending on the fuel used and the like.

このガスタービン燃焼器において、触媒6としては、長
さ90mm,直径100mmのセラミックス製担体に、貴金属が担
持されたハニカム構造のものを使用した。また、温度検
出器22としては、直径3.2mmのKタイプシース熱電対を
触媒6入口面に7本配置し、これらの熱電対それぞれか
ら得られる検出温度の平均値を触媒6入口ガス温度Tと
した。圧力検出器24,25としては、水冷式の圧力プロー
ブを用いた。試験圧力つまり図示しないエアダクトから
の空気圧は大気圧とし、燃料はメタン、触媒6入口ガス
流速は30m/sとした。さらに、安定した触媒燃焼が得ら
れる触媒6入口におけるガス温度範囲を実験で予め確認
して450℃に設定するとともに、そのときの触媒6入口
のF/Aが0.03となるように設定した。
In this gas turbine combustor, the catalyst 6 has a honeycomb structure in which a noble metal is supported on a ceramic carrier having a length of 90 mm and a diameter of 100 mm. Further, as the temperature detector 22, seven K type sheath thermocouples having a diameter of 3.2 mm are arranged at the inlet surface of the catalyst 6, and the average value of the detected temperatures obtained from each of these thermocouples is referred to as the catalyst 6 inlet gas temperature T. did. Water-cooled pressure probes were used as the pressure detectors 24 and 25. The test pressure, that is, the air pressure from the air duct (not shown) was atmospheric pressure, the fuel was methane, and the catalyst 6 inlet gas flow rate was 30 m / s. Further, the gas temperature range at the catalyst 6 inlet where stable catalyst combustion was obtained was confirmed in advance by experiments and set to 450 ° C., and the F / A at the catalyst 6 inlet at that time was set to 0.03.

この条件において、以下述べる試験を行った。すなわ
ち、ガスタービン燃焼器において触媒活性の劣化が生じ
ていない触媒と、電気炉で1300℃の温度に加熱し強制劣
化させた触媒を用い、燃焼管10内で燃焼を生起し、それ
ぞれの場合の触媒6での圧力損失ΔPを測定した。
Under these conditions, the test described below was performed. That is, using a catalyst whose catalytic activity has not deteriorated in the gas turbine combustor and a catalyst which has been forced to deteriorate by heating to a temperature of 1300 ° C. in an electric furnace, combustion is caused in the combustion pipe 10, and in each case, The pressure loss ΔP in the catalyst 6 was measured.

その結果、触媒活性の劣化がない触媒を用いた場合は、
第2図に白丸Aで示すように、前記圧力損失百分率が10
%程度であったのに対し、活性が劣化した触媒では同じ
ガス流速uEN,F/Aで6%程度であった。このように、触
媒6での圧力損失(百分率)に大きな差があることか
ら、本発明により触媒活性の劣化程度を把握できること
が確認された。なお、活性の劣化がない触媒を用いた場
合の排ガスの未燃焼料は50ppm以下、活性が劣化した触
媒を用いた場合の排ガスの未燃焼料は500ppm以上であっ
た。
As a result, when using a catalyst with no deterioration in catalytic activity,
As indicated by the white circle A in FIG. 2, the pressure loss percentage is 10
%, While the catalyst with deteriorated activity had a gas flow rate u EN , F / A of about 6%. As described above, since there is a large difference in pressure loss (percentage) in the catalyst 6, it was confirmed that the present invention can grasp the degree of deterioration of the catalyst activity. The unburned gas content of the exhaust gas when the catalyst with no activity deterioration was 50 ppm or less, and the unburned gas content of the exhaust gas when the catalyst with the activity deterioration was 500 ppm or more.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明にかかる触媒燃
焼方式のガスタービン燃焼器においては、触媒への流入
ガス温度および触媒の上流側と下流側との圧力差を検出
しており、活性が劣化していない触媒の圧力差と前記検
出した圧力差とを、前記検出した触媒入口ガス温度を用
い燃料流量が一定に制御されているものとして求められ
るガス流量の値およびこのガス流量の値から求められる
ガス流速が同等のもの同士で比較することにより、触媒
活性の劣化の程度を把握できる。このため、得られた劣
化の程に基づいて適切な時期に触媒交換を行って常に良
好な性能の触媒を用いることができ、NOや未燃燃料等
の排出量を極めて小さく抑え、安定した高い燃焼効率を
達成し得る。したがって、その工業的価値は極めて大き
い。
As is clear from the above description, in the catalytic combustion type gas turbine combustor according to the present invention, the temperature of gas flowing into the catalyst and the pressure difference between the upstream side and the downstream side of the catalyst are detected, and the activity is From the pressure difference of the catalyst not deteriorated and the detected pressure difference, the value of the gas flow rate and the value of this gas flow rate obtained as the fuel flow rate is controlled to be constant using the detected catalyst inlet gas temperature. The degree of deterioration of catalyst activity can be grasped by comparing those having the same required gas flow rate. Therefore, the catalyst can be exchanged at an appropriate time based on the degree of deterioration obtained to always use a catalyst having good performance, and the emission amount of NO x , unburned fuel, and the like can be suppressed to a very small value, and stable. High combustion efficiency can be achieved. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかるガスタービン燃焼器の基本構成
の一例を示す概略図、第2図は活性が劣化していない触
媒におけるF/Aをパラメータとしたガス流速と圧力損失
百分率との関係を示す図、第3図は本発明の一実施例に
かかるガスタービン燃焼器の構造を示す概念図、第4図
は従来例にかかわるガスタービン燃焼器の側断面説明図
である。 1,5,7……燃料供給口 3,4,20……空気供給口、6……触媒 23……温度検出器 24,25……圧力検出器、26……圧力差検出器 28……触媒劣化度算出部
FIG. 1 is a schematic diagram showing an example of the basic configuration of a gas turbine combustor according to the present invention, and FIG. 2 is a relationship between gas flow velocity and pressure loss percentage with F / A as a parameter in a catalyst whose activity is not deteriorated. FIG. 3 is a conceptual diagram showing the structure of a gas turbine combustor according to an embodiment of the present invention, and FIG. 4 is a side cross-sectional explanatory view of a gas turbine combustor according to a conventional example. 1,5,7 …… Fuel supply port 3,4,20 …… Air supply port, 6 …… Catalyst 23 …… Temperature detector 24,25 …… Pressure detector, 26 …… Pressure difference detector 28 …… Catalyst deterioration degree calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早田 輝信 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 古瀬 裕 東京都調布市西つつじケ丘2―4―1 東 京電力株式会社技術研究所内 (72)発明者 土屋 利明 東京都調布市西つつじケ丘2―4―1 東 京電力株式会社技術研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Terunobu Hayata 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute Ltd. (72) Inventor Yu Furuse Nishi-Azajigaoka, Chofu-shi, Tokyo 2-4-1 East (72) Inventor Toshiaki Tsuchiya 2-4-1 Nishi Tsutsujigaoka, Chofu-shi, Tokyo Tokyu Electric Power Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部に触媒が配設されるガスタービン燃焼
器であって、 前記触媒への流入ガス温度を検出する手段と、前記触媒
の上流側と下流側との圧力差を検出する手段と、前記流
入ガス温度および圧力差に基づいて前記触媒の劣化の程
度を求める手段と、を具備することを特徴とする触媒燃
焼方式のガスタービン燃焼器。
1. A gas turbine combustor in which a catalyst is disposed, a means for detecting a temperature of gas flowing into the catalyst, and a means for detecting a pressure difference between an upstream side and a downstream side of the catalyst. And a means for determining the degree of deterioration of the catalyst based on the inflow gas temperature and the pressure difference, and a catalytic combustion type gas turbine combustor.
JP1184539A 1989-07-19 1989-07-19 Catalytic combustion type gas turbine combustor Expired - Fee Related JPH076631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184539A JPH076631B2 (en) 1989-07-19 1989-07-19 Catalytic combustion type gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184539A JPH076631B2 (en) 1989-07-19 1989-07-19 Catalytic combustion type gas turbine combustor

Publications (2)

Publication Number Publication Date
JPH0350406A JPH0350406A (en) 1991-03-05
JPH076631B2 true JPH076631B2 (en) 1995-01-30

Family

ID=16154975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184539A Expired - Fee Related JPH076631B2 (en) 1989-07-19 1989-07-19 Catalytic combustion type gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH076631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024738A (en) * 2011-12-28 2014-09-03 川崎重工业株式会社 Flow velocity distribution equalizing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281772B2 (en) * 2011-10-11 2012-10-09 Ford Global Technologies, Llc Glow plug heater control
US9175661B2 (en) 2011-10-11 2015-11-03 Ford Global Technologies, Llc Glow plug heater control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024738A (en) * 2011-12-28 2014-09-03 川崎重工业株式会社 Flow velocity distribution equalizing apparatus

Also Published As

Publication number Publication date
JPH0350406A (en) 1991-03-05

Similar Documents

Publication Publication Date Title
US5533329A (en) Control apparatus for and control method of gas turbine
Howitt et al. Flow effects in monolithic honeycomb automotive catalytic converters
US6270336B1 (en) Catalytic combustion system and combustion control method
EP2107305A1 (en) Gas turbine system and method
JP2011208929A (en) Backfire detecting method of gas turbine combustor
Hase et al. Effect of the Air/Fuel Ratio Fluctuation on the Formation of Nitrogen Oxides
CN110476016B (en) System and method for operating a combustion chamber
JPH076631B2 (en) Catalytic combustion type gas turbine combustor
JP2002267159A (en) Air-fuel ratio control method and device
JP2543986B2 (en) Catalytic combustion type gas turbine combustor
Belokon et al. Prediction of combustion efficiency and NOx levels for diffusion flame combustors in HAT cycles
Shehata Emissions and wall temperatures for lean prevaporized premixed gas turbine combustor
Takagi et al. Characteristics of combustion and pollutant formation in swirling flames
Etemad et al. Advanced technology catalytic combustor for high temperature ground power gas turbine applications
CN108278632A (en) The control device and method and gas heater of the machine to be burnt with combustion gas
Krittacom et al. Radiation emission characteristics of an open-cellular porous burner
Prasad et al. Occurrence of multiple steady states in the catalytic combustion of propane
Dalla Betta et al. Development of a catalytic combustor for a heavy-duty utility gas turbine
Furuya et al. Hybrid catalytic combustion for stationary gas turbine: Concept and small scale test results
JP3500686B2 (en) Operating method of cogeneration system
Kobayashi et al. Fuel-rich hydrogen-air combustion for a gas-turbine system without CO2 emission
JP3643499B2 (en) Gas turbine combustion apparatus and flame reverse flow detection method thereof
Siminski et al. Development of a hybrid catalytic combustor
Beebe et al. Design and test of a catalytic combustor for a heavy duty industrial gas turbine
JPH0472984B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees