JPH0762458B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH0762458B2
JPH0762458B2 JP14969886A JP14969886A JPH0762458B2 JP H0762458 B2 JPH0762458 B2 JP H0762458B2 JP 14969886 A JP14969886 A JP 14969886A JP 14969886 A JP14969886 A JP 14969886A JP H0762458 B2 JPH0762458 B2 JP H0762458B2
Authority
JP
Japan
Prior art keywords
injection
amount
fuel
injection amount
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14969886A
Other languages
Japanese (ja)
Other versions
JPS639653A (en
Inventor
貞雄 ▲高▼瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14969886A priority Critical patent/JPH0762458B2/en
Publication of JPS639653A publication Critical patent/JPS639653A/en
Publication of JPH0762458B2 publication Critical patent/JPH0762458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、各気筒に独立して燃料噴射弁を持つ電子制御
燃料噴射式内燃機関の燃料噴射時期及び燃料噴射量の制
御装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection timing and fuel injection amount control device for an electronically controlled fuel injection type internal combustion engine having independent fuel injection valves in each cylinder.

〈従来の技術〉 各気筒に独立して燃料噴射弁を持ついわゆるMPI(マル
チポイントインジェクション)式内燃機関は、燃料噴射
弁を多く備える必要がある代わりに、その気筒にとって
最も良い時期に燃料噴射を行うことができ応答精度の良
さに優れる特徴を有する。その燃料噴射時期及び燃料噴
射量を電子制御する従来装置として特開昭59−29733号
公報開示のものが知られる。このものは、燃料噴射開始
時期を機関運転状態に応じて制御して、燃料噴射終了時
期を所定のクランク角度になるように制御し、もって失
火を防止して機関の運転性能を改善している。
<Prior Art> A so-called MPI (multipoint injection) internal combustion engine, which has a fuel injection valve in each cylinder independently, needs to be equipped with many fuel injection valves, but injects fuel at the best time for that cylinder. It has a feature that it can be performed and the response accuracy is excellent. As a conventional device for electronically controlling the fuel injection timing and the fuel injection amount, the one disclosed in Japanese Patent Laid-Open No. 59-29733 is known. This engine controls the fuel injection start timing according to the engine operating state and controls the fuel injection end timing to a predetermined crank angle, thereby preventing misfire and improving the operating performance of the engine. .

また一般に気筒内に良質な混合期を形成するには、噴射
時期を早め、噴射燃料を燃焼熱によって加熱される吸気
弁に接触させて気化させることが有効であることが知ら
れている(特開昭60−195347号公報)。
Further, generally, in order to form a good mixing period in a cylinder, it is known that it is effective to advance the injection timing and bring the injected fuel into contact with an intake valve heated by combustion heat to be vaporized. (Kaisho 60-195347).

〈発明が解決しようとする問題点〉 しかしながら、特に上記の如き燃料噴射時期を進ませる
方法によると、要求噴射量を演算するための機関運転状
態検出タイミングにおける吸入空気量と、実際に気筒内
に入る吸入空気量とに大きな差が生じ、噴射燃料量に著
しい過不足が生じて、混合気にオーバーリッチ,オーバ
ーリーン現象が現れ、燃焼が悪化し、排気エミッション
特性が悪くなり燃費が悪化するものであった。これは特
に過渡運転状態において著しいものである。
<Problems to be Solved by the Invention> However, particularly according to the method of advancing the fuel injection timing as described above, the intake air amount at the engine operating state detection timing for calculating the required injection amount, and There is a big difference between the amount of intake air that enters and the amount of injected fuel is too much or too little. Overrich and overlean phenomena appear in the air-fuel mixture, combustion deteriorates, exhaust emission characteristics deteriorate, and fuel consumption deteriorates. Met. This is remarkable especially in the transient operation state.

この問題を解消しようとして、特開昭60−169647号公報
には吸入空気量の増加を監視する技術の開示が見られ
る。しかしこのものは出来るだけ機関運転状態のサンプ
リングタイムを遅らせて吸入空気量に対して過不足なく
燃料噴射量を供給するため噴射時期を遅角させなければ
ならなくなり、先に示した従来の特性を失ってしまうと
いう不都合を有するものである。
In order to solve this problem, Japanese Unexamined Patent Publication No. 60-169647 discloses a technique for monitoring an increase in intake air amount. However, in this case, the injection timing must be retarded in order to delay the sampling time of the engine operating state as much as possible and supply the fuel injection amount to the intake air amount without excess or deficiency. It has the inconvenience of being lost.

本発明はかかる従来の燃料噴射制御装置の不都合を解消
するため、従来1噴射で行っていた燃料供給を複数の噴
射とし、その噴射時期及び噴射量を最適値に制御して燃
焼の改善を図ることを目的とする。
In order to eliminate the inconvenience of the conventional fuel injection control device, the present invention uses a plurality of injections as the fuel supply that was conventionally performed by one injection, and controls the injection timing and injection amount to optimum values to improve combustion. The purpose is to

〈問題点を解決するための手段〉 そのために本発明では、第1図に示すように、機関運転
状態検出手段の検出した、例えば吸入空気量及び機関回
転速度等の機関運転状態信号に基づき、噴射時期設定手
段により各気筒の噴射時期を複数T1,T2,・・・設定し、
かつ要求噴射量q1,q2,・・・を要求噴射量演算手段によ
り各噴射時期に対応して演算する。そして実際の各噴射
量は、先行する噴射時期例えば1次噴射時期にこのとき
の要求噴射量よりも所定量少ない先行噴射量q11(1次
噴射量)を先行噴射量設定手段で設定し、これを駆動手
段を介して燃料噴射弁から気筒に燃料を噴射供給する。
次に後続噴射量設定手段が後続の噴射時期例えば2次噴
射時期に、このときの要求噴射量q2とこれより先行する
先行噴射量の合計噴射量(この場合q11)との差に基づ
いて後続噴射量q21を後続噴射量設定手段により設定す
る。そして、この後続噴射量q21を2次噴射時期に駆動
手段を介して燃料噴射弁から噴射供給する。
<Means for Solving Problems> Therefore, in the present invention, as shown in FIG. 1, based on the engine operating state signals such as the intake air amount and the engine speed detected by the engine operating state detecting means, A plurality of injection timings of each cylinder are set by the injection timing setting means, T 1 , T 2 , ...
Further, the required injection amount q 1 , q 2 , ... Is calculated by the required injection amount calculation means corresponding to each injection timing. For each actual injection amount, the preceding injection amount q 11 (primary injection amount) is set by the preceding injection amount setting means at the preceding injection timing, for example, the primary injection timing, which is smaller than the required injection amount at this time by a predetermined amount. Fuel is injected and supplied from the fuel injection valve to the cylinder through the drive means.
Next, the subsequent injection amount setting means determines the subsequent injection timing, for example, the secondary injection timing, based on the difference between the required injection amount q 2 at this time and the total injection amount of the preceding injection amounts preceding this (q 11 in this case). The subsequent injection amount q 21 is set by the subsequent injection amount setting means. Then, this subsequent injection amount q 21 is injected and supplied from the fuel injection valve at the secondary injection timing via the drive means.

若し噴射時期が3以上である場合には、後続噴射量設定
手段は2次噴射時期に2次の要求噴射量q2から先行噴射
量q11を差し引いた値に基づき、この値よりも所定量少
ない後続噴射量q21を設定し、3次の噴射時期にはこれ
ら先行する噴射量q11とq21との合計量と、3次の噴射時
期の要求噴射量q3との差を後続噴射量q22として設定す
る。これにより燃料噴射は1次噴射時期T1に先行噴射量
q11を、2次噴射時期T2に2次の後続噴射量q21を、3次
噴射時期T3に3次の後続噴射量q22を、夫々燃料噴射弁
から噴射供給する。
If the injection timing is 3 or more, the subsequent injection amount setting means is based on the value obtained by subtracting the preceding injection amount q 11 from the required injection amount q 2 of the secondary at the secondary injection timing, A fixed small amount of subsequent injection quantity q 21 is set, and the difference between the total quantity of these preceding injection quantities q 11 and q 21 and the required injection quantity q 3 of the third injection timing is set as the succeeding injection quantity at the third injection timing. Set as injection quantity q 22 . As a result, the fuel injection is performed at the primary injection timing T 1 with the preceding injection amount.
The q 11, the secondary injection timing T 2 in the secondary subsequent injection amount q 21, the tertiary injection timing T 3 in the third-order subsequent injection amount q 22, injects and supplies the respective fuel injection valve.

噴射時期が4以上ある場合にもこれに準じて行う。If there are four or more injection timings, the same procedure will be performed.

〈作用〉 上記の如き構成により、従来1回の燃料噴射を複数回に
分けて噴射供給し、このうち先行噴射の量を要求噴射量
より少なくして、加熱されている吸気弁付近の熱で気化
させ、その後1回又は複数回に分けて噴射を行い、最終
回の噴射時期における吸入空気量等機関運転状態に応じ
た噴射量に対して、先行する既噴射量では不足する分の
燃料量を最も新しい後続噴射で補充する。これにより初
回噴射燃料の気化促進を図って燃焼を良好にし、最終回
噴射燃料によって全体的にその後の吸入空気量等変化に
対応した燃料量の供給を行い、もって吸入空気量に対す
る噴射燃料量の過不足のない供給を行って燃焼を良く
し、排気エミッション並びに燃費を良好にする。
<Operation> With the above-described configuration, the conventional single fuel injection is divided into a plurality of injections, and the amount of the preceding injection is made smaller than the required injection amount. Evaporate the fuel and then inject it once or multiple times. The amount of fuel that is insufficient for the preceding injection amount with respect to the injection amount according to the engine operating state such as the intake air amount at the final injection timing. Is replenished with the newest subsequent injection. This promotes the vaporization of the first-injection fuel to improve combustion, and the final-injection fuel supplies the fuel amount that generally corresponds to subsequent changes in the intake air amount, etc. Supply just enough to improve combustion and improve exhaust emission and fuel efficiency.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。<Examples> Examples of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例に用いられたMPI式4気筒内
燃機関における電子制御式燃料噴射制御装置の構成を概
略的に示す。
FIG. 2 schematically shows the configuration of an electronically controlled fuel injection control device in an MPI type four-cylinder internal combustion engine used in one embodiment of the present invention.

ここにおいて機関運転状態検出手段10から検出された各
種機関運転状態信号は、電子制御装置20に入力され、そ
の出力により燃料噴射弁31,点火コイル32,燃料ポンプ33
等からなる各種制御機器30が制御される。
Here, various engine operating state signals detected by the engine operating state detecting means 10 are input to the electronic control unit 20, and the fuel injection valve 31, the ignition coil 32, and the fuel pump 33 are output by the output.
Various control devices 30 including the above are controlled.

機関運転状態検出手段10としては、機関のクランク角度
を180゜ごと及び1゜毎に検出するクランク角度センサ1
1,吸入空気量を検出する熱線式或いは機械式の吸気量セ
ンサ12が設けてあり、更には機関冷却水温度を検出する
冷却水温センサ13,排気中の酸素濃度を検出して吸入混
合気の空燃比を知る酸素濃度センサ14,バッテリ電圧セ
ンサ15,吸気絞り弁の開閉を検出するスロットルスイッ
チ16,スタータのオン・オフを検出するスタータスイッ
チ17,車速センサ18等が設けてある。
The engine operating state detecting means 10 includes a crank angle sensor 1 for detecting the crank angle of the engine every 180 ° and every 1 °.
1, a hot-wire or mechanical intake air amount sensor 12 for detecting the intake air amount is provided, and further a cooling water temperature sensor 13 for detecting the engine cooling water temperature, and an intake air-fuel mixture for detecting the oxygen concentration in the exhaust gas An oxygen concentration sensor 14 for knowing the air-fuel ratio, a battery voltage sensor 15, a throttle switch 16 for detecting opening / closing of an intake throttle valve, a starter switch 17 for detecting ON / OFF of a starter, a vehicle speed sensor 18, etc. are provided.

電子制御装置20には、アナログ信号を2進のディジタル
信号に変換するA/D変換器21,入力処理ポート22及び出力
処理ポート23が設けてあり、入力処理ポート22には、前
記各種センサ又はスイッチ11,16〜18の検出信号が入力
され、A/D変換器21には前記各種センサ12〜15の検出信
号が入力されてA/D変換される。更に電子制御装置20に
はROM(リードオンリーメモリ)25,RAM(ランダムアク
セスメモリ)26及びCPU(中央処理装置)24が設けてあ
り、夫々の構成要素はデータバス27で接続される。
The electronic control unit 20 is provided with an A / D converter 21, an input processing port 22 and an output processing port 23 for converting an analog signal into a binary digital signal. The detection signals of the switches 11, 16 to 18 are input, and the detection signals of the various sensors 12 to 15 are input to the A / D converter 21 for A / D conversion. Furthermore, the electronic control unit 20 is provided with a ROM (Read Only Memory) 25, a RAM (Random Access Memory) 26 and a CPU (Central Processing Unit) 24, and the respective constituent elements are connected by a data bus 27.

制御機器30における燃料噴射弁31は4気筒機関の各気筒
毎に設けられ、出力処理ポート23からの出力信号により
図に明示していない駆動手段により各燃料噴射弁31毎に
噴射時期及び噴射量が制御される。
The fuel injection valve 31 in the control device 30 is provided for each cylinder of the four-cylinder engine, and the injection timing and the injection amount are provided for each fuel injection valve 31 by the drive means not shown in the figure by the output signal from the output processing port 23. Is controlled.

電子制御装置20の機能は第3図に示すフローチャート及
び第4図に示す機能ブロック図に示される。
The functions of the electronic control unit 20 are shown in the flowchart shown in FIG. 3 and the functional block diagram shown in FIG.

ジョブ200は定時間毎例えば10ms毎に実行される機関回
転速度算出ルーチン(第4図301)で、ステップ201にお
いて定時間内に発生するクランク角センサ11の単位クラ
ンク角信号1゜を計数し、機関回転速度NEを求める。
The job 200 is an engine rotation speed calculation routine (301 in FIG. 4) that is executed every fixed time, for example, every 10 ms. In step 201, the unit crank angle signal 1 ° of the crank angle sensor 11 generated within the fixed time is counted, Calculate the engine speed N E.

ジョブ210は同様に定時間毎に実行される吸入空気量及
び基本噴出量算出ルーチン(第4図302)で、ステップ2
11において吸気量センサ12から出力される吸気量信号を
A/D変換し、その値Qaをステップ212においてRAM26に格
納する。ステップ213では、吸気量の値Qaと機関回転速
度NEとから,基本噴射パルス幅Tpを求める(第4図30
3)。この場合 (但しKは定数である。)であって、基本噴射量算出は
本発明における要求噴射量演算手段に相当する。
The job 210 is a routine for similarly calculating the intake air amount and the basic ejection amount (302 in FIG. 4) that is executed at regular intervals.
In 11, the intake air amount signal output from the intake air amount sensor 12
A / D conversion is performed, and the value Q a is stored in the RAM 26 in step 212. In step 213, from the intake air amount value Q a and the engine rotational speed N E, determine the basic injection pulse width Tp (Fig. 4 30
3). in this case (However, K is a constant.), And the basic injection amount calculation corresponds to the required injection amount calculation means in the present invention.

ジョブ220はクランク角センサ11から出力される180゜毎
のリファレンス信号と単位信号1゜を入力して実行され
る気筒・行程判別ルーチン(第4図304)で、所定のク
ランク角度位置を示すリファレンス信号からのクランク
角度を計数し、ステップ221において気筒判別(1番〜
4番気筒を判別)を行い、ステップ222においてその気
筒の行程判別(圧縮,爆発,排気及び吸気)を行う。
The job 220 is a cylinder / stroke discrimination routine (304 in FIG. 4) executed by inputting a reference signal for each 180 ° output from the crank angle sensor 11 and a unit signal 1 °, and a reference indicating a predetermined crank angle position. The crank angle from the signal is counted, and in step 221, the cylinder discrimination (No. 1 to
The No. 4 cylinder is determined), and in step 222, the stroke of the cylinder is determined (compression, explosion, exhaust and intake).

ジョブ230は第4図における305,306に示す噴射時期及び
噴射量の設定ルーチンである。これは10゜毎に実行さ
れ、クランク角センサ11の単位信号1゜を1/10分周する
ことによって行う。
The job 230 is a routine for setting the injection timing and the injection amount shown by 305 and 306 in FIG. This is executed every 10 ° and is performed by dividing the unit signal 1 ° of the crank angle sensor 11 by 1/10.

ステップ222では、判別された所定の気筒が圧縮行程に
あるか否かを判別する。YESの場合は第1の演算タイミ
ング即ち第1の噴射時期であると判断し、ステップ232
において先行噴射量q11が演算される。この先行噴射量q
11は第1の噴射を行う圧縮行程においてその直前にステ
ップ213で求まっている第1の基本噴射量Tp1としての要
求噴射量q1より所定値だけ少ない値となる。具体的には
第1の基本噴射量Tp1から第2の噴射時期で最低噴射す
べき量q21minを差し引いた値(q11=q1−q21min)とし
ておく。第2の噴射時期の最低噴射量q21minは燃料噴射
弁の特性から予め求めておく。かかるステップが本発明
でいう噴射時期設定手段で定められた第1の噴射時期に
おける先行噴射量設定手段を構成する。
In step 222, it is determined whether or not the determined predetermined cylinder is in the compression stroke. If YES, it is determined that it is the first calculation timing, that is, the first injection timing, and step 232
The preceding injection amount q 11 is calculated at. This preceding injection amount q
11 is a value smaller by a predetermined value than the required injection amount q 1 as the first basic injection amount Tp 1 obtained in step 213 immediately before the compression stroke in which the first injection is performed. Specifically, it is set to a value (q 11 = q 1 −q 21 min) obtained by subtracting the minimum injection amount q 21 min at the second injection timing from the first basic injection amount Tp 1 . The minimum injection amount q 21 min of the second injection timing is obtained in advance from the characteristics of the fuel injection valve. This step constitutes the preceding injection amount setting means at the first injection timing determined by the injection timing setting means in the present invention.

尚、第1の噴射時期は吸気行程後であればよく必ずしも
圧縮行程に正確にある必要はない。
It should be noted that the first injection timing has only to be after the intake stroke, and does not necessarily have to be exactly in the compression stroke.

上記ステップで求めた先行噴射量q11は、ステップ233で
RAM26に格納した後、ステップ234で対応する燃料噴射弁
31から先行噴射供給される。これは吸気行程後の噴射で
あり、後続噴射までには吸気弁等に接触して充分に気化
し、燃焼し易い混合気性状を吸気通路内に形成しておく
こととなる。この場合注意すべきことは第1の噴射時期
における先行噴射量q11は、そのときの要求噴射量q1
りも所定量少ない値であることである。
The preceding injection amount q 11 obtained in the above step is calculated in step 233.
After storing in RAM26, the corresponding fuel injection valve in step 234
Pre-injection is supplied from 31. This is the injection after the intake stroke, and until the subsequent injection, it comes into contact with an intake valve or the like to be sufficiently vaporized and a mixture property that is easily combusted is formed in the intake passage. In this case it should be noted that the prior injection amount q 11 in the first injection timing is than required injection quantity q 1 of that time is a predetermined amount smaller value.

ステップ231で特定の気筒が圧縮行程以外にあることを
知ったら、次ぎにステップ235においてそのときの最新
の要求(基本)噴射量qnewをステップ213から読み出し
てこれと先行噴射量q11との差(qnew−q11)を求め、そ
の値を機関回転速度NEを用いて燃料噴射弁の開閉デュー
ティ比との関係からクランク角度θに変換する。これ
は燃料噴射弁の開閉デューティ比によってqnew−q11
燃料量を噴射完了するクランク角度θを意味する。
If it is determined in step 231 that the specific cylinder is not in the compression stroke, then in step 235, the latest required (basic) injection amount q new at that time is read from step 213 and this and the preceding injection amount q 11 are compared. The difference (q new −q 11 ) is obtained, and the value is converted into the crank angle θ 2 from the relationship with the opening / closing duty ratio of the fuel injection valve using the engine rotation speed N E. This means the crank angle θ 2 at which the injection of the fuel quantity q new −q 11 is completed by the opening / closing duty ratio of the fuel injection valve.

この第2の後続噴射は、噴射燃料が全量機関に吸入され
ることが望ましいことから、噴射終了時期が燃料吸入可
能時期にあることが必要となる。このためステップ236
では前記クランク角度θを噴射終了時のクランク角度
θref、例えば吸気行程終了付近のクランク角度から差
し引いて、第2の後続噴射開始時期T2を求める。
In the second subsequent injection, since it is desirable that the entire amount of injected fuel be sucked into the engine, it is necessary that the injection end timing be at the fuel suckable timing. Therefore step 236
Then, the crank angle θ 2 is subtracted from the crank angle θ ref at the end of injection, for example, the crank angle near the end of the intake stroke, to obtain the second subsequent injection start timing T 2 .

従って圧縮行程時に先行噴射時期を定めるステップ231
と後続噴射終了時期から逆算して第2の後続噴射時期を
定めるステップ235,236が本発明でいう噴射時期設定手
段となる。
Therefore, step 231 which determines the preceding injection timing during the compression stroke
Steps 235 and 236 that determine the second subsequent injection timing by back-calculating from the subsequent injection end timing are the injection timing setting means in the present invention.

次ぎにステップ237において現在のクランク角度θnew
求め、この値とステップ236で定めた後続噴射開始時期T
2とを比較し、現在のクランク角度θnewが後続噴射開始
時期T2に達したか否かを判別する。噴射時期に達するま
では後続噴射を行わず、達して初めてステップ239で後
続噴射を開始する。このときの後続噴射量は、ステップ
235で最新の要求噴射量qnew(=q2)から先行噴射量q11
を差引いた値q21である。
Next, in step 237, the present crank angle θ new is calculated, and this value and the subsequent injection start timing T determined in step 236 are calculated.
2 is compared to determine whether or not the current crank angle θ new has reached the subsequent injection start timing T 2 . The subsequent injection is not performed until the injection timing is reached, and the subsequent injection is started only when the injection timing is reached. The subsequent injection amount at this time is
At 235, from the latest required injection quantity q new (= q 2 ) to the preceding injection quantity q 11
Is the value obtained by subtracting q 21 .

従ってかかる後続噴射量q21と先行噴射量q11とを合算し
た燃料量は、機関が吸入できるぎりぎりの段階での最も
新しい機関運転状態における要求噴射量q2と等しいか
ら、例え機関が過渡運転中にあっても、吸入混合気中の
燃料の過不足を生じない。またこのうち先行噴射量q11
は後続噴射前に気化されるから、吸入混合気性状は良好
となり燃焼が良くなって失火を防止し、排気エミッショ
ン,燃費も良好となる。
Therefore, the fuel amount that is the sum of the subsequent injection amount q 21 and the preceding injection amount q 11 is equal to the required injection amount q 2 in the most recent engine operating state at the last stage where the engine can be inhaled, so that the engine is in transient operation. Even if it is inside, there is no excess or deficiency of fuel in the intake air-fuel mixture. Of these, the preceding injection quantity q 11
Is vaporized before the subsequent injection, the intake air-fuel mixture properties are good, combustion is good, misfires are prevented, and exhaust emissions and fuel consumption are also good.

尚、後続噴射量q21或いはq21minは、燃料噴射弁の燃料
流量特性を予め知って、安定した所望の燃料量を噴射で
きるように予め所定値以上に定めておくのが良い。つま
り公知のように、電子制御燃料噴射装置における燃料噴
射弁は、噴射量即ち噴射パルス幅(開弁時間)の小さい
領域では、開弁時間に対する燃料流量特性が不安定であ
るため、なるべく噴射パルス幅の小さい領域を使わずに
大きい領域を使用することが望ましい。これによって先
行噴射による燃料気化特性と後続噴射による過渡運転時
の燃料量の過不足防止を同時に解消できることとなる。
このため第4図に示す先の実施例に加え、第5図に308
として後続噴射量の制限手段を付加している。
Incidentally, the subsequent injection quantity q 21 or q 21Min is previously known fuel flow characteristics of the fuel injection valve, a stable good idea to set in advance a predetermined value or more so that it can inject desired amount of fuel. That is, as is well known, in a fuel injection valve in an electronically controlled fuel injection device, the fuel flow rate characteristic with respect to the valve opening time is unstable in a region where the injection amount, that is, the injection pulse width (valve opening time) is small. It is desirable to use large areas instead of narrow areas. As a result, the fuel vaporization characteristics due to the preceding injection and the prevention of excess or deficiency of the fuel amount during the transient operation due to the subsequent injection can be eliminated at the same time.
Therefore, in addition to the previous embodiment shown in FIG.
As a result, a means for limiting the subsequent injection amount is added.

また上記実施例においては、機関運転状態の変化を考慮
して最も新しい要求噴射量を第1(先行)及び第2(後
続)に分割して噴射する手段を開示した。そしてそのと
きの要求噴射量としては基本噴射量Tpを使用したが、実
際の噴射量には、基本噴射量Tpを、冷却水温,排気中の
酸素濃度等の機関運転状態により訂正した値Tiを用いる
のが一般である。しかし本実施例では説明の簡便化上こ
れら補正要素を省略して説明してある。
Further, in the above embodiment, the means for injecting the newest required injection amount by dividing it into the first (preceding) and the second (successive) in consideration of the change in the engine operating state is disclosed. The basic injection amount Tp was used as the required injection amount at that time, but the actual injection amount is the value Ti obtained by correcting the basic injection amount Tp according to the engine operating conditions such as the cooling water temperature and the oxygen concentration in the exhaust gas. It is generally used. However, in the present embodiment, these correction elements are omitted for simplification of description.

更に本実施例では、機関運転状態を代表する信号として
機関回転速度及び吸入空気量を用いたが、吸入空気量の
代りに吸気絞り弁の開度,燃料噴射ポンプ又はアクセル
ペダルの開度,機関吸入負圧等を用いてもよいことは明
らかである。
Further, in this embodiment, the engine speed and the intake air amount are used as the signals representing the engine operating state. However, instead of the intake air amount, the opening of the intake throttle valve, the opening of the fuel injection pump or the accelerator pedal, the engine Obviously, negative suction pressure or the like may be used.

ところで前記実施例では、従来1回の噴射で行うとこ
ろ、2回の噴射時期でもって燃料を噴射供給している。
しかし場合によっては3回以上の噴射時期を設けて数多
く噴射することも可能であり、本発明ではこれをも含む
ものである。
By the way, in the above-mentioned embodiment, the fuel is injected and supplied at two injection timings as compared with the conventional injection performed once.
However, in some cases, it is possible to provide injection timing three times or more and to inject many times, and the present invention also includes this.

この場合、後続噴射量の設定が問題となるが、要は本発
明の趣旨は、最も新しい運転状態信号で得られる最終回
の後続噴射時期の要求噴射量を、これより先行する噴射
量と最終回の噴射量との合算で満たすものである。その
ため、先行噴射量(第1次)においてはそのときの要求
噴射量よりも少なくしておき、次の後続噴射時期におい
ても先行噴射量(第1次)と後続噴射量(第2次)との
合算値が第2次の噴射時期における要求噴射量よりも少
なくして次の(第3次の)後続噴射を可能とするように
設定しておけばよい。4回以上の分割噴射についてもこ
れと同様に考えればよいものである。
In this case, the setting of the subsequent injection amount becomes a problem, but the point of the present invention is that the required injection amount of the subsequent succeeding injection timing of the final time obtained by the latest operation state signal is set to the preceding injection amount and the final injection amount. This is satisfied by adding up with the injection amount of one time. Therefore, the preceding injection amount (first order) is made smaller than the required injection amount at that time, and the preceding injection amount (first order) and the subsequent injection amount (second order) are also set at the next subsequent injection timing. It is sufficient to set the total value of 1 to be smaller than the required injection amount at the second injection timing to enable the next (third) subsequent injection. The same applies to the case of divided injection of four times or more.

いずれにしても後続噴射量設定手段は、先行噴射量設定
手段で定められた先行噴射量と後続噴射時期の要求噴射
量との差に基づいて後続噴射量を定めればよいのであ
り、3回以上の分割噴射もこの考えの延長としてそれま
で先行噴射された噴射量の合計と最新の要求噴射量との
差に基づいて後続噴射量を定めればよいものである。
In any case, the subsequent injection amount setting means may determine the subsequent injection amount based on the difference between the preceding injection amount determined by the preceding injection amount setting means and the required injection amount of the subsequent injection timing. As for the above-mentioned divided injection, the subsequent injection amount may be determined based on the difference between the sum of the injection amounts of the preceding injections and the latest required injection amount.

尚、実施例における後続噴射時期については、その噴射
終了時期を特定する意味から、後続噴射量の必要噴射期
間を見計って噴射開始時期を定めているが、その他の機
関運転状態信号から、できるだけ過渡運転の悪影響を受
けない時期に後続噴射時期を定めてもよいものである。
この点先行噴射時期についても本実施例に限るものでは
ない。
Regarding the subsequent injection timing in the embodiment, the injection start timing is determined by observing the required injection period of the subsequent injection amount in order to specify the injection end timing, but from other engine operating state signals, it is possible to The subsequent injection timing may be set at a time when it is not adversely affected by the transient operation.
The preceding injection timing is not limited to that in this embodiment.

〈発明の効果〉 以上述べたように本発明によれば、単気筒当りに噴射す
る燃料の噴射時期を複数設定し、このうち先行する噴射
時期の噴射量をその時期の要求噴射量よりも少なくし、
後続する噴射時期の噴射量で後続噴射時期の要求噴射量
を補完するようにしたので、先行する噴射燃料は充分に
気化されて混合気性状を良好とし、後続する噴射燃料
は、先行噴射時以後の機関運転状態変化による要求燃料
噴射量の変化を充分に補完できる。よって燃焼が良好に
なると共に機関運転状態の時間経過による空気量変化に
も充分に追従して過不足なく燃料を供給できることとな
り、機関の特に過渡運転時の失火等による運転性悪化を
回避でき、排気エミッション及び燃焼が向上する。
<Effects of the Invention> As described above, according to the present invention, a plurality of injection timings of fuel to be injected per single cylinder are set, and the injection amount of the preceding injection timing is less than the required injection amount of the timing. Then
Since the injection amount of the subsequent injection timing complements the required injection amount of the subsequent injection timing, the preceding injection fuel is sufficiently vaporized to improve the air-fuel mixture property, and the subsequent injection fuel is after the preceding injection time. The change in the required fuel injection amount due to the change in the engine operating state can be sufficiently complemented. Therefore, combustion becomes good, and it becomes possible to sufficiently follow the change in the air amount due to the passage of time in the engine operating state and supply fuel without excess or deficiency, and it is possible to avoid deterioration of drivability due to misfiring of the engine especially during transient operation. Exhaust emissions and combustion are improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す概略構成図、第3図は同上実施例の機能を
簡略化して示すブロック図、第4図は同上の作用を示す
フローチャート、第5図は本発明の他の実施例の機能を
簡略化して示すブロック図である。 10……機関運転状態検出手段、20……電子制御装置、31
……燃料噴射弁、T1……先行噴射時期、T2……後続噴射
時期、q1……先行噴射時期の要求噴射量、q2……後続噴
射時期の要求噴射量、q11……先行噴射量、q21……後続
噴射量
FIG. 1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 3 is a block diagram showing the functions of the embodiment in the same as above, and FIG. FIG. 5 is a block diagram showing the function of another embodiment of the present invention in a simplified manner. 10: Engine operating state detecting means, 20: Electronic control device, 31
...... Fuel injection valve, T 1 ...... Previous injection timing, T 2 ...... Subsequent injection timing, q 1 ...... Required injection amount for preceding injection timing, q 2 ...... Required injection amount for subsequent injection timing, q 11 ...... Preceding injection amount, q 21 ... Subsequent injection amount

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】各気筒毎に独立して設けた燃料噴射弁から
燃料を噴射供給する内燃機関において、機関運転状態検
出手段と、機関運転状態に基づいて相対的にかつ時間的
に前後する複数の噴射時間(T1,T2,・・・)を設定する
噴射時期設定手段と、機関運転状態検出信号に基づいて
対応する噴射時期の機関の要求燃料噴射量(q1,q2,・・
・)を演算する要求噴射量演算手段と、前記複数の噴射
時期のうち先行する噴射時期に対応した要求噴射量より
も所定量少ない先行噴射量を設定する先行噴射量設定手
段と、前記複数の噴射時期のうち後続する噴射時期に対
応した要求噴射量とこれより先行する前記各噴射時期に
おける合計噴射量との差に基づいて後続噴射量を設定す
る後続噴射量設定手段と、先行する噴射時期に先行噴射
量を、後続する噴射時期に後続噴射量を夫々対応させて
各々の燃料噴射弁からの噴射供給を制御する駆動手段
と、を備えたことを特徴とする内燃機関の燃料噴射制御
装置。
1. An internal combustion engine in which fuel is injected and supplied from a fuel injection valve provided independently for each cylinder, and a plurality of engine operating state detecting means and a plurality of units that are relatively and temporally precede and follow based on the engine operating state. Injection time setting means for setting the injection time (T 1 , T 2 , ...) Of the engine, and the required fuel injection amount (q 1 , q 2 , ...) Of the engine at the corresponding injection timing based on the engine operating state detection signal.・
And a preceding injection amount setting means for setting a preceding injection amount that is a predetermined amount smaller than the required injection amount corresponding to the preceding injection timing among the plurality of injection timings. Subsequent injection amount setting means for setting the subsequent injection amount based on the difference between the required injection amount corresponding to the succeeding injection timing of the injection timing and the total injection amount at each of the preceding injection timings, and the preceding injection timing And a drive means for controlling the injection supply from each fuel injection valve by making the preceding injection amount correspond to the subsequent injection timing and the subsequent injection amount corresponding to the subsequent injection timing, respectively. .
JP14969886A 1986-06-27 1986-06-27 Fuel injection control device for internal combustion engine Expired - Fee Related JPH0762458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14969886A JPH0762458B2 (en) 1986-06-27 1986-06-27 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14969886A JPH0762458B2 (en) 1986-06-27 1986-06-27 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS639653A JPS639653A (en) 1988-01-16
JPH0762458B2 true JPH0762458B2 (en) 1995-07-05

Family

ID=15480860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14969886A Expired - Fee Related JPH0762458B2 (en) 1986-06-27 1986-06-27 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0762458B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292543A (en) * 1991-03-19 1992-10-16 Mitsubishi Motors Corp Method for partially injection fuel of engine
JP5892700B2 (en) * 2012-09-12 2016-03-23 本田技研工業株式会社 Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JPS639653A (en) 1988-01-16

Similar Documents

Publication Publication Date Title
US7885752B2 (en) Control system for internal combustion engine
EP0882877A2 (en) Controller for an internal combustion engine
JP3680492B2 (en) Control device for internal combustion engine
JP3654010B2 (en) Control device for internal combustion engine
JP3445500B2 (en) Idle rotation learning control device for electronically controlled throttle internal combustion engine
US4753210A (en) Fuel injection control method for internal combustion engines at acceleration
US5899192A (en) Fuel supply control system for internal combustion engines
US6536414B2 (en) Fuel injection control system for internal combustion engine
US4502448A (en) Method for controlling control systems for internal combustion engines immediately after termination of fuel cut
JP4792453B2 (en) Intake air amount detection device
JPH0762458B2 (en) Fuel injection control device for internal combustion engine
JP4100806B2 (en) In-cylinder injection internal combustion engine control device
JP2760175B2 (en) Evaporative fuel treatment system for internal combustion engines
GB2121215A (en) Automatic control of the fuel supply to an internal combustion engine immediately after termination of fuel cut
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JPH06307270A (en) Starting fuel injection controller for internal combustion engine
JP2684885B2 (en) Fuel injection amount control device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JP2873506B2 (en) Engine air-fuel ratio control device
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JP2505540B2 (en) Fuel injection control device for internal combustion engine
JP3971017B2 (en) Control method for internal combustion engine
KR100241042B1 (en) Control device for cylinder injection type internal-combustion engine
JPH0429855B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees