JPH0766108B2 - Polarization change compensation method - Google Patents

Polarization change compensation method

Info

Publication number
JPH0766108B2
JPH0766108B2 JP9938586A JP9938586A JPH0766108B2 JP H0766108 B2 JPH0766108 B2 JP H0766108B2 JP 9938586 A JP9938586 A JP 9938586A JP 9938586 A JP9938586 A JP 9938586A JP H0766108 B2 JPH0766108 B2 JP H0766108B2
Authority
JP
Japan
Prior art keywords
optical system
polarization
plate
coaxial
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9938586A
Other languages
Japanese (ja)
Other versions
JPS62257117A (en
Inventor
陽一 井場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP9938586A priority Critical patent/JPH0766108B2/en
Publication of JPS62257117A publication Critical patent/JPS62257117A/en
Publication of JPH0766108B2 publication Critical patent/JPH0766108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、偏光顕微鏡等の共軸光学系で生じた偏光面の
回転を補償するための、偏光変化の補償法に関する。
Description: TECHNICAL FIELD The present invention relates to a polarization change compensation method for compensating for rotation of a polarization plane caused by a coaxial optical system such as a polarization microscope.

〔従来の技術〕[Conventional technology]

一般に、共軸光学系の入射瞳に第7図(a)のような直
線偏光光束が入射すると、各レンズ表面の反射の影響で
偏光面に回転が生じ、共軸光学系の射出瞳面からは第7
図(b)のような偏光光束が出射する。尚、第2図
(a),(b)に示された矢印は夫々の位置における偏
光面の向きを示している。以上の事は公知であり、特公
昭49−29470号公報の中にも示されている。これは偏光
を扱う光学系例えば偏光顕微鏡光学系において有害な現
象である。そこで、例えば第6図に示した如く、共軸光
学系1で生じた偏光面の回転を光学的に補償するため
に、1/2波長板2と適当量の偏光面の回転が生じる屈折
力を持たない共軸光学系3との組み合わせにより、問題
となる偏光面の回転とは逆方向に等量偏光面を回転させ
る作用を持たせた光学系4を構成し、これを上記共軸光
学系1に付加することが行われている。一般に上記光学
系4をレクチファイアー光学系(補償光学系)と呼ぶ。
Generally, when a linearly polarized light flux as shown in FIG. 7 (a) is incident on the entrance pupil of the coaxial optical system, the plane of polarization is rotated due to the influence of reflection on the surface of each lens, and the exit pupil surface of the coaxial optical system is rotated. Is the 7th
A polarized light flux as shown in FIG. The arrows shown in FIGS. 2A and 2B indicate the directions of the polarization planes at the respective positions. The above is known, and is also shown in Japanese Patent Publication No. 49-29470. This is a harmful phenomenon in an optical system that handles polarized light, for example, a polarizing microscope optical system. Therefore, for example, as shown in FIG. 6, in order to optically compensate the rotation of the polarization plane generated in the coaxial optical system 1, the half-wave plate 2 and a refractive power that causes an appropriate amount of rotation of the polarization plane. In combination with the coaxial optical system 3 having no optical axis, an optical system 4 having a function of rotating an equivalent polarization plane in a direction opposite to the rotation of the polarization plane in question is constituted, Additions to system 1 are being made. Generally, the optical system 4 is called a rectifier optical system (compensating optical system).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、上記補償法の場合、1/2波長板2は偏光面に
対し光学軸を45゜傾けて用いる必要があるのに、共軸光
学系の偏光面の方向は常に一定とは限らない事が多く、
そのため1/2波長板2をその度毎に調整しなければなら
ないと云う欠点があった。又、上記補償法の欠点を解消
するために、例えば特公昭49−29470号公報に記載の光
学装置のように、偏光板,1/4波長板,1/2波長板、複屈折
素子等から成る補償光学系を付加することが考えられた
が、これは多数の偏光板,波長板,複屈折板を必要とす
るため光学系全体の構成が非常に複雑になるという欠点
があった。
However, in the case of the above compensation method, the half-wave plate 2 needs to be used with its optical axis inclined at 45 ° with respect to the polarization plane, but the direction of the polarization plane of the coaxial optical system is not always constant. Many,
Therefore, there was a drawback that the half-wave plate 2 had to be adjusted each time. Further, in order to eliminate the drawbacks of the above compensation method, for example, as in the optical device described in Japanese Patent Publication No. 49-29470, from a polarizing plate, a 1/4 wavelength plate, a 1/2 wavelength plate, a birefringent element, etc. It has been considered to add an adaptive optics system, but this has a drawback that the configuration of the entire optical system becomes very complicated because it requires a large number of polarizing plates, wave plates, and birefringent plates.

本発明は、上記問題点に鑑み、光学系の調整が不要で取
扱いが容易になり而も光学系全体の構成が簡単で済む偏
光変化の補償法も提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method of compensating for polarization change that does not require adjustment of the optical system, is easy to handle, and has a simple configuration of the entire optical system.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本発明による偏光変化の補償法は、共軸光学系に、偏光
面を90゜回転させる施光板と他の共軸光学系(補正光学
系)とから成る補償光学系を付加し、前記施光板の位置
が前記量共軸光学系の偏光面回転量がほぼ一致する位置
であるようにして、前側共軸光学系で生じた偏光面の回
転を、施光板でその向きを変え、後側共軸光学系で生じ
る偏光面の回転により打ち消すようにしたものである。
そして、施光板は光学軸が共軸光学系の光軸と平行であ
り、入射する偏光の向きによらず同じ作用をするので、
従来の補償法で必要であった偏光面の向きの変化に対応
する調整が不要となるようにしたものである。又、補償
光学系が施光板と他の共軸光学系のみから成ることによ
り光学系全体の構成も簡単で済むようにしたものであ
る。
The polarization change compensating method according to the present invention comprises adding a compensating optical system comprising a light-illuminating plate for rotating the polarization plane by 90 ° and another coaxial optical system (correction optical system) to the coaxial optical system. Position is such that the amount of rotation of the polarization plane of the above-mentioned coaxial optical system is substantially the same, and the rotation of the polarization plane caused by the front coaxial optical system is changed by the illuminating plate, and The axis of polarization is canceled by the rotation of the plane of polarization that occurs in the axial optical system.
The optical axis of the polarizing plate is parallel to the optical axis of the coaxial optical system, and the same action is obtained regardless of the direction of incident polarized light.
This is because the adjustment corresponding to the change in the direction of the polarization plane, which is required in the conventional compensation method, is not necessary. Further, since the adaptive optical system is composed of only the light-illuminating plate and the other coaxial optical system, the structure of the entire optical system can be simplified.

〔実施例〕〔Example〕

以下、図示した各実施例に基づき本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

第1図は本発明方法を具現した光学系の第一実施例を示
す。11は共軸光学系で、出射光束は略平行光束となる。
12は施光板で、偏光面を90゜回転させる作用を持つ。13
は補正光学系で、一つ以上の凸面と凹面の組み合わせに
よる屈折力を殆ど持たない共軸光学系である。そして、
施光板12と補正光学系13とで補償光学系14を構成してい
る。共軸光学系1の入射瞳に第7図(a)のような直線
偏光光束が入射すると、先に述べたように偏光面の回転
が生じ、共軸光学系1の射出瞳からは第7図(b)のよ
うな偏光光束が出射する。これが施光板12を通ると、偏
光面の向きは90゜回転するので、偏光状態は第2図のよ
うになる。一方、補正光学系13でも共軸光学系1と同様
な偏光面の回転が生じる。即ち補正光学系13の入射瞳に
第3図(a)のような直線偏光光束が入射すると、射出
瞳面では第3図(b)のような偏光光束が出射する。第
3図(a)の偏光状態を基準として第2図と第3図
(b)の偏光状態を比べると、互いに偏光面が反対の方
向に回転している。尚、その回転量は、補正光学系13の
レンズの凸面と凹面の曲率及び面数を適当に設定するこ
とにより、互いに同じになるようにしてある(凸面と凹
面の曲率を大きくし、又面数を増せば回転量が増す)。
このことから、補正光学系13の入射瞳に第2図のような
偏光光束が入射すると、補正光学系13の偏光面を回転さ
せる作用により、その射出瞳面での偏光状態はほぼ第3
図(a)のようになる事が明らかである。以上まとめる
と、第1図の光学系全体として、その入射瞳に第7図
(a)のような直線偏光光束が入射すると、その入射瞳
面からは第3図(a)のような奇麗な(偏光面の回転が
補正された)直線偏光光束が出射する。
FIG. 1 shows a first embodiment of an optical system embodying the method of the present invention. Reference numeral 11 is a coaxial optical system, and the emitted light flux is a substantially parallel light flux.
Numeral 12 is an illuminating plate, which has a function of rotating the polarization plane by 90 °. 13
Is a correction optical system, which is a coaxial optical system having almost no refractive power due to the combination of one or more convex and concave surfaces. And
An adaptive optical system 14 is configured by the light-illuminating plate 12 and the correction optical system 13. When a linearly polarized light flux as shown in FIG. 7A enters the entrance pupil of the coaxial optical system 1, the plane of polarization is rotated as described above, and the exit pupil of the coaxial optical system 1 moves to the seventh position. A polarized light flux as shown in FIG. When the light passes through the illuminating plate 12, the orientation of the plane of polarization is rotated by 90 °, and the polarization state is as shown in FIG. On the other hand, also in the correction optical system 13, the same rotation of the polarization plane as in the coaxial optical system 1 occurs. That is, when a linearly polarized light beam as shown in FIG. 3A enters the entrance pupil of the correction optical system 13, a polarized light beam as shown in FIG. 3B is emitted at the exit pupil surface. Comparing the polarization states of FIGS. 2 and 3 (b) with the polarization state of FIG. 3 (a) as a reference, the planes of polarization are rotated in opposite directions. The amount of rotation is set to be the same as each other by appropriately setting the curvature and the number of surfaces of the convex surface and the concave surface of the lens of the correction optical system 13 (increasing the curvature of the convex surface and the concave surface, If you increase the number, the amount of rotation will increase).
From this fact, when the polarized light flux as shown in FIG. 2 is incident on the entrance pupil of the correction optical system 13, the polarization state on the exit pupil plane is almost the third by the action of rotating the polarization plane of the correction optical system 13.
It is clear that the result is as shown in FIG. In summary, as a whole of the optical system shown in FIG. 1, when a linearly polarized light beam as shown in FIG. 7 (a) is incident on the entrance pupil, a beautiful beam as shown in FIG. 3 (a) emerges from the entrance pupil surface. A linearly polarized light beam (with the rotation of the polarization plane corrected) is emitted.

以上、本発明方法の原理について説明したが、本発明方
法において、施光板12はその平行面に垂直な光学軸を持
つ施光性を持つ材料例えば水晶で作られた平行板であ
る。即ち施光板12はその光学軸が光学系の光軸と平行で
あるから、光軸まわりにどのような角度で配置しても作
用は変わらず、従って入射する光束の偏光面の向きによ
り角度をいちいち調整する必要がない。又、補償光学系
14が施光板12と補正光学系(共軸光学系)13のみから成
るので光学系全体の構成も簡単で済む。
The principle of the method of the present invention has been described above. In the method of the present invention, the light-transmitting plate 12 is a parallel plate made of a light-transmitting material having an optical axis perpendicular to its parallel plane, for example, quartz. That is, since the optical axis of the illuminating plate 12 is parallel to the optical axis of the optical system, the operation does not change regardless of the angle of arrangement around the optical axis, and therefore the angle depends on the direction of the polarization plane of the incident light beam. There is no need to make adjustments. Also, adaptive optics
Since 14 is composed only of the light-illuminating plate 12 and the correction optical system (coaxial optical system) 13, the configuration of the entire optical system is simple.

尚、本光学系は、第4図に示した如く、入射側と出射側
を入れ替えて用いてもその射出瞳面では奇麗な直線偏光
が得られる。この場合、補正光学系13を出射する偏光光
束は第7図(b)のようになり、施光板12を通ると第2
図のようになる。これが、第3図に示す如く偏光面を
(a)から(b)へ回転させる作用を持つ共軸光学系11
により、第3図(a)のような奇麗な直線偏光に補正さ
れるのである。
Incidentally, as shown in FIG. 4, the present optical system can obtain neat linearly polarized light on the exit pupil plane even if the entrance side and the exit side are used interchangeably. In this case, the polarized light flux emitted from the correction optical system 13 is as shown in FIG.
It becomes like the figure. This is a coaxial optical system 11 having the function of rotating the plane of polarization from (a) to (b) as shown in FIG.
As a result, the linearly polarized light as shown in FIG. 3 (a) is corrected.

第5図は本発明方法を具現した光学系の第二実施例を示
す。この第二実施例は顕微鏡の対物レンズに本発明を応
用したものである。第5図の光学系全体が顕微鏡対物レ
ンズを構成しており、15が施光板で16が前群、17が後群
である。後群17は対物レンズの作動距離を長くし、像の
平坦物を高める作用を持つメニスカスレンズである。更
に、このように前面が凸面で後面が凹面であるメニスカ
スレンズは、前群16と後群17との間の主光線傾角を減じ
るのにも効果がある。
FIG. 5 shows a second embodiment of the optical system embodying the method of the present invention. The second embodiment is an application of the present invention to an objective lens of a microscope. The entire optical system of FIG. 5 constitutes a microscope objective lens, and 15 is a light-transmitting plate, 16 is a front group, and 17 is a rear group. The rear group 17 is a meniscus lens having a function of increasing the working distance of the objective lens and enhancing the flat object of the image. Further, such a meniscus lens having a convex front surface and a concave rear surface is also effective in reducing the chief ray tilt angle between the front group 16 and the rear group 17.

上記効果をもたらす原理について説明する。収差補正上
後群17のメニスカスレンズの屈折力は弱い。後群17の
メニスカスレンズの前面,後面の屈折力を1,
し、肉厚をd、平均屈折率をnとすると、全体の屈折力
は下式で近似出来る。即ち、 となる。又、後群17をアフォーカル光学系と考えると、
その角倍率ξは、 P>0,>0であるから、 |ξ|>1 となる。即ち対物レンズを出射する主光線の必要な最大
傾角をθとすると、前群1と後群17との間では、主光
線の最大傾角θは、 となる。従って、前群16を出射側アフォーカル系に近づ
けるように設計すれば、施光板15を貫く光線の全てを光
軸にほぼ平行にできる。この事は、施光板15の特性を良
くする上で大きな効果がある。施光板15はその光学軸と
平行な光線に対し正しい特性を示す。
The principle of producing the above effect will be described. The meniscus lens of the rear group 17 has a weak refracting power for aberration correction. Assuming that the front and rear surfaces of the meniscus lens of the rear group 17 have refractive powers of 1 and 2 , the thickness is d, and the average refractive index is n, the total refractive power can be approximated by the following equation. That is, Becomes Also, considering the rear group 17 as an afocal optical system,
The angular magnification ξ is Since P> 0, 1 > 0, | ξ |> 1. That is, assuming that the required maximum tilt angle of the chief ray emitted from the objective lens is θ E , the maximum tilt angle θ m of the chief ray between the front group 1 and the rear group 17 is Becomes Therefore, if the front group 16 is designed to be close to the exit side afocal system, all of the light rays penetrating the illuminating plate 15 can be made substantially parallel to the optical axis. This has a great effect on improving the characteristics of the light illuminating plate 15. The illuminating plate 15 shows correct characteristics for a light ray parallel to its optical axis.

偏光面の回転に関しては、前群16,施光板15,後群17が、
第一実施例と共軸光学系11,施光板12,補正光学系13と同
様な作用を持っており、このため第二実施例において
も、その入射瞳に直線偏光光束が入射すると、射出瞳か
らは偏光面が90゜回転した奇麗な直線偏光光束が出射す
る。
Regarding the rotation of the polarization plane, the front group 16, the illuminating plate 15, the rear group 17,
It has the same actions as the coaxial optical system 11, the illuminating plate 12, and the correction optical system 13 as in the first embodiment. Therefore, also in the second embodiment, when the linearly polarized light beam enters the entrance pupil, the exit pupil Emits a neat linearly polarized light beam with its polarization plane rotated by 90 °.

尚、第一実施例における補正光学系13と第二実施例にお
ける後群17は共に屈折力が弱いが、これは本発明の必須
要件ではない。各実施例では単に収差補正上の理由で屈
折力が弱くなっているだけである。
Both the correction optical system 13 in the first embodiment and the rear group 17 in the second embodiment have weak refractive power, but this is not an essential requirement of the present invention. In each embodiment, the refracting power is weakened merely for the purpose of aberration correction.

〔発明の効果〕〔The invention's effect〕

上述の如く、本発明による偏光変化の補償法によれば、
光学系の調整が不要で取扱いが容易になり而も光学系全
体の構成が簡単で済むという効果がある。又、その結
果、調整機構を設けるスペースが確保できないために補
償光学系を内蔵できなかった光学系例えば顕微鏡対物レ
ンズにも本発明を応用できるという効果もある。
As described above, according to the polarization change compensation method of the present invention,
There is an effect that the adjustment of the optical system is not required, the handling is easy, and the configuration of the entire optical system is simple. As a result, there is also an effect that the present invention can be applied to an optical system such as a microscope objective lens in which an adaptive optical system could not be built in because a space for providing an adjusting mechanism cannot be secured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を具現した光学系の第一実施例を示
す図、第2図は施光板による偏光面の回転状態を示す
図、第3図(a),(b)は補正光学系による偏光面の
回転変化を示す図、第4図は第一実施例の光学系の前後
を入れ替えた状態を示す図、第5図は本発明方法を具現
した光学系の第二実施例を示す図、第6図は従来方法を
具現した光学系を示す図、第7図(a),(b)は共軸
光学系による偏光面の回転変化を示す図である。 11……共軸光学系、12……施光板、13……補正光学系、
14……補償光学系、15……施光板、16……前群、17……
後群。
FIG. 1 is a diagram showing a first embodiment of an optical system embodying the method of the present invention, FIG. 2 is a diagram showing a state of rotation of a polarization plane by a light applying plate, and FIGS. 3 (a) and 3 (b) are correction optics. FIG. 4 is a diagram showing a rotation change of a polarization plane by the system, FIG. 4 is a diagram showing a state in which the front and rear of the optical system of the first embodiment are interchanged, and FIG. 5 is a second embodiment of the optical system embodying the method of the present invention. FIG. 6 is a diagram showing an optical system embodying a conventional method, and FIGS. 7 (a) and 7 (b) are diagrams showing a rotation change of a polarization plane by a coaxial optical system. 11 …… Coaxial optical system, 12 …… Glass plate, 13 …… Correction optical system,
14 …… adaptive optics system, 15 …… illuminating plate, 16 …… front group, 17 ……
Rear group.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】共軸光学系に、偏光面を90゜回転させる施
光板と他の共軸光学系とから成る補償光学系を付加し、
前記施光板の位置が前記両共軸光学系の偏光面回転量が
ほぼ一致する位置であるようにした偏光変化の補償法。
1. An adaptive optics system comprising a polarizing plate for rotating a plane of polarization by 90 ° and another coaxial optics system to the coaxial optics system,
A method of compensating for a polarization change in which the position of the light applying plate is such that the amounts of rotation of the polarization planes of the biaxial optical systems substantially coincide with each other.
【請求項2】共軸光学系中に偏光面を90゜回転させる施
光板を挿入し、該施光板の位置が該施光板の前後の光学
系の偏光面回転量がほぼ一致する位置であるようにした
偏光変化の補償法。
2. A light-illuminating plate for rotating a polarization plane by 90 ° is inserted into the coaxial optical system, and the position of the light-illuminating plate is such that the amounts of rotation of the polarization planes of the optical systems before and after the light-illuminating plate are substantially the same. Compensation method for polarization change.
JP9938586A 1986-05-01 1986-05-01 Polarization change compensation method Expired - Fee Related JPH0766108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9938586A JPH0766108B2 (en) 1986-05-01 1986-05-01 Polarization change compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9938586A JPH0766108B2 (en) 1986-05-01 1986-05-01 Polarization change compensation method

Publications (2)

Publication Number Publication Date
JPS62257117A JPS62257117A (en) 1987-11-09
JPH0766108B2 true JPH0766108B2 (en) 1995-07-19

Family

ID=14246040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9938586A Expired - Fee Related JPH0766108B2 (en) 1986-05-01 1986-05-01 Polarization change compensation method

Country Status (1)

Country Link
JP (1) JPH0766108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE431619T1 (en) * 1999-01-06 2009-05-15 Nikon Corp METHOD FOR PRODUCING AN OPTICAL PROJECTION SYSTEM
JP4682626B2 (en) * 2005-01-26 2011-05-11 セイコーエプソン株式会社 Lighting device and projector

Also Published As

Publication number Publication date
JPS62257117A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
US6400493B1 (en) Folded optical system adapted for head-mounted displays
US10120112B2 (en) Diffractive waveplate lenses for correcting aberrations and polarization-independent functionality
US5706137A (en) Wide field of view imaging system
US5223956A (en) Optical beam scanners for imaging applications
US6487021B1 (en) Head-mounted display
JPH04253B2 (en)
KR20020021111A (en) Head-mounted display
US4566762A (en) Dual focus optical system
US5251070A (en) Catadioptric reduction projection optical system
US6137636A (en) Efficient ocular with spatially modulating, reflective device at intermediate image plane
US4015896A (en) Reflecting-lens objective
US5790734A (en) Optical dispersion apparatus and method
JPH0766108B2 (en) Polarization change compensation method
US3277782A (en) Illuminating apparatus for a microscope system using polarized light
US4289377A (en) Projecting apparatus
JPH02181712A (en) Achromatic optical system for laser scanning
RU2521249C1 (en) Reflecting autocollimating spectrometer
US5309261A (en) Optical system for laser beam scanner
Smith A new incident illuminator for polarizing microscopes
EP0290445A1 (en) Apparatus incorporating phase conjugate mirrors
JPS5997112A (en) Reflection type telephoto lens
RU2082195C1 (en) Catadioptric lens
JPS6057818A (en) Beam expander for laser light
JPH02176619A (en) Uniform speed lens scanner
KR940006346B1 (en) Laser beam scanning apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees