JPH0765867B2 - Exhaust heat recovery heat exchanger manufacturing method - Google Patents

Exhaust heat recovery heat exchanger manufacturing method

Info

Publication number
JPH0765867B2
JPH0765867B2 JP60297756A JP29775685A JPH0765867B2 JP H0765867 B2 JPH0765867 B2 JP H0765867B2 JP 60297756 A JP60297756 A JP 60297756A JP 29775685 A JP29775685 A JP 29775685A JP H0765867 B2 JPH0765867 B2 JP H0765867B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
heat
module
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60297756A
Other languages
Japanese (ja)
Other versions
JPS62158994A (en
Inventor
孝幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60297756A priority Critical patent/JPH0765867B2/en
Publication of JPS62158994A publication Critical patent/JPS62158994A/en
Publication of JPH0765867B2 publication Critical patent/JPH0765867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Automatic Assembly (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービンからの排気ガスの残留熱を利用
して蒸気タービン用蒸気を発生させるコンバインドサイ
クル発電プラントに係り、特にコンバインドサイクル発
電プラントに使用される排熱回収熱交換器の製造方法に
関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a combined cycle power plant for generating steam for a steam turbine by utilizing residual heat of exhaust gas from a gas turbine, and more particularly to a combined cycle power plant. The present invention relates to a method for manufacturing an exhaust heat recovery heat exchanger used.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近建設される火力発電プラントでは、使用燃料の高騰
により発電の高効率化が要求されており、この要求から
コンバインドサイクル発電プラントが脚光を浴びてい
る。コンバインドサイクル発電プラントはガスタービン
プラントとこのガスタービンプラントからの排熱を利用
した蒸気タービンプラントとを組み合せたものであり、
種々のタイプのプラントが考えられている。
In the recently constructed thermal power plant, the efficiency of power generation is required to be high due to the soaring amount of fuel used, and the combined cycle power plant is in the limelight from this demand. A combined cycle power plant is a combination of a gas turbine plant and a steam turbine plant that uses exhaust heat from this gas turbine plant.
Various types of plants have been considered.

従来の典型的なコンバインドサイクル発電プラントは第
12図に示されるように構成されており、ガスタービンプ
ラント1と蒸気タービンプラント2とを備えている。ガ
スタービンプラント1はガスタービン3にて回転駆動さ
れる圧縮機4を有し、この圧縮機4で圧縮された空気は
燃焼器5に供給され、ここで燃料と混合して燃料され、
高温高圧の燃焼ガスとなってガスタービン3に送られ
る。ガスタービン3に案内された燃焼ガスはここで膨脹
して仕事をし、図示しない翼車を回転させ、発電機6を
駆動させる。ガスタービン3にて仕事をした燃焼ガスは
膨脹した排気ガスとなってダクト7を通り排熱回収熱交
換器8に案内される。
Conventional typical combined cycle power plant is
It is configured as shown in FIG. 12 and includes a gas turbine plant 1 and a steam turbine plant 2. The gas turbine plant 1 has a compressor 4 rotatably driven by a gas turbine 3, and the air compressed by the compressor 4 is supplied to a combustor 5 where it is mixed with fuel to be fueled.
The combustion gas of high temperature and high pressure is sent to the gas turbine 3. The combustion gas guided to the gas turbine 3 expands and performs work there, and rotates an impeller (not shown) to drive the generator 6. The combustion gas that has worked in the gas turbine 3 becomes expanded exhaust gas and is guided to the exhaust heat recovery heat exchanger 8 through the duct 7.

この排気ガスの温度は通常500℃〜600℃と高温であり、
この排気ガスをそのまま排棄するのは大きな熱的損失で
あり不経済である。このため、排熱回収熱交換器8が設
けられ、この熱交換器8で排気ガス中に含まれる残留熱
を回収している。排熱回収熱交換器8に案内された排気
ガスは、伝熱管9内を通る給水と熱交換して冷却され、
低温のガスとなって煙突10から大気中に放出される。
The temperature of this exhaust gas is usually as high as 500 ℃ ~ 600 ℃,
It is uneconomical to dispose of this exhaust gas as it is because of a large heat loss. Therefore, the exhaust heat recovery heat exchanger 8 is provided, and the heat exchanger 8 recovers the residual heat contained in the exhaust gas. The exhaust gas guided to the exhaust heat recovery heat exchanger 8 is cooled by exchanging heat with the feed water passing through the heat transfer tube 9,
It becomes a low temperature gas and is discharged from the chimney 10 into the atmosphere.

一方、蒸気タービンプラント2は蒸気タービン11を有
し、この蒸気タービン11に案内された蒸気は膨脹して仕
事をし、発電機6を駆動させる。また、蒸気タービン11
で仕事をし、膨脹した蒸気は復水器12に案内されて凝縮
され、復水となる。この復水は給水ポンプ13を備えた給
水系統14を通り、排熱回収熱交換器8の低圧エコノマイ
ザ15に送られ、このエコノマイザ15にて予熱される。予
熱された給水は低圧蒸気ドラム16の下部水中に送り込ま
れる。
On the other hand, the steam turbine plant 2 has a steam turbine 11, and the steam guided by the steam turbine 11 expands to perform work, and drives the generator 6. Also, the steam turbine 11
The expanded steam is guided to the condenser 12 and condensed to be condensed water. This condensate passes through a water supply system 14 equipped with a water supply pump 13, is sent to a low pressure economizer 15 of the exhaust heat recovery heat exchanger 8, and is preheated by the economizer 15. The preheated feed water is fed into the lower water of the low pressure steam drum 16.

低圧蒸気ドラム16内の水は、低圧循環ポンプ17および移
送ポンプ18により低圧蒸気発生器19および高圧エコノマ
イザ20にそれぞれ送られる。低圧蒸気発生器19内を通る
給水は加熱されて順次蒸発され、気液二相流となって低
圧蒸気ドラム16の上部蒸気中に戻され、気液に分離され
る。低圧蒸気ドラム16の上部に貯った蒸気は、図示しな
い湿分分離器を経て湿分分離された後、蒸気タービン11
の途中段に給気される。
The water in the low-pressure steam drum 16 is sent to the low-pressure steam generator 19 and the high-pressure economizer 20 by the low-pressure circulation pump 17 and the transfer pump 18, respectively. The feed water passing through the low-pressure steam generator 19 is heated and sequentially evaporated, and becomes a gas-liquid two-phase flow, is returned into the upper steam of the low-pressure steam drum 16, and is separated into gas-liquid. The steam stored in the upper part of the low-pressure steam drum 16 is separated into moisture through a moisture separator (not shown), and then the steam turbine 11
Air is supplied in the middle of.

また、高圧エコノマイザ20に案内された給水は予熱され
て高圧蒸気ドラム21の下部水中に送り込まれる。高圧蒸
気ドラム21内の水は、高圧循環ポンプ22により並設され
た高圧蒸気発生器23およびプレ蒸気発生器24に分岐して
送られる。一方、これらは再び合流して、高圧蒸気ドラ
ム21の上部蒸気中に戻される。高圧蒸気発生器23および
プレ蒸気発生器24中を流れる給水は、加熱されて次第に
蒸発し高圧蒸気ドラム21内に戻るころは蒸気と水の気液
二相流状態となっている。高圧蒸気ドラム21内に貯った
蒸気は、図示しない湿分分離器を通った後、過熱器25に
送られ過熱蒸気となって蒸気タービン11に送られ、蒸気
タービン11を駆動させるようになっている。
Further, the feed water guided to the high pressure economizer 20 is preheated and sent into the lower water of the high pressure steam drum 21. The water in the high-pressure steam drum 21 is branched and sent to the high-pressure steam generator 23 and the pre-steam generator 24 which are arranged in parallel by the high-pressure circulation pump 22. On the other hand, these merge again and are returned to the upper steam of the high-pressure steam drum 21. The feed water flowing through the high-pressure steam generator 23 and the pre-steam generator 24 is in a gas-liquid two-phase flow state of steam and water when it is heated and gradually evaporated to return into the high-pressure steam drum 21. After passing through a moisture separator (not shown), the steam stored in the high-pressure steam drum 21 is sent to the superheater 25, becomes superheated steam, and is sent to the steam turbine 11 to drive the steam turbine 11. ing.

排熱回収熱交換器8内に収容される低圧エコノマイザ1
5、低圧蒸気発生器19、高圧エコノマイザ20、高圧蒸気
発生器23、プレ蒸気発生器24、過熱器25の相互間は各々
伝熱面積を大きくしたフィン付の伝熱管9群により構成
される。これらの伝熱管群は流体励起振動による疲労破
損を防ぐため、適当な間隔で配置された支え板26で支持
される。但し伝熱管9は長さ方向に熱膨脹して伸びるた
め、支え板26は伝熱管9をスライド自在に支持し、伝熱
管の長さ方向には拘束していない。
Low-pressure economizer 1 housed in the exhaust heat recovery heat exchanger 8
5, The low-pressure steam generator 19, the high-pressure economizer 20, the high-pressure steam generator 23, the pre-steam generator 24, and the superheater 25 are each constituted by a group of finned heat transfer tubes 9 having a large heat transfer area. These heat transfer tube groups are supported by supporting plates 26 arranged at appropriate intervals in order to prevent fatigue damage due to fluid-induced vibration. However, since the heat transfer tube 9 expands due to thermal expansion in the length direction, the support plate 26 slidably supports the heat transfer tube 9 and is not constrained in the length direction of the heat transfer tube.

また、排熱回収熱交換器8に案内される給水あるいは蒸
気が複数の伝熱管9群に分流されたり、合流したりする
箇所にはヘッダ27が配設されている。
Further, a header 27 is provided at a location where the feed water or steam guided to the exhaust heat recovery heat exchanger 8 is branched or merged into the plurality of heat transfer tube groups 9.

以上述べたように、排熱回収熱交換器8は多数の伝熱管
9を有し、強制対流による熱伝達により給水を排気ガス
と熱交換している。
As described above, the exhaust heat recovery heat exchanger 8 has a large number of heat transfer tubes 9 and exchanges the feed water with the exhaust gas by heat transfer by forced convection.

ところで、排熱回収熱交換器8は通常非常に大形の構造
物であるため、製作や運搬および据付の便利さから機能
別に分割ユニット構造とされ、例えば、入口ダクト、蒸
気発生器、エコノマイザ、蒸気ドラムおよび出口ダクト
と複数に分割された構造に一般的に構成される。
By the way, since the exhaust heat recovery heat exchanger 8 is usually a very large structure, it has a divided unit structure for each function for convenience of manufacture, transportation and installation. For example, an inlet duct, a steam generator, an economizer, It is generally configured in a multi-part structure with a steam drum and an outlet duct.

第13図は複数に分割された排熱回収熱交換器9の蒸気発
生器およびエコノマイザの構造を示している。
FIG. 13 shows the structure of the steam generator and the economizer of the exhaust heat recovery heat exchanger 9 divided into a plurality of parts.

これらの蒸気発生器およびエコノマイザに使用される伝
熱管9は伝熱面積を大きくするため、第14図(A)およ
び(B)に示すフィン付伝熱管が使用され、長さは普通
熱交換性能を考慮して40〜50mの長さが必要となる。伝
熱管9を長くすることにより、排熱回収熱交換器8の機
器が長大となることを防ぐため、伝熱管9は蛇管状に形
成され、伝熱管直管部の長さを10m前後に構成してい
る。このため、第13図および第14図(A),(B)に示
す如くU字形伝熱管9aと直管状伝熱管9bとを位置Aで溶
接接続し、所定の長さにしている。この蛇管状伝熱管9
は第15図乃至第17図に示すヘッド27に位置Bで溶接接続
されている。蛇管状伝熱管9が数百本接続されるヘッダ
27は対向して設けられた一対の側板28a,28bに固定され
る。
The heat transfer tubes 9 used in these steam generators and economizers use finned heat transfer tubes as shown in FIGS. 14 (A) and 14 (B) in order to increase the heat transfer area. Considering the above, a length of 40 to 50 m is required. In order to prevent the exhaust heat recovery heat exchanger 8 from becoming too long by increasing the length of the heat transfer tube 9, the heat transfer tube 9 is formed in a serpentine shape, and the straight tube portion of the heat transfer tube has a length of about 10 m. is doing. Therefore, the U-shaped heat transfer tube 9a and the straight tube-shaped heat transfer tube 9b are welded and connected at the position A to have a predetermined length, as shown in FIGS. 13 and 14 (A) and (B). This snake tubular heat transfer tube 9
Is welded at position B to the head 27 shown in FIGS. Header to which hundreds of snake-shaped heat transfer tubes 9 are connected
27 is fixed to a pair of side plates 28a, 28b provided so as to face each other.

一方、蛇管状伝熱管9もヘッダ27同様、流体励起振動に
よる疲労破損を防ぐため、適当な間隔で配置された支え
板26で支持される。支え板26は蛇管状伝熱管9の熱膨脹
による伸びを吸収するため、蛇管状伝熱管9を自由に移
動するようになっている。蛇管状伝熱管9の伸び方向
は、ヘッダ27の取付方向とは反対側である。ヘッダ27は
側板28a,28bに固定されており、ヘッダ側への延びが規
制されるためである。なお、第13図において、符号29a
および29bは側板28a,28bの両側端部に固定された一対の
端板である。
On the other hand, like the header 27, the serpentine heat transfer tube 9 is also supported by support plates 26 arranged at appropriate intervals in order to prevent fatigue damage due to fluid-induced vibration. The support plate 26 absorbs the expansion caused by the thermal expansion of the serpentine heat transfer tube 9, so that the serpentine heat transfer tube 9 can freely move. The extending direction of the serpentine heat transfer tube 9 is opposite to the mounting direction of the header 27. This is because the header 27 is fixed to the side plates 28a and 28b and its extension to the header side is restricted. Incidentally, in FIG. 13, reference numeral 29a
And 29b are a pair of end plates fixed to both end portions of the side plates 28a, 28b.

しかして、排熱回収熱交換器8内に組み込まれる蒸気発
生器およびエコノマイザの組立順序は従来次のようにし
て行なわれる。まず第15図に示すように側板28a,28bを
図示しない定盤上に据え、ヘッダ27,27を側板28a,28bに
取付固定する。その後、第16図に示すように、支え板26
を組み込み、支え板26の管穴の芯出し位置決めする。支
え板26は側板28a,28bより伝熱管9が高温になって延び
るのを吸収するために図示しないシャフト等を使用し、
吊り下げ固定する。支え板26の組み込み完了後、第16図
および第17図に示すように、反ヘッダ側より10m前後の
直管状伝熱管9bを挿入し、この挿入後にU字形伝熱管9a
を溶接接続し、蛇管状伝熱管9を完成させるとともに、
直管状伝熱管9bをヘッダ27に溶接にて接続する。そし
て、最後に、第13図に示すように端板29a,29bを固定す
るのが一般的である。
Then, the assembling order of the steam generator and the economizer incorporated in the exhaust heat recovery heat exchanger 8 is conventionally performed as follows. First, as shown in FIG. 15, the side plates 28a, 28b are set on a surface plate (not shown), and the headers 27, 27 are attached and fixed to the side plates 28a, 28b. Then, as shown in FIG. 16, the support plate 26
Is installed, and the tube hole of the support plate 26 is centered and positioned. The support plate 26 uses a shaft or the like (not shown) in order to absorb the heat transfer tube 9 extending from the side plates 28a and 28b due to high temperature,
Suspend and fix. After the support plate 26 is completely assembled, as shown in FIGS. 16 and 17, a straight tube-shaped heat transfer tube 9b of about 10 m from the opposite header side is inserted, and after this insertion, a U-shaped heat transfer tube 9a is inserted.
By welding to complete the snake tubular heat transfer tube 9,
The straight tubular heat transfer tube 9b is connected to the header 27 by welding. Then, finally, it is general to fix the end plates 29a, 29b as shown in FIG.

しかしながら、上述した蒸気発生器およびエコノマイザ
の組立方法においては、直管状伝熱管9bの挿入をヘッダ
27の取付側の反対側から行なわなければならず、また蛇
管状伝熱管9の形成に際し、U字状伝熱管9aの溶接スペ
ースが狭く、溶接作業や溶接部の検査等に多大の時間と
労力を費やし、排熱回収熱交換器の製造工期が長くなる
という問題があった。
However, in the above-described method for assembling the steam generator and the economizer, the insertion of the straight tubular heat transfer tube 9b is performed in the header.
It has to be performed from the side opposite to the mounting side of 27, and when forming the serpentine heat transfer tube 9, the welding space of the U-shaped heat transfer tube 9a is narrow, and it takes a lot of time and labor for welding work and inspection of the welded part. Therefore, there is a problem that the manufacturing period of the exhaust heat recovery heat exchanger becomes long.

〔発明の目的〕[Object of the Invention]

本発明は上述した事情を考慮してなされたもので、蛇管
状伝熱管を形成するための溶接スペースを充分に確保
し、伝熱管溶接の作業性や溶接部検査の作業性を著しく
向上させて組立作業の作業能率を向上させ、信頼性を高
めた排熱回収熱交換器の製造方法を提供することを目的
とする。
The present invention has been made in consideration of the above-mentioned circumstances, sufficiently secures a welding space for forming a serpentine tubular heat transfer tube, and significantly improves the workability of heat transfer tube welding and the workability of weld portion inspection. An object of the present invention is to provide a method for manufacturing an exhaust heat recovery heat exchanger that improves the work efficiency of assembly work and improves reliability.

〔発明の概要〕[Outline of Invention]

本発明に係る排熱回収熱交換器の製造方法は、上記した
目的を達成するために、ガスタービンからの排気ガスの
残留熱を利用して蒸気タービン駆動用蒸気を発生させる
排熱回収熱交換器の製造方法において、モジュール治具
を用意し、上記モジュール治具上に適宜間隔をおいて列
状に複数の支え板を横向き状態に整列配置した後、各支
え板の管穴に直管状伝熱管が挿通され、その後直管状伝
熱管の所要の端部同士をU字状伝熱管で接合して伝熱管
モジュールをそれぞれ組み立てつモジュール組立工程
と、組み立てられた伝熱管モジュールを起立させて全体
組立治具上に複数個順次水平に並べて設置する工程と、
全体組立治具上に設置された隣接する伝熱管モジュール
同士を継ぎ部材で互いに連結した後、各伝熱管モジュー
ルの直管状伝熱管の所要端部にヘッダをを取り付けて伝
熱管群を組み立てつ伝熱管群組立工程と、組み立てられ
た伝熱管群を熱交換器ケーシング内に収容させる工程と
を備える方法である。
In order to achieve the above-mentioned object, the method for manufacturing an exhaust heat recovery heat exchanger according to the present invention uses the residual heat of exhaust gas from a gas turbine to generate steam for driving a steam turbine. In the method for manufacturing a container, a module jig is prepared, and a plurality of support plates are arranged side by side in a row on the module jig at appropriate intervals, and then straight tube transfer is performed in the tube holes of each support plate. The heat tube is inserted, and then the required ends of the straight tube heat transfer tubes are joined together by U-shaped heat transfer tubes to assemble the heat transfer tube modules, respectively, and the assembled heat transfer tube modules are erected and assembled as a whole. A process of sequentially arranging a plurality of jigs horizontally on a jig,
After connecting the adjacent heat transfer tube modules installed on the overall assembly jig to each other with a joint member, attach a header to the required end of the straight tube heat transfer tube of each heat transfer tube module to assemble the heat transfer tube group. A method including a heat tube group assembling step and a step of accommodating the assembled heat transfer tube group in a heat exchanger casing.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例について添付図面を参照して説
明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

本発明を適用した排熱回収熱交換器はコンバインドサイ
クル発電プラントに用いられ、ガスタービンプラントの
ガスタービンから排気される排気ガスの残留熱を利用し
て蒸気タービンプラントの蒸気タービン用蒸気を生じさ
せるものである。
The exhaust heat recovery heat exchanger to which the present invention is applied is used in a combined cycle power generation plant, and uses residual heat of exhaust gas exhausted from a gas turbine of a gas turbine plant to generate steam for a steam turbine of a steam turbine plant. It is a thing.

排熱回収熱交換器はそのケーシング内に蒸気発生器やエ
コノマイザ等を構成する伝熱管群30が収容される。排熱
回収熱交換器の全体の構成は第12図に示す従来のものと
同様であるので説明を省略する。
The exhaust heat recovery heat exchanger has a casing in which a heat transfer tube group 30 constituting a steam generator, an economizer, etc. is housed. Since the overall structure of the exhaust heat recovery heat exchanger is the same as the conventional one shown in FIG. 12, the description thereof will be omitted.

伝熱管群30は第1図に示すように分割された複数、例え
ば4個の伝熱管モジュール31を組み立てたもので、各伝
熱管モジュール31を継板32にて一体あるいは一体的に溶
接し、接続することにより構成される。各伝熱管モジュ
ール31は第2図に示すように構成され、適当な間隔をお
いて横置き状態で整列配置された複数の矩形の支え板34
を備え、これらの支え板34の管穴35内に直管状の伝熱管
36を挿通させる。挿通された直管状の伝熱管36は、所定
の端部がU字状伝熱管(Uベント管)37に自動溶接機38
にて一体に溶接され、全体として蛇管状の伝熱管39が構
成される。蛇管状伝熱管39は実際には伝熱面積を拡大さ
れるため、第3図(A)および(B)に示すようにフィ
ン40付の伝熱管が用いられる。そして、蛇管状伝熱管39
の両端部は一側から取り出され、ヘッダ41に接続可能に
される。
The heat transfer tube group 30 is an assembly of a plurality of, for example, four heat transfer tube modules 31 divided as shown in FIG. 1, and each heat transfer tube module 31 is integrally or integrally welded by a connecting plate 32, It is configured by connecting. Each heat transfer tube module 31 is constructed as shown in FIG. 2, and a plurality of rectangular support plates 34 are arranged in a horizontal state at appropriate intervals.
And a straight tubular heat transfer tube in the tube hole 35 of these support plates 34.
Insert 36. The straight tube-shaped heat transfer tube 36 that has been inserted into the U-shaped heat transfer tube (U vent tube) 37 has a predetermined end and is automatically welded by a welding machine 38.
Are integrally welded together to form a serpentine heat transfer tube 39 as a whole. Since the heat transfer area of the serpentine heat transfer tube 39 is actually increased, a heat transfer tube with fins 40 is used as shown in FIGS. 3 (A) and 3 (B). And the snake tubular heat transfer tube 39
Both ends of the are taken out from one side and can be connected to the header 41.

次に、本発明に係る排熱回収熱交換器の製造方法につい
て説明する。
Next, a method for manufacturing the exhaust heat recovery heat exchanger according to the present invention will be described.

排熱回収熱交換器に組み込まれる伝熱管群30は第1図に
示すように複数の伝熱管モジュール31を組み合せて構成
される。この伝熱管モジュール31は、第2図に示すよう
にモジュール組立工程で製造され、始めに定盤43上にモ
ジュール治具としての組立治具44を介して複数の支え板
34を所定の間隔をおいて列状に立設させる。このとき、
矩形の支え板34は長手方向が横方向を向くように立設さ
れ、各支え板34,34は互いに平行関係に保たれるように
少なくとも両端部が組立治具44上に据付けられる。この
据付けの際、各支え板34,34に形成された管穴35は互い
に芯出しされるようにセットされる。
The heat transfer tube group 30 incorporated in the exhaust heat recovery heat exchanger is configured by combining a plurality of heat transfer tube modules 31 as shown in FIG. This heat transfer tube module 31 is manufactured in a module assembling process as shown in FIG. 2, and first, a plurality of supporting plates are mounted on a surface plate 43 via an assembly jig 44 as a module jig.
34 are erected in a row at predetermined intervals. At this time,
The rectangular supporting plate 34 is erected so that the longitudinal direction thereof is oriented in the lateral direction, and at least both ends thereof are installed on the assembly jig 44 so that the supporting plates 34, 34 are kept in parallel relationship with each other. At the time of this installation, the tube holes 35 formed in the support plates 34, 34 are set so as to be aligned with each other.

各支え板34を定盤43上に据付けた後、支え板34の管穴35
に複数の直管状の伝熱管36を挿入させ、挿通させる。複
数の伝熱管36を挿通させた後、図示しない組立治具を用
いてU字状伝熱管(ベント管)37を自動溶接機38にて自
動溶接できる位置にセットする。そして、直管状伝熱管
36とU字形伝熱管37とを自動溶接機38により溶接して一
体に固定し、舵管状伝熱管39を構成する。
After installing each support plate 34 on the surface plate 43,
A plurality of straight tubular heat transfer tubes 36 are inserted into and inserted into. After inserting a plurality of heat transfer tubes 36, a U-shaped heat transfer tube (vent pipe) 37 is set at a position where automatic welding can be performed by an automatic welding machine 38 using an assembly jig (not shown). And straight tube heat transfer tube
36 and the U-shaped heat transfer tube 37 are welded by an automatic welding machine 38 and fixed integrally to form a rudder tubular heat transfer tube 39.

この場合、各支え板34は横向きに立設されるので、溶接
作業時には各支え板34の吊り金具45が側方に位置され
る。したがって、一本の舵管状伝熱管39の溶接部が上方
から全て確認できるように、直管状伝熱管36とUベント
管37とをセットする。
In this case, since each support plate 34 is erected laterally, the hanging metal fittings 45 of each support plate 34 are positioned laterally during the welding operation. Therefore, the straight tubular heat transfer pipe 36 and the U-vent pipe 37 are set so that the welded portion of the single rudder tubular heat transfer pipe 39 can be confirmed from above.

直管状伝熱管36へのUベント管伝熱管37の溶接は列状に
配列された支え板34の一番下段に位置するものから、第
4図(A)および(B)に示すように順次上方に向って
行なわれる。したがって、舵管状伝熱管39は下側から順
次上方に向って一段づつ組み立てられる。この組立てに
より、一本の舵管状伝熱管39を構成するための溶接作業
は、直管状伝熱管36の両側で同時に行なうことができ、
しかも溶接作業の作業スペースを広くとることができる
ので、作業能率が向上し、工期の短縮を図ることができ
る。また、直管状伝熱管36は下段のものから順次上段へ
と溶接にて構成されるので、溶接作業は隣接する伝熱管
の邪魔にならず、広い作業スペース内で溶接でき、溶接
の精度や品質を向上させることができる。
Welding of the U-vent pipe heat transfer pipes 37 to the straight pipe heat transfer pipes 36 is performed in the order shown in FIGS. 4 (A) and 4 (B), starting from the lowermost stage of the supporting plate 34 arranged in rows. It goes up. Therefore, the rudder tubular heat transfer tubes 39 are assembled one by one from the bottom to the top. With this assembly, the welding work for forming one rudder tubular heat transfer tube 39 can be performed simultaneously on both sides of the straight tubular heat transfer tube 36,
In addition, since the work space for welding work can be widened, the work efficiency is improved and the work period can be shortened. Further, since the straight tubular heat transfer tube 36 is constructed by welding from the lower stage to the upper stage in sequence, the welding work does not interfere with the adjacent heat transfer pipes and can be welded in a wide working space, and the welding accuracy and quality can be improved. Can be improved.

このようにして組み立てられた伝熱管モジュール(ブロ
ック)31は外形寸法が小さく、しかも地上近く(定盤43
上)で作業を進めることができるため、溶接箇所の検査
も容易であり、短時間で精度のよい検査を行なうことが
できる。したがって、伝熱管モジュール31の溶接部の信
頼性はさらに高いものになる。
The heat transfer tube module (block) 31 assembled in this way has a small outer dimension and is close to the ground (surface plate 43
Since the work can be carried out in the above), it is easy to inspect the welded portion, and it is possible to perform an accurate inspection in a short time. Therefore, the reliability of the welded portion of the heat transfer tube module 31 is further enhanced.

このようにして、伝熱管モジュール31は第3図(A)お
よび(B)に示すように組み立てられる。第3図(A)
は伝熱管モジュール31の側面図、第3図(B)はその平
面図をそれぞれ示す。
In this way, the heat transfer tube module 31 is assembled as shown in FIGS. 3 (A) and 3 (B). Figure 3 (A)
Shows a side view of the heat transfer tube module 31, and FIG. 3 (B) shows a plan view thereof.

この時、伝熱管モジュール31は図示しないフロア上の組
立治具44上に横向きに置かれており、伝熱管モジュール
31を排熱回収交換器に組み込まれるときには、伝熱管モ
ジュール31に支え板34に取付けられた吊り金具45が上方
に位置されるように90度回転させなければならない。し
かし、伝熱管モジュール31のみでは剛性力が不足するた
め、直接クレーンにて回転させ、起立させることができ
ない。
At this time, the heat transfer tube module 31 is placed sideways on the assembly jig 44 on the floor (not shown),
When the 31 is incorporated in the exhaust heat recovery exchanger, the hanging fitting 45 attached to the support plate 34 of the heat transfer tube module 31 must be rotated by 90 degrees so as to be positioned above. However, since the rigidity is insufficient only with the heat transfer tube module 31, it cannot be directly rotated by the crane to stand up.

そこで、伝熱管モジュール31を第5図に示す回転治具46
上にセットして、伝熱管モジュール31を横倒し状態から
起立状態に保持させる。回転治具46は台座47上にセンタ
ピン48を介してL字形の支持台49が回転自在に支持され
る。支持台49は一端にクレーン吊上用穴50が形成され、
このクレーン吊上用穴50にクレーンから吊設されたフッ
ク51が着脱自在に掛止めされる。
Therefore, the heat transfer tube module 31 is mounted on the rotary jig 46 shown in FIG.
The heat transfer tube module 31 is set on the upper side, and the heat transfer tube module 31 is held in the standing state from the sideways state. The rotary jig 46 has an L-shaped support base 49 rotatably supported on a base 47 via a center pin 48. A crane lifting hole 50 is formed at one end of the support base 49,
A hook 51 hung from the crane is detachably hooked in the crane lifting hole 50.

そして、回転治具46のL字形支持台49上に横倒し状態に
伝熱管モジュール31をセットし、図示しないクレーンに
より支持台49の一端を吊設ワイヤ52によって吊り上げ、
第5図、第6図および第7図に示すように、センタピン
48廻りに90度回転させる。
Then, the heat transfer tube module 31 is set on the L-shaped support base 49 of the rotating jig 46 in a sideways state, and one end of the support base 49 is lifted by the hanging wire 52 by a crane (not shown).
As shown in FIG. 5, FIG. 6 and FIG.
Rotate 90 degrees around 48.

回転が終了した伝熱管モジュール31は上端の吊り金具45
を吊設治具54を介してクレーンから吊設し、続いて伝熱
管群30の全体組立工程へ移送される。
The heat transfer tube module 31, which has finished rotating, has a hanging fitting 45 on the upper end.
Is hung from the crane via the hanging jig 54, and then transferred to the entire assembly process of the heat transfer tube group 30.

伝熱管群の全体組立は、第8図に示すように行なわれ、
予め全体組立治具55上に側板56aが取付けられる。側板5
6aが取付けられた全体組立治具55上に組み立てられる所
要数の伝熱管モジュール31を順次据付けていく。所要数
の伝熱管モジュール31を据付けが完了すると、第9図に
示すように反対側に側板56bを取付けるとともに上部に
伝熱管群吊下げビーム57を掛け渡す。
The entire assembly of the heat transfer tube group is performed as shown in FIG.
The side plate 56a is attached to the entire assembly jig 55 in advance. Side plate 5
A required number of heat transfer tube modules 31 to be assembled on the overall assembly jig 55 to which 6a is attached are sequentially installed. When the installation of the required number of heat transfer tube modules 31 is completed, the side plate 56b is attached to the opposite side and the heat transfer tube group suspension beam 57 is hung over the upper side as shown in FIG.

そして、隣接する伝熱管モジュール31同士には、継板32
を用いて溶接にて一体接続される。なお、符号63は吊り
金具である。
The connecting plate 32 is provided between the adjacent heat transfer tube modules 31.
Are integrally connected by welding. Reference numeral 63 is a hanging metal fitting.

この後、第10図および第11図に示すように、両側板56a,
56bの対向する所定位置にヘッダ固定スリーブ58,59を側
方から挿入固定させ、このヘッダ固定スリーブ58,59に
ヘッダ60をその長手方向にスライド自在となるように取
付けるとともに、各ヘッダ60に直管状伝熱管36の所要の
端部を溶接にて一体に接続する。その後、両側板56a,56
bの端部に端板61を溶接にて固定させ、これにより排熱
回収熱交換器の1つの伝熱管群30が構成される。
After this, as shown in FIGS. 10 and 11, both side plates 56a,
Header fixing sleeves 58, 59 are inserted and fixed from opposite sides at predetermined positions of 56b, and the header 60 is attached to the header fixing sleeves 58, 59 so as to be slidable in the longitudinal direction thereof. Required ends of the tubular heat transfer tubes 36 are integrally connected by welding. After that, both side plates 56a, 56
An end plate 61 is fixed to the end portion of b by welding, whereby one heat transfer tube group 30 of the exhaust heat recovery heat exchanger is constituted.

その際、ヘッダ60は直接側板56a,56bに取り付けられる
ことなく、側板56a,56bの外側より差込まれるヘッダ固
定スリーブ58,59により固定させるため、取付は伝熱管
挿入後においても容易かつ簡単に行なうことが可能とな
り、ヘッダ60,60を伝熱管挿入前に予め取付けておく必
要がなくなる。また、ヘッダ60,60の流体励起振動によ
る疲労破損においてもヘッダ固定スリーブ58,59を介し
て側板56a,56bに固定するため問題はない。
At that time, since the header 60 is not directly attached to the side plates 56a, 56b but is fixed by the header fixing sleeves 58, 59 inserted from the outside of the side plates 56a, 56b, the attachment is easy and easy even after inserting the heat transfer tube. Therefore, it is not necessary to previously attach the headers 60, 60 before inserting the heat transfer tubes. Further, even if the headers 60, 60 are fatigue-damaged by the fluid-excited vibration, they are fixed to the side plates 56a, 56b via the header fixing sleeves 58, 59, so that there is no problem.

このようにして組み立てられた伝熱管群30は排熱回収熱
交換器の熱交換器ケーシング内に収容され、排熱回収熱
交換器が製造される。
The heat transfer tube group 30 assembled in this manner is housed in the heat exchanger casing of the exhaust heat recovery heat exchanger, and the exhaust heat recovery heat exchanger is manufactured.

〔発明の効果〕〔The invention's effect〕

以上に述べたように本発明に係る排熱回収熱交換器の製
造方法においては、ガスタービンからの排気ガスの蒸留
熱を利用して蒸気タービン駆動用蒸気を発生させる排熱
回収熱交換器の熱交換器ケーシング内に組み込まれるエ
コノマイザや蒸気発生器の伝熱管群を、複数の伝熱管モ
ジュールを一体あるいは一体的に組み立てて構成したも
ので、大型の伝熱管群を単位モジュール化した伝熱管モ
ジュールの組合せで製造することができ、モジュール化
して組み立てることにより、伝熱管群を構成する伝熱管
モジュールを作業スペースの広い組立工場で効率良く能
率的に、複数個同時に製造することができる一方、各伝
熱管モジュールの溶接作業や溶接部(直管状伝熱管とU
字状伝熱管の溶接部等)の検査を、単位モジュール毎に
直管状伝熱管の両側で同時に行なうことができ、しかも
作業スペースを広くとることができるので、作業性が良
く、短時間で能率的に行なうことができ、作業能率の向
上を図ることができ、信頼性を向上させることができ
る。
As described above, in the method for manufacturing the exhaust heat recovery heat exchanger according to the present invention, the exhaust heat recovery heat exchanger that generates the steam for driving the steam turbine by utilizing the distillation heat of the exhaust gas from the gas turbine is used. The heat transfer tube group of the economizer and steam generator to be installed in the heat exchanger casing is configured by integrally or integrally assembling a plurality of heat transfer tube modules. It is possible to manufacture a plurality of heat transfer tube modules that constitute a heat transfer tube group by assembling them in a modular manner, and efficiently and efficiently manufacture a plurality of heat transfer tube modules at the same time at the same time. Welding work and welding parts of heat transfer tube module (straight tubular heat transfer tube and U
The welded portion of the letter-shaped heat transfer tube) can be inspected at the same time on both sides of the straight tubular heat transfer tube for each unit module, and the work space can be widened, so workability is good and efficiency is short. It is possible to improve the work efficiency and the reliability.

また、熱交換器ケーシングに収容される伝熱管群は、単
位モジュール化した復数の伝熱管モジュールを組み合せ
ることにより構成され、複数の伝熱管モジュールは個々
の組立工場で並行作業によりほぼ同時に製作することが
でき、排熱回収熱交換器の製造期間を大幅に短縮するこ
とができる一方、個々の組立工場で予め用意された各伝
熱管モジュールを用いて伝熱管群の組立を行なうことが
できるので、大きな組立スペースを必要とする伝熱管群
の組立を短時間で能率的に行なうことができ、伝熱管群
の組立に要する作業時間も短く、長時間を必要とせず、
伝熱管群の組立に要する作業スペースの有効活用が図
れ、伝熱管群の組立と伝熱管モジュールの製作の時間に
適合性を持たせることにより、伝熱管群の生産ピッチを
短縮させ、生産効率を向上させることができ、伝熱管群
の連続生産に好適なものとなる等の効果を奏する。
In addition, the heat transfer tube group housed in the heat exchanger casing is configured by combining a number of heat transfer tube modules that have been modularized into a unit module, and multiple heat transfer tube modules are manufactured at the same time by parallel work in individual assembly plants. It is possible to significantly reduce the manufacturing period of the exhaust heat recovery heat exchanger, while the heat transfer tube group can be assembled using each heat transfer tube module prepared in advance in each assembly factory. Therefore, it is possible to efficiently assemble a heat transfer tube group that requires a large assembly space in a short time, the work time required for assembling the heat transfer tube group is short, and a long time is not required.
The work space required for assembling the heat transfer tube group can be effectively utilized, and by adapting the time for assembling the heat transfer tube group and manufacturing the heat transfer tube module, the production pitch of the heat transfer tube group can be shortened and the production efficiency can be improved. The effect is that it can be improved and is suitable for continuous production of a heat transfer tube group.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用した排熱回収熱交換器に組み込ま
れる伝熱管群を示す図、第2図は伝熱管群を構成する1
つの伝熱管モジュールを説明する斜視図、第3図(A)
および(B)は横置き状態の伝熱管モジュールを示す側
面図および平面図、第4図(A)および(B)は伝熱管
群を構成する伝熱管モジュールの溶接手順を示す図、第
5図乃至第7図は組み立てられた伝熱管モジュールを横
置き状態から起立させる手順を説明する図、第8図およ
び第9図は所要数の伝熱管モジュールを連結して伝熱管
群を組み立てる全体組立手順を示す図、第10図は伝熱管
群にヘッダを取付ける状態を示す図、第11図は第10図の
XI−XI線に沿う平断面図、第12図はコンバインドサイク
ル発電プラントを示す概略系統図、第13図は伝熱管内に
組み込まれる従来の伝熱管群を示す斜視図、第14図
(A)および(B)は伝熱管群に組み込まれるU字形フ
ィン伝熱管を示す正面図および部分拡大図、第15図乃至
第17図は従来の伝熱管群の製造工程をそれぞれ示す図で
ある。 1……ガスタービンプラント、2……蒸気タービンプラ
ント、3……ガスタービン、6……発電機、8……排熱
回収熱交換器、11……蒸気タービン、13……給水ポン
プ、15……低圧エコノマイザ、16……低圧蒸気ドラム、
17……低圧循環ポンプ、18……移送ポンプ、19……低圧
蒸気発生器、20……高圧エコノマイザ、21……高圧蒸気
ドラム、22……高圧蒸気発生器、23……高圧蒸気発生
器、24……プレ蒸発器、25……加熱器、30……伝熱管
群、31……伝熱管モジュール、32……継板、34……支え
板、36……直管状伝熱管、37……U字状伝熱管、38……
自動溶接機、39……舵管状伝熱管、43……定盤、44……
モジュール治具(組立治具)、46……回転治具、49……
支持台、55……全体組立治具、57……吊下げビーム。
FIG. 1 is a view showing a heat transfer tube group incorporated in an exhaust heat recovery heat exchanger to which the present invention is applied, and FIG. 2 is a view showing a heat transfer tube group 1
FIG. 3 (A) is a perspective view illustrating one heat transfer tube module.
And (B) are a side view and a plan view showing the heat transfer tube module in a horizontal state, and FIGS. 4 (A) and (B) are views showing a welding procedure of the heat transfer tube module constituting the heat transfer tube group, and FIG. 7 to FIG. 7 are views for explaining a procedure for standing up the assembled heat transfer tube module from a horizontal state, and FIGS. 8 and 9 are overall assembly steps for assembling a heat transfer tube group by connecting a required number of heat transfer tube modules. Fig. 10 is a diagram showing a state where the header is attached to the heat transfer tube group, and Fig. 11 is a diagram showing
A plane sectional view taken along the line XI-XI, FIG. 12 is a schematic system diagram showing a combined cycle power plant, FIG. 13 is a perspective view showing a conventional heat transfer tube group incorporated in a heat transfer tube, and FIG. 14 (A). And (B) are a front view and a partially enlarged view showing a U-shaped fin heat transfer tube incorporated in the heat transfer tube group, and FIGS. 15 to 17 are views showing a conventional manufacturing process of the heat transfer tube group. 1 ... Gas turbine plant, 2 ... Steam turbine plant, 3 ... Gas turbine, 6 ... Generator, 8 ... Exhaust heat recovery heat exchanger, 11 ... Steam turbine, 13 ... Water supply pump, 15 ... … Low pressure economizer, 16 …… Low pressure steam drum,
17 …… Low pressure circulation pump, 18 …… Transfer pump, 19 …… Low pressure steam generator, 20 …… High pressure economizer, 21 …… High pressure steam drum, 22 …… High pressure steam generator, 23 …… High pressure steam generator, 24 …… pre-evaporator, 25 …… heater, 30 …… heat transfer tube group, 31 …… heat transfer tube module, 32 …… joint plate, 34 …… support plate, 36 …… straight tubular heat transfer tube, 37 …… U-shaped heat transfer tube, 38 ……
Automatic welding machine, 39 …… Rudder tubular heat transfer tube, 43 …… Surface plate, 44 ……
Module jig (assembly jig), 46 …… Rotating jig, 49 ……
Support stand, 55 ... Overall assembly jig, 57 ... Hanging beam.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンからの排気ガスの残留熱を利
用して蒸気タービン駆動用蒸気を発生させる排熱回収熱
交換器の製造方法において、モジュール治具を用意し、
上記モジュール治具上に適宜間隔をおいて列状に複数の
支え板を横向き状態に整列配置した後、各支え板の管穴
に直管状伝熱管が挿通され、その後直管状伝熱管の所要
の端部同士をU字状伝熱管で接合して伝熱管モジュール
をそれぞれ組み立てるモジュール組立工程と、組み立て
られた伝熱管モジュールを起立させて全体組立治具上に
複数個順次水平に並べて設置する工程と、全体組立治具
上に設置された隣接する伝熱管モジュール同士を継ぎ部
材で互いに連結した後、各伝熱管モジュールの直管状伝
熱管の所要端部にヘッダを取り付けて伝熱管群を組み立
てる伝熱管群組立工程と、組み立てられた伝熱管群を熱
交換器ケーシング内に収容させる工程とを備えることを
特徴とする排熱回収熱交換器の製造方法。
1. A method for manufacturing an exhaust heat recovery heat exchanger for generating steam for driving a steam turbine by utilizing residual heat of exhaust gas from a gas turbine, wherein a module jig is prepared.
After arranging a plurality of support plates in a row in a row in a row on the module jig at appropriate intervals, straight tubular heat transfer tubes are inserted into the tube holes of each support plate, and then the required straight tubular heat transfer tubes are inserted. A module assembling step of assembling the heat transfer tube modules by joining the end portions to each other with a U-shaped heat transfer tube, and a step of standing up the assembled heat transfer tube modules and horizontally arranging a plurality of them sequentially on the entire assembly jig. , A heat transfer tube that assembles a heat transfer tube group by connecting adjacent heat transfer tube modules installed on the entire assembly jig to each other with a joint member, and then attaching a header to the required end of the straight tube heat transfer tube of each heat transfer tube module. A method for manufacturing an exhaust heat recovery heat exchanger, comprising: a group assembling step; and a step of accommodating the assembled heat transfer tube group in a heat exchanger casing.
【請求項2】直管状伝熱管の所要の端部へのU字状伝熱
管の溶接接続は下段から上段に向って行なわれる特許請
求の範囲第1項に記載の排熱回収熱交換器の製造方法。
2. The exhaust heat recovery heat exchanger according to claim 1, wherein the welding connection of the U-shaped heat transfer tube to a required end of the straight tubular heat transfer tube is performed from the lower stage to the upper stage. Production method.
【請求項3】組み立てられた伝熱管モジュールの起立
は、伝熱管モジュールを回転治具上にセットすることに
より行なわれる特許請求の範囲第1項に記載の排熱回収
熱交換器の製造方法。
3. The method of manufacturing an exhaust heat recovery heat exchanger according to claim 1, wherein the assembled heat transfer tube module is erected by setting the heat transfer tube module on a rotating jig.
JP60297756A 1985-12-30 1985-12-30 Exhaust heat recovery heat exchanger manufacturing method Expired - Lifetime JPH0765867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60297756A JPH0765867B2 (en) 1985-12-30 1985-12-30 Exhaust heat recovery heat exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297756A JPH0765867B2 (en) 1985-12-30 1985-12-30 Exhaust heat recovery heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JPS62158994A JPS62158994A (en) 1987-07-14
JPH0765867B2 true JPH0765867B2 (en) 1995-07-19

Family

ID=17850765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297756A Expired - Lifetime JPH0765867B2 (en) 1985-12-30 1985-12-30 Exhaust heat recovery heat exchanger manufacturing method

Country Status (1)

Country Link
JP (1) JPH0765867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198043A (en) * 2008-02-20 2009-09-03 Panasonic Corp Heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014202A (en) * 2001-07-03 2003-01-15 Kawasaki Thermal Engineering Co Ltd Vertical type waste heat boiler
KR20020048366A (en) * 2002-06-04 2002-06-22 핀튜브텍(주) Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger
JP5022051B2 (en) * 2007-01-31 2012-09-12 株式会社日立産機システム Machine low noise package

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130077Y2 (en) * 1980-12-25 1986-09-03
JPS59170788U (en) * 1983-04-28 1984-11-15 日成工業株式会社 heat exchanger unit
JPS60111883U (en) * 1983-12-28 1985-07-29 北芝電機株式会社 Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198043A (en) * 2008-02-20 2009-09-03 Panasonic Corp Heat exchanger

Also Published As

Publication number Publication date
JPS62158994A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US6019070A (en) Circuit assembly for once-through steam generators
US11204201B2 (en) Air-cooled condenser system
US7963097B2 (en) Flexible assembly of recuperator for combustion turbine exhaust
AU2003252325B2 (en) Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
TWI345027B (en)
CN104204664A (en) A method and apparatus for connecting sections of a once-through horizontal evaporator
CN105247314A (en) Modular air cooled condenser apparatus and method
JPH0765867B2 (en) Exhaust heat recovery heat exchanger manufacturing method
CN106066034B (en) Method for connecting heat exchange surfaces to main structure of boiler, boiler and boiler module
JPS588997A (en) Waste heat collecting heat exchanger
GB2131153A (en) Heat exchanger
JPH0355723B2 (en)
JPH0122557B2 (en)
JP6632438B2 (en) Repair method of waste heat recovery boiler
JPH0435679B2 (en)
JPS60238682A (en) Waste heat recovery heat exchanger
CN212226982U (en) Secondary high-temperature medium-pressure vertical waste heat boiler
RU2673974C2 (en) Long-life heat recovery steam generator device with use of internal stiffeners
CN218626778U (en) Detachable modularization combustion engine exhaust-heat boiler
CN220828847U (en) Supporting and mounting structure of superheater for boiler
JPH0227281Y2 (en)
JP3625948B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JPH0141038Y2 (en)
JP2003161584A (en) Condenser
JPH10325501A (en) Heat exchanger-tube structure for exhaust heat recovery boiler