JPH0763019A - Intake valve for internal combustion engine - Google Patents

Intake valve for internal combustion engine

Info

Publication number
JPH0763019A
JPH0763019A JP21312593A JP21312593A JPH0763019A JP H0763019 A JPH0763019 A JP H0763019A JP 21312593 A JP21312593 A JP 21312593A JP 21312593 A JP21312593 A JP 21312593A JP H0763019 A JPH0763019 A JP H0763019A
Authority
JP
Japan
Prior art keywords
mmc
valve
alloy
matrix
valve face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21312593A
Other languages
Japanese (ja)
Inventor
Tatsuya Tsuzuki
達哉 都築
Kunihiko Imahashi
▲邦▼彦 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21312593A priority Critical patent/JPH0763019A/en
Publication of JPH0763019A publication Critical patent/JPH0763019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To ensure good abrasion resistance and heat transmitting rate without using an iron material by footing the material of a shaft part and an umbrella part of a reinforced Al base MMC(metal matrix composite) by adding ceramic particle whose Al system or Mg system alloy is formed as a matrix, a whiskers, and a fiber respectively. CONSTITUTION:In the axial part and the umbrella part excepting a valve face, for example, SiCw fiber reinforced Al base MMC is used. A reinforced fiber may be formed of silicon carbide fiber and the like. A reinforcing member may be formed of particle such as SiC. A matrix metal may be formed of right alloy such as aluminum alloy or magnesium alloy. After the shaft part is formed by the material, the umbrella part is upset. The MMC applied to a valve face part is manufactured from a rapid cooling coagulum aluminum in which nitride or boride is dispersed by means of a powder method, and the MMC is inserted and mounted on a part corresponding to the face part in a casting type. It is thus possible to provided an intake valve having good abrasion resistance and heat transmitting performance without using an iron system material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽量で軸部および傘部の
T6処理によってもバルブフェース面が劣化しない内燃
機関用インテークバルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake valve for an internal combustion engine which is lightweight and whose valve face surface is not deteriorated by T6 treatment of a shaft portion and an umbrella portion.

【0002】[0002]

【従来の技術】内燃機関用のバルブは、耐熱性が要求さ
れることから耐熱鋼が用いられていたが、慣性質量を低
減し応答性を改善するために、Al基複合材料を用いる
ことが検討されている。例えば、耐摩耗性および高剛性
を目的としたAl基複合材料として、Al−Cu−Mg
系合金(2000系)またはAl−Mg−Si系合金
(6000系)にSiC、Al23の粒子、ウィスカ
ー、繊維を添加し、粉末冶金法で製造したAl基MMC
(Metal Matrix Composites)
がある。
2. Description of the Related Art In a valve for an internal combustion engine, heat resistant steel is used because it is required to have heat resistance. However, in order to reduce inertial mass and improve responsiveness, it is preferable to use an Al-based composite material. Is being considered. For example, as an Al-based composite material aiming at wear resistance and high rigidity, Al-Cu-Mg is used.
Al-based MMC manufactured by powder metallurgy by adding SiC, Al 2 O 3 particles, whiskers, and fibers to a Al-based alloy (2000-based) or Al-Mg-Si-based alloy (6000-based)
(Metal Matrix Composites)
There is.

【0003】また、Al基複合材料を用いた内燃機関用
バルブとしては、例えば、特開昭61−143535号
に開示されたものがあり、粉末状の針状結晶の炭化珪素
を体積比で15〜35%の割合でバルブ形状に乾燥固化
し、体積比で85〜65%のアルミニウム合金を針状結
晶間に充填することにより、慣性質量が小さく耐熱性に
優れたバルブを得ている。
A valve for an internal combustion engine using an Al-based composite material is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-143535, in which powdery needle-shaped silicon carbide is contained in a volume ratio of 15%. A valve having a small inertial mass and excellent heat resistance is obtained by drying and solidifying into a valve shape at a ratio of ˜35% and filling an aluminum alloy at a volume ratio of 85 to 65% between needle crystals.

【0004】ところが、エンジンの高出力化が進むにつ
れて、バルブフェース面に極めて高い耐摩耗性が要求さ
れるようになってきた。これに対して前記のAl基複合
材料を用いたバルブでは十分に対応できないという問題
があった。そのため、バルブフェース面部位だけを鉄系
材料で置換することが行われてきた。
However, as engine output increases, extremely high wear resistance is required for the valve face surface. On the other hand, there is a problem that the above-mentioned valve using the Al-based composite material cannot sufficiently cope with the problem. Therefore, it has been practiced to replace only the valve face surface portion with the iron-based material.

【0005】例えば、特開昭64−69705号公報の
内燃機関用バルブの発明では、少なくともバルブフェー
ス面部位を除く本体部分が強化材としてセラミック繊
維、ウィスカもしくは粒子を用いた複合強化金属からな
り、バルブフェース面部位が強化材として軟窒化処理を
施した鋼粉末を用いた複合強化金属からなる内燃機関バ
ルブである。
For example, in the invention of a valve for an internal combustion engine disclosed in Japanese Patent Laid-Open No. 64-69705, at least the main body portion except the valve face surface portion is made of ceramic fiber, whiskers or a composite reinforced metal using particles as a reinforcing material, This is an internal combustion engine valve in which the valve face surface portion is composed of a composite reinforced metal using a steel powder that has been subjected to a soft nitriding treatment as a reinforcing material.

【0006】[0006]

【発明が解決しようとする課題】このようにAl基MM
Cバルブは耐摩耗性の向上のためバルブフェース部を鉄
系材料に置換しているが、素材の密度差から重量増とな
りMMC化による軽量化効果が低減されてしまう。
As described above, the Al-based MM is
In the C valve, the valve face is replaced with an iron-based material in order to improve wear resistance, but the difference in material density causes an increase in weight, which reduces the weight-saving effect of the MMC.

【0007】また、バルブフェース部はバルブの中で最
も高温(耐熱鋼製で約390℃)になるが、鉄系材料は
図1に示すようにAl基MMCと較べて熱伝導率が低い
ためバルブフェース部の冷却特性が低下し,摩耗や焼き
付きの誘因となる。同時に、熱膨張率の違いからバルブ
フェース部とバルブ本体との境界にがたつきが発生し、
バルブの破損、エンジン騒音や性能低下の原因となる。
Further, the valve face has the highest temperature (about 390 ° C. made of heat-resistant steel) in the valve, but the iron-based material has a lower thermal conductivity than the Al-based MMC as shown in FIG. The cooling characteristics of the valve face part deteriorate, which causes wear and seizure. At the same time, rattling occurs at the boundary between the valve face and the valve body due to the difference in the coefficient of thermal expansion,
This may cause damage to the valve, engine noise, and performance degradation.

【0008】さらに、Al基MMCでバルブを形成する
場合、鍛造によって最終製品に近い形状まで成形した
後、T6処理(495℃×2Hr、195℃×12H
r)してから機械加工によって仕上げる。しかし、バル
ブフェース部の耐摩耗性を向上させるためバルブフェー
ス部に鉄系材料を結合した場合、T6処理はバルブフェ
ース部と軸部を結合した後に行われるので、鋼は軟化し
て耐摩耗性が低下すると考えられる。
Further, in the case of forming a valve with Al-based MMC, after forging into a shape close to the final product, T6 treatment (495 ° C. × 2 Hr, 195 ° C. × 12 H)
r) and then finish by machining. However, when an iron-based material is bonded to the valve face portion in order to improve the wear resistance of the valve face portion, the T6 treatment is performed after the valve face portion and the shaft portion are bonded together, so the steel softens and wear resistance increases. Is considered to decrease.

【0009】本発明はAl基MMCで内燃機関用インテ
ークバルブを製造する場合の前記のごとき問題点を解決
すべくなされたものであって、鉄系材料を使用せずに軽
量で、優れた耐摩耗性と熱伝導率を有する内燃機関用イ
ンテークバルブを提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in manufacturing an intake valve for an internal combustion engine using an Al-based MMC, and is light in weight and excellent in durability without using an iron-based material. An object of the present invention is to provide an intake valve for an internal combustion engine having wear resistance and thermal conductivity.

【0010】[0010]

【課題を解決するための手段】発明者等はバルブフェー
スに鉄系材料を使用せずにAl系材料を使用することを
着想した。そこで、種々のAl系材料について検討を重
ねた結果、Al基MMC材料でも耐摩耗性急冷アルミニ
ウム粉末合金をマトリックスとしたMMCが優れた耐摩
耗性を有することを見出して本発明を完成するに到っ
た。
The inventors have conceived of using an Al-based material for the valve face instead of an iron-based material. Therefore, as a result of repeated studies on various Al-based materials, it was found that MMC having a wear-resistant quenched aluminum powder alloy as a matrix also has excellent wear resistance even for Al-based MMC materials, and the present invention has been completed. It was.

【0011】本発明の内燃機関用インテークバルブは、
軸部および該軸部に連続する傘部がAl系合金またはM
g系合金をマトリックスとしセラミック粒子、ウィスカ
ー、繊維を添加して強化したAl基MMCからなり、バ
ルブフェース面に耐摩耗性急冷アルミニウム粉末合金を
マトリックスとしたMMCを被着したことを要旨とす
る。
The intake valve for an internal combustion engine of the present invention comprises:
The shaft portion and the umbrella portion continuous to the shaft portion are made of Al alloy or M
The gist of the present invention is that MMC, which is made of Al-based MMC reinforced by adding ceramic particles, whiskers, and fibers, using a g-based alloy as a matrix, and a wear-resistant quenched aluminum powder alloy as a matrix is deposited on the valve face surface.

【0012】バルブフェース部以外の軸部および該軸部
に連続する傘部とからなるバルブ本体の材料としては、
軽量かつ573K(300℃)で250MPa以上の引
張強度を持つことが必要である。この要求を満たす材料
としては、例えばSiCw(wはウィスカーを表す)繊
維強化Al基MMCがある。図2にSiCw強化アルミ
ニウム基MMCの300℃での引張試験結果を示すが、
マトリックスがA2024の場合SiCw含有率10%
〜40%で要求強度を満たしており、バルブ材料として
適用できる。
The material of the valve main body including the shaft portion other than the valve face portion and the umbrella portion continuous with the shaft portion is
It must be lightweight and have a tensile strength of 250 MPa or more at 573K (300 ° C). A material satisfying this requirement is, for example, SiCw (w represents whiskers) fiber reinforced Al-based MMC. Figure 2 shows the tensile test results of SiCw reinforced aluminum-based MMC at 300 ° C.
When the matrix is A2024, SiCw content is 10%
-40% satisfies the required strength and can be applied as a valve material.

【0013】上記以外のマトリックスと強化繊維の組み
合わせでも繊維含有量を変えれば要求強度を満たすこと
がてき、当該バルブ材料として用いることができる。強
化繊維は炭化珪素繊維、窒化珪素繊維、アルミナ繊維、
アルミナ−シリカ繊維などのように強度向上効果に優れ
た任意の強化繊維でよく、マトリックス金属にはアルミ
ニウム合金、マグネシウム合金のように軽合金であるこ
とが望ましい。また、強化材として繊維のみでなく、S
iC、Si34、Al23、Al23・SiO 2などの
粒子を用いることができる。
Combinations of matrix and reinforcing fibers other than the above
Even if combined, the required strength can be satisfied by changing the fiber content.
Therefore, it can be used as the valve material. strength
Chemical fibers are silicon carbide fibers, silicon nitride fibers, alumina fibers,
Excellent strength improvement effect such as alumina-silica fiber
Any reinforcing fiber can be used, and the matrix metal is aluminum.
It should be a light alloy such as a magnesium alloy or a magnesium alloy.
And is desirable. Also, not only fibers but also S
iC, Si3NFour, Al2O3, Al2O3・ SiO 2Such as
Particles can be used.

【0014】バルブフェース部には優れた耐摩耗性と熱
伝導率が要求される。このため急冷凝固法で製造された
高力耐摩耗性アルミニウム粉末合金をマトリックスとし
たMMCで構成する。バルブフェース材の一例として、
10〜25wt%Si、5〜20wt%Ni、1〜5w
t%Cuを含有したAl急冷凝固粉に窒化物またはホウ
化物を0.5〜10wt%分散させたものがある(特願
平4−280543)。
Excellent wear resistance and thermal conductivity are required for the valve face portion. Therefore, the MMC is composed of a matrix of a high-strength wear-resistant aluminum powder alloy produced by the rapid solidification method. As an example of valve face material,
10-25wt% Si, 5-20wt% Ni, 1-5w
There is one in which 0.5 to 10 wt% of a nitride or boride is dispersed in an Al rapidly solidified powder containing t% Cu (Japanese Patent Application No. 4-280543).

【0015】続いて、バルブの製造方法について述べる
と、図6に示すように円筒形状に機械加工もしくは成形
したMMCを高温で前方押出して軸部を形成した後、据
え込み法によって傘部を形成する。傘部を据え込みする
際には、図7に示すように、高力耐摩耗性アルミニウム
粉末合金をマトリックスとしたMMC丸棒を予め機械加
工もしくは成形した環状部品を鍛造型内のフェイス部に
相当する部位に挿入し、据え込み加工により傘部の成形
を行うと同時に環状部品とバルブ傘部の塑性加工と嵌合
を行う。なお、バルブフェース部に適用するMMCは窒
化物またはホウ化物を分散させた急冷凝固アルミニウム
を缶に封入、抜気後高温で押し出し成形するPM(粉末
冶金法)で製造する。
Next, a method of manufacturing the valve will be described. As shown in FIG. 6, MMC machined or molded into a cylindrical shape is forward extruded at a high temperature to form a shaft portion, and then an umbrella portion is formed by an upsetting method. To do. When upsetting the umbrella part, as shown in FIG. 7, a part corresponding to the face part in the forging die is an annular part in which a MMC round bar in which a high-strength wear-resistant aluminum powder alloy is used as a matrix is pre-machined or molded. Then, the umbrella part is formed by upsetting, and at the same time, the annular part and the valve umbrella part are plastically worked and fitted. The MMC applied to the valve face part is manufactured by PM (powder metallurgy) in which a rapidly solidified aluminum in which a nitride or a boride is dispersed is enclosed in a can, which is degassed and then extruded at a high temperature.

【0016】傘部形成後はT6処理を行って軸部の強度
を向上させた後、全体を機械加工仕上げてけバルブ形状
に仕上げる。T6処理は、本発明の場合、495℃で2
時間溶体化処理を行った後水冷し、195℃で12時間
時効処理を行った後大気中で徐冷する。
After forming the umbrella portion, T6 treatment is carried out to improve the strength of the shaft portion, and then the whole is machined to a valve shape. In the case of the present invention, T6 treatment is 2 at 495 ° C.
After the solution treatment for a period of time, water cooling is performed, and the aging treatment is performed at 195 ° C. for 12 hours, followed by gradual cooling in the atmosphere.

【0017】高力耐摩耗アルミニウム粉末合金をマトリ
ックスとしたMMC製の環状部品は、図8のインテーク
バルブの断面の金属組織を表す写真のように、内側に凸
形状のものや、図9に示すように内側に凹形状な断面形
状に円周方向の一部または全周をし、がたつきを防止す
る。全周を同一断面形状にする場合には、例えば図10
に示すような環状部品の回転を防止するための突起を付
けても良い。
As shown in the photograph showing the metal structure of the cross section of the intake valve in FIG. 8, the MMC annular component using the high-strength wear-resistant aluminum powder alloy as the matrix has an inwardly convex shape or as shown in FIG. A concave cross-section is formed on the inside to form a part or the entire circumference in the circumferential direction to prevent rattling. When the entire cross section has the same sectional shape, for example, as shown in FIG.
A protrusion for preventing rotation of the annular component as shown in FIG.

【0018】バルブフェース部の耐摩耗性向上の方法と
して鉄系材料の肉盛や溶射が考えられるがAl基MMC
のマトリックスは鉄よりも融点が低く、肉盛、溶射時の
熱で加工面が溶けて気孔などの欠陥が生じ適用できな
い。また、高力耐摩耗性アルミニウム粉末合金の肉盛や
溶射については、この合金は急冷凝固粉末に前述の添加
物を分散させることにより特性を出しているものであ
り、肉盛や溶射では期待した特性を得ることは不可能で
ある。
As a method for improving the wear resistance of the valve face portion, overlaying or thermal spraying of an iron material can be considered.
The matrix has a lower melting point than iron, and the heat generated during overlaying and thermal spraying melts the processed surface and causes defects such as pores, making it inapplicable. Further, with regard to overlaying and thermal spraying of a high-strength wear-resistant aluminum powder alloy, this alloy exhibits properties by dispersing the above-mentioned additives in a rapidly solidified powder, and the expected properties are obtained in overlaying and thermal spraying. It is impossible to get.

【0019】環状部品の結合については、嵌合ではなく
傘部成形後ろう付けすることが考えられるが、銀ろうの
融点が約800℃と高く、Al基MMCが溶けてしまう
ため実施は不可能である。T6処理後に据え込みを行う
ことについては、T6後は限界据え込み率が低下するた
め割れ無しで加工することは困難であるし、据え込み加
工時の加熱によって強度低下が予想され実施は困難であ
る。
Regarding the joining of the annular parts, it is conceivable that the brazing is performed after the umbrella part is formed, not the fitting, but the melting point of the silver brazing material is as high as about 800 ° C. and the Al-based MMC is melted, so that it cannot be carried out. Is. Regarding upsetting after T6 treatment, it is difficult to process without cracks after T6 because the critical upsetting ratio will decrease, and it is difficult to implement it because heating during upsetting will decrease the strength. is there.

【0020】[0020]

【作用】軸部およびそれに連続する傘部からなるインテ
ークバルブ本体が繊維、粒子等で強化したAl基MMC
からなり、バルブフェース部を高力耐摩耗性アルミニウ
ム粉末合金をマトリッツクスとしたMMCで構成したの
で、軽量化の効果を損なうことが無い上に、熱伝導率も
鉄系材料と較べて大きく、バルブフェース部の冷却性に
優れ温度差に起因する熱膨張差によるガタツキが発生し
にくい。また、アルミニウム粉末合金をマトリックスと
したMMCはT6処理を行っても鉄系材料のように軟化
することがなく、また軸部とバルブフェース部のがたつ
きもない状態で耐摩耗性も確保できる。
[Operation] An Al-based MMC in which the intake valve body consisting of the shaft portion and the continuous umbrella portion is reinforced with fibers, particles, etc.
The valve face is made of MMC made of high-strength and wear-resistant aluminum powder alloy Matlitx, so the weight reduction effect is not impaired, and the thermal conductivity is large compared to iron-based materials. The cooling property of the part is excellent, and rattling due to the difference in thermal expansion due to the temperature difference hardly occurs. Further, MMC using aluminum powder alloy as a matrix does not soften unlike iron-based materials even when subjected to T6 treatment, and wear resistance can be ensured without rattling between the shaft portion and the valve face portion. .

【0021】[0021]

【実施例】本発明の実施例を従来例および比較例と対比
して説明し、本発明の効果を明らかにする。 (実施例1)耐熱鋼、SiCw強化(A2024マトリ
ックス)Al基MMCおよび高力耐摩耗性アルミニウム
合金マトリックスとしたMMC(Ni;15wt%、S
i;15wt%、Cu;3wt%、残部Alからなる高
力耐摩耗アルミニウム合金にAlNを5wt%添加した
もの)について、熱伝導率を測定し、図1に示す結果を
得た。
EXAMPLES Examples of the present invention will be described in comparison with conventional examples and comparative examples to clarify the effects of the present invention. (Example 1) Heat-resisting steel, SiCw reinforced (A2024 matrix) Al-based MMC and high-strength wear-resistant aluminum alloy matrix MMC (Ni; 15 wt%, S)
i; 15 wt%, Cu: 3 wt%, and a high-strength wear-resistant aluminum alloy containing the balance Al added with 5 wt% of AlN), the thermal conductivity was measured, and the results shown in FIG. 1 were obtained.

【0022】図1に示したように、耐熱鋼の熱伝動率は
25W/mKであったのに対して、高力耐摩耗アルミニ
ウム合金をマトリックスとしたMMCをの熱伝導率は1
00W/mKであって、Al基MMCの熱伝導率120
〜150W/mKにほぼ匹敵することが判明し、バルブ
本体とバルブフェースとの間に熱膨張の差が生じないこ
とが確認された。
As shown in FIG. 1, the heat conductivity of the heat resistant steel was 25 W / mK, whereas the heat conductivity of the MMC containing the high-strength wear-resistant aluminum alloy as a matrix was 1
00 W / mK, the thermal conductivity of Al-based MMC is 120
It was found to be almost equal to 150 W / mK, and it was confirmed that there was no difference in thermal expansion between the valve body and the valve face.

【0023】(実施例2)比較例であるAl基MMC、
耐熱鋼および本発明例であるAl基MMCについて、L
FW試験機を使用して摩耗量を測定した。得られた結果
は図3に示した。
Example 2 An Al-based MMC, which is a comparative example,
Regarding the heat-resistant steel and the Al-based MMC which is an example of the present invention, L
The amount of wear was measured using a FW tester. The obtained results are shown in FIG.

【0024】図3に示したように、比較例のAl基MM
Cの摩耗深さは45μmであり、耐熱鋼の摩耗深さは2
0μmであった。これに対して本発明例はNo.6の摩
耗深さが25μmとやや劣ったものの、他のNo.3〜
5は摩耗深さが2〜6μmと極めて優れた耐摩耗性を示
した。
As shown in FIG. 3, the Al-based MM of the comparative example
The wear depth of C is 45 μm, and the wear depth of heat resistant steel is 2
It was 0 μm. On the other hand, the example of the present invention was Although the wear depth of No. 6 was slightly inferior to 25 μm, other No. 3-
No. 5 had a wear depth of 2 to 6 μm, which was extremely excellent in wear resistance.

【0025】(実施例3)一方はバルブフェース部に鉄
系材料を被着し、他方はバルブフェース部に高力耐摩耗
性アルミニウム合金をマトリックスとしたMMCを被着
して、図6および図7の工程に従って製作したAl基M
MCインテークバルブについて、バルブフェース部の温
度分布を測定し結果を図4に示した。
(Embodiment 3) On one side, an iron-based material was deposited on the valve face portion, and on the other side, MMC containing a high-strength wear-resistant aluminum alloy as a matrix was deposited on the valve face portion. Al-based M manufactured according to the process
The temperature distribution of the valve face portion of the MC intake valve was measured and the results are shown in FIG.

【0026】図4に示したように、バルブフェース部に
鉄系材料を被着した従来例は、バルブェース温度が30
0℃以上となり、傘部での温度低下も緩やかであった。
此れに対して、本発明例であるバルブフェース部に高力
耐摩耗性アルミニウム合金をマトリクスとしたMMCを
被着したものは、バルブフェースの温度は300℃以下
であり、バルブフェース部から傘部にかけての温度低下
が極めて急激であった。
As shown in FIG. 4, the valve face temperature is 30 in the conventional example in which the iron-based material is deposited on the valve face portion.
The temperature was 0 ° C. or higher, and the temperature drop in the umbrella portion was gradual.
On the other hand, in the valve face portion of the present invention, which is coated with MMC having a matrix of a high-strength wear-resistant aluminum alloy, the temperature of the valve face is 300 ° C. or less, and the valve face portion and the umbrella portion extend from each other. The temperature drop was extremely rapid.

【0027】(実施例4)次に、軸部、傘部およびバル
ブフェース部共に耐熱鋼からなるインテークバルブ、軸
部および傘部がAl基MMCであってバルブフェース部
が鉄系材料であるインテークバルブ、軸部および傘部が
Al基MMCであってバルブフェース部が高力耐摩耗性
アルミニウム合金をマトリックスとしたMMCであるイ
ンテークバルブについて、重量およびバルブフェース部
の最高温度を比較し、得られた結果を図5に示した。な
お、重量は耐熱鋼からなるインテークバルブを100と
した比率で示した。
(Embodiment 4) Next, an intake valve in which the shaft portion, the umbrella portion and the valve face portion are made of heat-resistant steel, the intake portion in which the shaft portion and the umbrella portion are made of Al-based MMC and the valve face portion is made of a ferrous material. The results obtained by comparing the weight and the maximum temperature of the valve face portion with respect to the intake valve in which the valve, the shaft portion and the umbrella portion are the Al-based MMC and the valve face portion is the MMC in which the high-strength wear-resistant aluminum alloy is used as the matrix. Is shown in FIG. The weight is shown as a ratio with the intake valve made of heat-resistant steel as 100.

【0028】図5に示したように、重量については本発
明の軸部および傘部がAl基MMCであってバルブフェ
ース部が高力耐摩耗性アルミニウム合金をマトリックス
としたMMCであるインテークバルブは、耐熱鋼製イン
テークバルブに比べて60%軽量化され、軸部および傘
部がAl基MMCであってバルブフェース部が鉄系材料
であるインテークバルブと比べても11%の軽量化が達
成された。
As shown in FIG. 5, in terms of weight, the intake valve of the present invention, in which the shaft portion and the umbrella portion are made of Al-based MMC and the valve face portion is made of a matrix of high-strength wear-resistant aluminum alloy, is heat-resistant. It is 60% lighter than a steel intake valve, and 11% lighter than an intake valve in which the shaft portion and the umbrella portion are made of Al-based MMC and the valve face portion is made of an iron material.

【0029】また、バルブフェース部の最高温度につい
ては、耐熱鋼からなるインテークバルブは400℃であ
り、Al基MMCに鉄系材料を被着したもので320℃
であるのに対して、本発明のAl基MMCに高力アルミ
ニウム合金を被着したものは280℃であって、本発明
の効果が確認された。
Regarding the maximum temperature of the valve face, the temperature of the intake valve made of heat-resistant steel is 400 ° C., and the maximum temperature of the Al-based MMC coated with the iron-based material is 320 ° C.
On the other hand, the Al-based MMC of the present invention coated with a high-strength aluminum alloy had a temperature of 280 ° C., confirming the effect of the present invention.

【0030】[0030]

【発明の効果】本発明の内燃機関用インテークバルブは
以上説明したように、軸部および該軸部に連続する傘部
がAl系合金をマトリックスとしセラミック粒子、ウィ
スカー、繊維または粒子を添加して強化したAl基MM
Cからなり、バルブフェース面に耐摩耗性急冷アルミニ
ウム粉末合金をマトリックスとしたMMCを被着したこ
とを特徴とするものであって、軸部およびそれに連続す
る傘部からなるインテークバルブ本体が繊維または粒子
等で強化したAl基MMCからなり、バルブフェース部
を高力耐摩耗性アルミニウム粉末合金をマトリックスと
したMMCで構成したので、軽量化の効果を損なうこと
が無い上に、熱伝導率も鉄系材料と較べて大きく、バル
ブフェース部の冷却性に優れ温度差熱膨張率差に起因す
る熱膨張量差によるガタツキが発生しにくい。また、鉄
系材料のようにT6処理を行っても軟化することがな
く、また軸部とバルブフェース部のがたつきもない状態
で耐摩耗性も確保できる。
As described above, in the intake valve for an internal combustion engine of the present invention, the shaft portion and the umbrella portion continuous to the shaft portion are formed by adding Al-based alloy as a matrix and adding ceramic particles, whiskers, fibers or particles. Reinforced Al-based MM
A valve face surface is coated with MMC having a wear-resistant quenched aluminum powder alloy as a matrix, wherein the intake valve body including a shaft portion and a continuous umbrella portion is made of fiber or It consists of Al-based MMC reinforced with particles and the valve face is composed of MMC with a matrix of high-strength wear-resistant aluminum powder alloy, so the weight reduction effect is not impaired, and the thermal conductivity is also an iron-based material. In comparison with the above, the valve face portion is excellent in cooling property, and rattling due to the difference in thermal expansion due to the difference in temperature difference and difference in coefficient of thermal expansion is less likely to occur. Further, unlike the iron-based material, it is not softened even when subjected to T6 treatment, and wear resistance can be secured without rattling between the shaft portion and the valve face portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐熱鋼、Al基MMCおよび高力耐摩耗アルミ
ニウム合金をマトリックスとしたMMCの熱伝動率を示
す図である。
FIG. 1 is a diagram showing the thermal conductivity of heat-resistant steel, Al-based MMC, and MMC using a high-strength wear-resistant aluminum alloy as a matrix.

【図2】300℃におけるAl基MMCのSiCw含有
率と引張強さの関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the SiCw content of Al-based MMC at 300 ° C. and the tensile strength.

【図3】従来材と本発明材とのLFW耐摩耗試験におけ
る摩耗深さを示す図である。
FIG. 3 is a diagram showing a wear depth in a LFW wear resistance test of a conventional material and a material of the present invention.

【図4】バルブフェースに鉄系材料を被着したインテー
クバルブと本発明例のインテークバルブの傘部の温度分
布を示す線図である。
FIG. 4 is a diagram showing a temperature distribution of an intake valve having a valve face coated with an iron-based material and an umbrella portion of the intake valve of the present invention.

【図5】軸部、傘部およびバルブフェース部共に耐熱鋼
からなるインテークバルブ、軸部および傘部がAl基M
MCであってバルブフェース部が鉄系材料であるインテ
ークバルブ、軸部および傘部がAl基MMCであってバ
ルブフェース部が高力耐摩耗性アルミニウム合金をマト
リックスとしたMMCであるインテークバルブについ
て、重量およびバルブフェース部の最高温度を比較した
図である。
FIG. 5 is an intake valve in which the shaft portion, the umbrella portion, and the valve face portion are made of heat-resistant steel, and the shaft portion and the umbrella portion are made of an Al-based M.
Regarding an MC, an intake valve whose valve face portion is an iron-based material, an intake valve whose shaft portion and umbrella portion are Al-based MMC and whose valve face portion is an MMC using a high-strength wear-resistant aluminum alloy as a matrix, It is the figure which compared the maximum temperature of the valve face part.

【図6】インテークバルブの加工工程図である。FIG. 6 is a process drawing of the intake valve.

【図7】インテークバルブの傘部の据込み工程図であ
る。
FIG. 7 is a set-up process diagram of the umbrella portion of the intake valve.

【図8】インテークバルブの傘部の金属組織を表す写真
である。
FIG. 8 is a photograph showing a metallographic structure of the umbrella portion of the intake valve.

【図9】傘部のバルブフェース部の一部を切欠したイン
テークバルブの側面図である。
FIG. 9 is a side view of the intake valve in which a part of the valve face portion of the umbrella portion is cut away.

【図10】図9のバルブフェース部のA−A線における
断面図である。
10 is a cross-sectional view of the valve face portion of FIG. 9 taken along the line AA.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸部および該軸部に連続する傘部がAl
系合金またはMg系合金をマトリックスとしセラミック
粒子、ウィスカー、繊維を添加して強化したAl基MM
Cからなり、バルブフェース面に耐摩耗性急冷アルミニ
ウム粉末合金をマトリックスとしたMMCを被着したこ
とを特徴とする内燃機関用インテークバルブ。
1. A shaft portion and an umbrella portion continuous with the shaft portion are made of Al.
Al-based MM reinforced by adding ceramic particles, whiskers, and fibers to a matrix of Mg-based alloy or Mg-based alloy
An intake valve for an internal combustion engine, which is made of C and is coated with MMC containing a matrix of wear-resistant quenched aluminum powder alloy on the valve face surface.
JP21312593A 1993-08-27 1993-08-27 Intake valve for internal combustion engine Pending JPH0763019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21312593A JPH0763019A (en) 1993-08-27 1993-08-27 Intake valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21312593A JPH0763019A (en) 1993-08-27 1993-08-27 Intake valve for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0763019A true JPH0763019A (en) 1995-03-07

Family

ID=16633994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21312593A Pending JPH0763019A (en) 1993-08-27 1993-08-27 Intake valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0763019A (en)

Similar Documents

Publication Publication Date Title
US20200391284A1 (en) Aluminum casting design with alloy set cores for improved intermetallic bond strength
EP1059133A1 (en) Preform for metal matrix composite material and cylinder block made of the same
HU216623B (en) Aluminium-matrix, a complex structural material and procedure for making it
US6070323A (en) Piston for internal combustion engine and material therefore
US7052637B1 (en) Manufacturing of components for valve mechanisms for internal combustion engines
JP3705676B2 (en) Manufacturing method of piston for internal combustion engine
JPH0636984B2 (en) Method for manufacturing partial composite member
JPH06218521A (en) Piston of internal combustion engine
US20050019540A1 (en) Aluminum based composite material and process for manufacturing the same
JPH0763019A (en) Intake valve for internal combustion engine
WO2001023629A1 (en) Preliminarily formed article and formed article and parts for internal-combustion engine
JPS63132743A (en) Manufacture of piston
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy
JPH07310588A (en) Piston for internal combustion engine and its manufacture
EP1087123A2 (en) Piston with tailored mechanical properties
JPH01191759A (en) Aluminum alloy composite material
JPH08151954A (en) Piston for internal combustion engine and manufacture thereof
JPH04183959A (en) Piston for diesel engine and manufacture thereof
EP0447701B1 (en) Reinforced heat resisting member and production method
JPH09256903A (en) Piston for internal combustion engine and manufacturer thereof
JPH10219378A (en) Stock for forged piston
JPH03149B2 (en)
JPH11222638A (en) Aluminum series metal matrix composite material and its production
JPH0790420A (en) Fiber reinforced al alloy
JPH08200146A (en) Cylinder of internal combustion engine and manufacture thereof