JPH0764526B2 - Method for producing crystalline silicon nitride powder - Google Patents

Method for producing crystalline silicon nitride powder

Info

Publication number
JPH0764526B2
JPH0764526B2 JP14956489A JP14956489A JPH0764526B2 JP H0764526 B2 JPH0764526 B2 JP H0764526B2 JP 14956489 A JP14956489 A JP 14956489A JP 14956489 A JP14956489 A JP 14956489A JP H0764526 B2 JPH0764526 B2 JP H0764526B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
nitrogen
plasma
crystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14956489A
Other languages
Japanese (ja)
Other versions
JPH0316905A (en
Inventor
哲夫 中安
哲夫 山田
泰彦 神徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14956489A priority Critical patent/JPH0764526B2/en
Publication of JPH0316905A publication Critical patent/JPH0316905A/en
Publication of JPH0764526B2 publication Critical patent/JPH0764526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温構造用材料として有用な窒化ケイ素質焼
結体の製造用原料として好適な結晶質窒化ケイ素粉末の
製法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a crystalline silicon nitride powder suitable as a raw material for producing a silicon nitride sintered body useful as a high-temperature structural material.

(従来技術及びその問題点) 非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を
不活性ガス雰囲気下又は還元性ガス雰囲気下に焼成し
て、結晶質窒化ケイ素粉末を製造する方法は、すでに知
られている。ところで、この方法では、焼成時に針状又
は柱状結晶が多数生成するために、得られる結晶質窒化
ケイ素粉末は、充填密度が小さく、これを焼結用原料と
して用いた場合には、嵩密度の低い成形体しか得られな
いという欠点がある。
(Prior Art and its Problems) A method for producing a crystalline silicon nitride powder by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound in an inert gas atmosphere or a reducing gas atmosphere has already been disclosed. Are known. By the way, in this method, since a large number of needle-like or columnar crystals are formed during firing, the obtained crystalline silicon nitride powder has a low packing density, and when this is used as a sintering raw material, it has a bulk density of It has the drawback that only low compacts can be obtained.

そこで、微細な粒状粒子からな結晶質窒化ケイ素粉末を
製造する方法として、特開昭59−21506号公報には、焼
成前に非晶質窒化ケイ素粉末及び/又は含窒素シラン化
合物を摩砕し、かつ昇温過程において、被焼成物を1250
〜1430℃の範囲の温度に1時間以上保持する方法が提案
されている。
Therefore, as a method for producing a crystalline silicon nitride powder composed of fine granular particles, JP-A-59-21506 discloses that an amorphous silicon nitride powder and / or a nitrogen-containing silane compound is ground before firing. In addition, in the temperature rising process, 1250
A method of holding at a temperature in the range of up to 1430 ° C for 1 hour or more has been proposed.

この方法によれば、微細な粒状粒子からなる結晶質窒化
ケイ素粉末を製造することができるが、摩砕条件の制御
が難しく、また昇温スケジュールが複雑で焼成に長時間
を要するため、生産性が低いという問題があった。
According to this method, it is possible to produce a crystalline silicon nitride powder consisting of fine granular particles, but it is difficult to control the grinding conditions, and the heating schedule is complicated and it takes a long time for firing, so productivity is improved. There was a problem of low.

(発明の目的) 本発明の目的は、前記問題点を解決し、粒子形状及びサ
イズの一定した高品質の結晶質窒化ケイ素粉末を低コス
トで生産できる新規な製法を提供するものである。
(Object of the Invention) An object of the present invention is to solve the above problems and to provide a new production method capable of producing a high-quality crystalline silicon nitride powder having a uniform particle shape and size at a low cost.

(問題点を解決するための手段) 本発明は、非晶質窒化ケイ素粉末及び/又は含窒素シラ
ン化合物を不活性ガス雰囲気下又は還元性ガス雰囲気下
に焼成して、結晶質窒化ケイ素粉末を製造するに際し、
焼成前に非晶質窒化ケイ素粉末及び/又は含窒素シラン
化合物の粒子表面に、プラズマCVDコーティング法によ
り窒化ケイ素系化合物(SiNx)を堆積させることを特徴
とする結晶質窒化ケイ素粉末の製法に関するものであ
る。
(Means for Solving Problems) According to the present invention, a crystalline silicon nitride powder is obtained by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound in an inert gas atmosphere or a reducing gas atmosphere. When manufacturing,
A method for producing a crystalline silicon nitride powder characterized by depositing a silicon nitride compound (SiN x ) on a particle surface of an amorphous silicon nitride powder and / or a nitrogen-containing silane compound before firing by a plasma CVD coating method It is a thing.

本発明における含窒素シラン化合物としては、シリコン
ジイミド、シリコンテトラアミド、シリコンニトロゲン
イミド、シリコンクロルイミド等が用いられる。これら
は、公知方法、例えば、四塩化ケイ素、四臭化ケイ素、
四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを気
相で反応させる方法、液状の前記ハロゲン化ケイ素と液
体アンモニアとを反応させる方法などによって製造され
る。
As the nitrogen-containing silane compound in the present invention, silicon diimide, silicon tetraamide, silicon nitrogen imide, silicon chlorimide and the like are used. These are known methods, for example, silicon tetrachloride, silicon tetrabromide,
It is produced by a method of reacting a silicon halide such as silicon tetraiodide with ammonia in a gas phase, a method of reacting the liquid silicon halide with liquid ammonia, and the like.

また、非晶質窒化ケイ素粉末は、公知方法、例えば、前
記含窒素シラン化合物を窒素又はアンモニアガス雰囲気
下に600〜1200℃の範囲の温度で加熱分解する方法、四
塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン
化ケイ素とアンモニアとを高温で反応させる方法などに
よって製造されたものが用いられる。非晶質窒化ケイ素
粉末及び含窒素シラン化合物の平均粒子径は、通常、0.
005〜0.05μmである。
Further, the amorphous silicon nitride powder is a known method, for example, a method of thermally decomposing the nitrogen-containing silane compound at a temperature in the range of 600 to 1200 ° C. under a nitrogen or ammonia gas atmosphere, silicon tetrachloride, silicon tetrabromide. Those produced by a method of reacting silicon halide such as silicon tetraiodide with ammonia at a high temperature are used. The average particle size of the amorphous silicon nitride powder and the nitrogen-containing silane compound is usually 0.
005 to 0.05 μm.

本発明においては、焼成前に非晶質窒化ケイ素粉末及び
/又は含窒素シラン化合物をプラズマCVDコーティング
法により表面処理する。
In the present invention, the amorphous silicon nitride powder and / or the nitrogen-containing silane compound is surface-treated by a plasma CVD coating method before firing.

プラズマとは、正、負の荷電粒子が共存する電気的に中
性な導電性ガス集団のことであり、これには、電子、イ
オン、原子が熱的に平衡状態にある熱プラズマと、電子
温度のみ数万℃に上がり、イオンや原子は常温付近とい
う、熱的非平衡状態にある低温プラズマがあるが、本発
明においてはいずれも用いられる。
Plasma is a group of electrically neutral electrically conductive gases in which positive and negative charged particles coexist. These include thermal plasma in which electrons, ions, and atoms are in thermal equilibrium, and electron There is a low temperature plasma in a thermal non-equilibrium state in which only the temperature rises to tens of thousands of degrees Celsius, and ions and atoms are near room temperature, but any of them is used in the present invention.

プラズマ発生方法としては、直流アークプラズマ、高周
波誘導プラズマ及びこれらを組み合わせたハイブリッド
プラズマ、ECRマグネトロン放電、イオンプレーティン
グなどの種々のプラズマ発生方法が用いられる。
As a plasma generating method, various plasma generating methods such as direct current arc plasma, high frequency induction plasma and hybrid plasma combining these, ECR magnetron discharge, and ion plating are used.

プラズマCVDコーティング法における反応性ガスとして
は、モノシラン、ジクロルシラン、トリクロルシラン等
のシラン系ガスと窒素、アンモニア、ヒドラジン等の窒
素含有ガスとの混合ガスが用いられる。この方法によれ
ば、CVDコーティングにより、被処理物である非晶質窒
化ケイ素及び/又は含窒素シラン化合物の粒子表面に、
窒化ケイ素系化合物(SiNx)が堆積する。
As the reactive gas in the plasma CVD coating method, a mixed gas of a silane-based gas such as monosilane, dichlorosilane and trichlorosilane and a nitrogen-containing gas such as nitrogen, ammonia and hydrazine is used. According to this method, the surface of the particles of the amorphous silicon nitride and / or the nitrogen-containing silane compound, which is the object to be treated, is deposited by CVD coating.
A silicon nitride compound (SiN x ) is deposited.

プラズマ処理条件は、プラズマ発生装置、反応性ガスの
種類、非晶質窒化ケイ素粉末及び/又は含窒素シラン化
合物の処理量によって種々異なり、一律に規定すること
はできないが、粒子表面に堆積した化合物層の厚みが1
〜50Åとなるような条件を選べば十分である。
The plasma treatment conditions vary depending on the plasma generator, the type of reactive gas, the treatment amount of the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, and cannot be uniformly defined, but the compound deposited on the particle surface Layer thickness is 1
It suffices to choose the conditions that result in ~ 50Å.

非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物を
プラズマ処理することによって、粒子表面が著しく活性
化され、焼成時の窒化ケイ素の結晶化速度が高められ、
かつ微粒の粒状粒子が効率良く得られる。この理由は未
だ明らかではないが、プラズマ処理により、粒子表面の
欠陥が増加すると共に、表面原子の電子状態が変化する
ためと考えられる。
By plasma-treating the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, the particle surface is significantly activated, and the crystallization rate of silicon nitride during firing is increased,
Moreover, fine granular particles can be efficiently obtained. The reason for this is not clear yet, but it is considered that the number of defects on the particle surface is increased and the electronic state of the surface atoms is changed by the plasma treatment.

本発明においては、プラズマ処理された非晶質窒化ケイ
素粉末及び/又は含窒素シラン化合物を不活性ガス雰囲
気下又は還元性ガス雰囲気下に焼成する。
In the present invention, the plasma-treated amorphous silicon nitride powder and / or the nitrogen-containing silane compound is fired in an inert gas atmosphere or a reducing gas atmosphere.

不活性ガスとしては、窒素、アルゴン、ヘリウム等が挙
げられる。また、還元性ガスとしては、水素、アンモニ
ア、一酸化炭素等が挙げられる。
Examples of the inert gas include nitrogen, argon and helium. Further, examples of the reducing gas include hydrogen, ammonia, carbon monoxide and the like.

焼成温度は1350〜1700℃の範囲が好ましい。焼成温度が
1350℃よりも低いと、窒化ケイ素の結晶化が十分に進行
しない。また、焼成温度が1700℃を越えると、生成した
窒化ケイ素粉末の分解が始まるので好ましくない。ま
た、急激な昇温は、粒子形状を均一にする上で好ましく
なく、1150〜1350℃の範囲を1時間以上かけてゆっくり
昇温することが望ましい。
The firing temperature is preferably in the range of 1350 to 1700 ° C. Firing temperature
If it is lower than 1350 ° C, crystallization of silicon nitride does not proceed sufficiently. Further, if the firing temperature exceeds 1700 ° C., the generated silicon nitride powder begins to decompose, which is not preferable. Further, a rapid temperature increase is not preferable in order to make the particle shape uniform, and it is desirable to increase the temperature slowly in the range of 1150 to 1350 ° C. over 1 hour or more.

(実施例) 以下に実施例及び比較例を示し、本発明をさらに具体的
に説明する。実施例及び比較例において、結晶質窒化ケ
イ素粉末の結晶化度は、窯業協会誌93巻p394〜397(198
5)に記載の加水分解試験により、α型結晶含有率は、
セラミック・ブラティン56巻p777〜780(1977)に記載
のX線回折法に従って算出し、比表面積は窒素ガス吸着
法によるBET法で測定した。
(Example) Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples. In Examples and Comparative Examples, the crystallinity of the crystalline silicon nitride powder was determined by the Japan Society of Ceramics, Vol. 93, p394-397 (198).
According to the hydrolysis test described in 5), the α-type crystal content rate was
The value was calculated according to the X-ray diffraction method described in Ceramic Bulletin, Vol. 56, p777-780 (1977), and the specific surface area was measured by the BET method based on the nitrogen gas adsorption method.

実施例1 シリコンジイミドを1000℃で加熱分解して得られた比表
面積390m2/gの非晶質窒化ケイ素粉末50gを、容量結合方
式の円筒型プラズマCVD装置内の容器に充填し、380℃に
加熱後、容器を回転させて粉末を流動化させた。ベルジ
ャー内を0.05Torr以下に真空脱気後、モノシラン(Si
H4)/20%NH3ガスを導入し、系内の圧力を1.0Torrに保
った。周波数13.56MHzの高周波発振機より、出力100Wの
高周波を放電コイルに印加し、プラズマを発生させて、
15分間プラズマCVD処理を行った。
Example 1 50 g of amorphous silicon nitride powder having a specific surface area of 390 m 2 / g obtained by thermally decomposing silicon diimide at 1000 ° C. was filled in a container in a capacitive coupling type cylindrical plasma CVD apparatus, and 380 ° C. After heating, the container was rotated to fluidize the powder. After vacuum degassing the bell jar to 0.05 Torr or less, monosilane (Si
H 4 ) / 20% NH 3 gas was introduced to keep the pressure in the system at 1.0 Torr. From the high-frequency oscillator with a frequency of 13.56MHz, apply a high-frequency with an output of 100W to the discharge coil to generate plasma,
Plasma CVD processing was performed for 15 minutes.

処理後の粉末を黒煙質るつぼに充填し、窒素雰囲気下に
昇温して1500℃で1時間保持した。
The treated powder was filled in a black smoke crucible, heated in a nitrogen atmosphere and kept at 1500 ° C. for 1 hour.

得られた窒化ケイ素粉末の特性を第1表に示す。The characteristics of the obtained silicon nitride powder are shown in Table 1.

実施例2 プラズマ処理を第1表に示す条件で行ったほかは、実施
例1と同様にして、窒化ケイ素粉末を製造した。
Example 2 A silicon nitride powder was produced in the same manner as in Example 1 except that the plasma treatment was performed under the conditions shown in Table 1.

得られた窒化ケイ素粉末の特性を第1表に示す。The characteristics of the obtained silicon nitride powder are shown in Table 1.

実施例3 シリコンジイミドを1000℃で加熱分解して得られた比表
面積390m2/gの非晶質窒化ケイ素粉末50gを、ECRプラズ
マCVD装置の試料室内の容器に充填し、400℃に加熱後、
粉末を流動化させた。次いで、プラズマ生成室及び試料
室を1×10-6Torr以下の高真空に排気後、プラズマ生成
室にはアンモニアガス、試料室にはモノシラン(SiH4
ガスを導入し、系内の圧力を5×10-3Torrに保った。周
波数2.45GHz、出力100Wのマイクロ波をプラズマ生成室
内に導き、磁束密度875Gaussの磁界中で窒素プラズマを
発生させて、試料室内に引き出し、粉末層でモノシラン
と反応させ、粉末表面に窒化ケイ素(SiNx)膜を形成さ
せた。このプラズマCVD処理を1分間行った。
Example 3 50 g of amorphous silicon nitride powder having a specific surface area of 390 m 2 / g obtained by thermally decomposing silicon diimide at 1000 ° C. was filled in a container in a sample chamber of an ECR plasma CVD apparatus and heated to 400 ° C. ,
The powder was fluidized. Next, the plasma generation chamber and the sample chamber were evacuated to a high vacuum of 1 × 10 −6 Torr or less, and then ammonia gas was supplied to the plasma generation chamber and monosilane (SiH 4 ) was supplied to the sample chamber.
Gas was introduced and the pressure in the system was maintained at 5 × 10 −3 Torr. A microwave with a frequency of 2.45 GHz and an output of 100 W is introduced into the plasma generation chamber, and nitrogen plasma is generated in a magnetic field with a magnetic flux density of 875 Gauss, extracted into the sample chamber, reacted with monosilane in the powder layer, and silicon nitride (SiN x ) A film was formed. This plasma CVD process was performed for 1 minute.

処理後の粉末を黒煙質るつぼに充填し、窒素雰囲気下に
昇温して1450℃で1時間保持した。
The treated powder was filled in a black smoke crucible, heated in a nitrogen atmosphere and kept at 1450 ° C. for 1 hour.

得られた窒化ケイ素粉末の特性を第1表に示す。The characteristics of the obtained silicon nitride powder are shown in Table 1.

比較例1〜2 プラズマ処理を行わなかったほかは、実施例1及び実施
例5と同様にして、窒化ケイ素粉末を製造した。
Comparative Examples 1-2 Silicon nitride powder was produced in the same manner as in Example 1 and Example 5, except that the plasma treatment was not performed.

得られた窒化ケイ素粉末の特性を第1表に示す。The characteristics of the obtained silicon nitride powder are shown in Table 1.

(発明の効果) 本発明によれば、等軸的な粒状粒子からなり、タップ密
度が大きく、充填性の良好な結晶質窒化ケイ素粉末を生
産性良く製造することができ、コストダウンが可能とな
る。
(Effect of the Invention) According to the present invention, a crystalline silicon nitride powder composed of equiaxed granular particles, having a high tap density and good filling properties can be produced with high productivity, and cost reduction is possible. Become.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非晶質窒化ケイ素粉末及び/又は含窒素シ
ラン化合物を不活性ガス雰囲気下又は還元性ガス雰囲気
下に焼成して、結晶質窒化ケイ素粉末を製造するに際
し、焼成前に非晶質窒化ケイ素粉末及び/又は含窒素シ
ラン化合物の粒子表面に、プラズマCVDコーティング法
により窒化ケイ素系化合物(SiNx)を堆積させることを
特徴とする結晶質窒化ケイ素粉末の製法。
1. An amorphous silicon nitride powder and / or a nitrogen-containing silane compound is fired in an inert gas atmosphere or a reducing gas atmosphere to produce a crystalline silicon nitride powder, which is amorphous before firing. A method for producing a crystalline silicon nitride powder, characterized in that a silicon nitride compound (SiN x ) is deposited on a particle surface of a porous silicon nitride powder and / or a nitrogen-containing silane compound by a plasma CVD coating method.
JP14956489A 1989-06-14 1989-06-14 Method for producing crystalline silicon nitride powder Expired - Lifetime JPH0764526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14956489A JPH0764526B2 (en) 1989-06-14 1989-06-14 Method for producing crystalline silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14956489A JPH0764526B2 (en) 1989-06-14 1989-06-14 Method for producing crystalline silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH0316905A JPH0316905A (en) 1991-01-24
JPH0764526B2 true JPH0764526B2 (en) 1995-07-12

Family

ID=15477936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14956489A Expired - Lifetime JPH0764526B2 (en) 1989-06-14 1989-06-14 Method for producing crystalline silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH0764526B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365231B2 (en) 1998-06-26 2002-04-02 Kabushiki Kaisha Toshiba Ammonium halide eliminator, chemical vapor deposition system and chemical vapor deposition process
CA2622605A1 (en) 2005-09-15 2007-03-22 Aska Pharmaceutical Co., Ltd. Heterocycle compound, and production process and application thereof
JP5589594B2 (en) 2009-06-29 2014-09-17 ソニー株式会社 Biological signal measuring device
JP5589593B2 (en) 2009-06-29 2014-09-17 ソニー株式会社 Biological signal measuring device

Also Published As

Publication number Publication date
JPH0316905A (en) 1991-01-24

Similar Documents

Publication Publication Date Title
JPH0288497A (en) Production of single crystal diamond grain
CN111270214A (en) Method for preparing C-axis preferred orientation aluminum nitride polycrystalline film through magnetron sputtering and aluminum nitride polycrystalline film
JPH0764526B2 (en) Method for producing crystalline silicon nitride powder
US20040250764A1 (en) Method and apparatus for production of high purity silicon
Shin et al. Deposition of diamond coatings on particles in a microwave plasma-enhanced fluidized bed reactor
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS60231494A (en) Manufacture of diamond superfines
JP2608781B2 (en) Method for producing crystalline silicon nitride powder
JPH07106885B2 (en) Method for producing crystalline silicon nitride powder
US20040038409A1 (en) Breath-alcohol measuring instrument
JPS632885B2 (en)
JPH0420985B2 (en)
JPH0471034B2 (en)
JPS6323650B2 (en)
JPH08208207A (en) Vapor phase synthesis of boron nitride
JP3900695B2 (en) Crucible for firing silicon nitride powder
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
KR20150000588A (en) Method and apparatus for preparing polycrystalline silicon by using plasma
JPS63236708A (en) Vapor synthesis of carbon thin film or carbon particle
TW202240013A (en) Microstructure control of conducting materials through surface coating of powders
CN116988147A (en) Silicon carbide crystal growth device and method with plasma electric field
KR20150000589A (en) Preparation of polycrystalline silicon by using combined plasma
JPH0524999A (en) Production of silicon carbide thin film
JPH01298165A (en) Manufacture of carbon film
CN117361534A (en) High-crystalline semiconductor silicon carbide powder and preparation method thereof