JPH0761895B2 - Grain boundary insulating semiconductor ceramic composition and method for producing the same - Google Patents

Grain boundary insulating semiconductor ceramic composition and method for producing the same

Info

Publication number
JPH0761895B2
JPH0761895B2 JP2085248A JP8524890A JPH0761895B2 JP H0761895 B2 JPH0761895 B2 JP H0761895B2 JP 2085248 A JP2085248 A JP 2085248A JP 8524890 A JP8524890 A JP 8524890A JP H0761895 B2 JPH0761895 B2 JP H0761895B2
Authority
JP
Japan
Prior art keywords
grain boundary
present
range
ceramic composition
semiconductor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2085248A
Other languages
Japanese (ja)
Other versions
JPH03285869A (en
Inventor
靖 高田
俊昭 村上
淳一 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2085248A priority Critical patent/JPH0761895B2/en
Publication of JPH03285869A publication Critical patent/JPH03285869A/en
Publication of JPH0761895B2 publication Critical patent/JPH0761895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁器コンデンサ等に用いるための粒界絶縁型
半導体磁器組成物に関する。
TECHNICAL FIELD The present invention relates to a grain boundary insulating type semiconductor porcelain composition for use in porcelain capacitors and the like.

[従来の技術] 従来、小型で容量の大きいコンデンサとして、粒界絶縁
型半導体磁器コンデンサが知られている。
[Prior Art] Conventionally, a grain boundary insulation type semiconductor ceramic capacitor has been known as a capacitor having a small size and a large capacity.

粒界絶縁型半導体磁器コンデンサは、結晶粒界を絶縁化
することにより実効誘電率を大きくしたものである。
The grain boundary insulation type semiconductor ceramic capacitor has a large effective dielectric constant by insulating the crystal grain boundaries.

粒界絶縁型半導体磁器コンデンサに用いられる磁器組成
物としては、主成分に、チタン酸ストロンチウムまたは
チタン酸バリウムを用い、原子価制御用助剤として、Nb
2O3、Y2O3、Dy2O3等を添加し、さらに、焼結助剤とし
て、MnO2、Bi2O3、CuO、SiO2等が用いられる。
The porcelain composition used for the grain boundary insulating type semiconductor porcelain capacitor uses strontium titanate or barium titanate as a main component, and Nb as a valence control aid.
2 O 3 , Y 2 O 3 , Dy 2 O 3 or the like is added, and MnO 2 , Bi 2 O 3 , CuO, SiO 2 or the like is used as a sintering aid.

例えば、特開昭56-54026には、(Sr1-xBax)TiO3(x=
0.30〜0.50)を主体とし、その他にチタン酸塩、ジルコ
ン酸塩を含んだ主成分に対してLa、Yなどの希土類元
素、Nb、Ta、Wなどのような半導体化剤とMnを含有し、
結晶粒界がMn、Bi、Cu、Pb、BおよびSiのうちの少なく
とも1種(ただし、B、Biのいづれか1種のみは除く)
により絶縁体化されてなる最大粒径が100μm以上の粒
界絶縁型半導体磁器組成物である。
For example, in JP-A-56-54026, (Sr 1-x Ba x ) TiO 3 (x =
0.30 to 0.50) as the main component, and in addition to the main component containing titanate and zirconate, a rare earth element such as La and Y, a semiconducting agent such as Nb, Ta and W, and Mn. ,
The grain boundary is at least one of Mn, Bi, Cu, Pb, B and Si (excluding only one of B and Bi)
Is a grain boundary insulating semiconductor ceramic composition having a maximum particle size of 100 μm or more, which is made into an insulator by.

近年、磁器コンデンサの小型化の要求に伴い、粒界絶縁
型半導体磁器コンデンサにおいても、より小型化、薄形
化の要求が高まっている。
In recent years, along with the demand for miniaturization of porcelain capacitors, demands for further miniaturization and thinning of grain boundary insulation type semiconductor porcelain capacitors have increased.

[発明が解決しようとする課題] 従来の粒界絶縁型半導体磁器では、見掛け誘電率を大き
くする必要から粒径を比較的大きくしていた。しかしな
がら、近年の要求に従い、磁器組成物の層を薄くした場
合には、厚み当りの結晶粒子の数が少なくなってしま
う。そのため、単位厚さ当りの絶縁破壊電圧が小さくな
り、その結果、誘電率と絶縁破壊電圧との積が小さくな
ってしまっていた。その結果、粒界絶縁型半導体磁器コ
ンデンサの薄型化、小型化が困難であった。
[Problems to be Solved by the Invention] In the conventional grain boundary insulation type semiconductor ceramics, the grain size was made relatively large because it was necessary to increase the apparent dielectric constant. However, when the layer of the porcelain composition is made thin in accordance with recent demands, the number of crystal grains per thickness becomes small. Therefore, the dielectric breakdown voltage per unit thickness becomes small, and as a result, the product of the dielectric constant and the dielectric breakdown voltage becomes small. As a result, it has been difficult to reduce the thickness and size of the grain boundary insulation type semiconductor ceramic capacitor.

本発明は、最大粒径を40〜70μmに制御可能であり、か
つ、厚み当りの誘電率と絶縁破壊電圧との積が大きい粒
界絶縁型半導体磁器組成物およびその製造方法を提供す
ることを目的とする。
The present invention provides a grain boundary insulation type semiconductor porcelain composition that can control the maximum grain size to 40 to 70 μm and has a large product of the dielectric constant per thickness and the breakdown voltage, and a method for producing the same. To aim.

[課題を解決するための手段] 本発明は、上記目的を達成するために、以下の組成の粒
界絶縁型半導体磁器組成物を提供する。
[Means for Solving the Problem] In order to achieve the above object, the present invention provides a grain boundary insulating semiconductor ceramic composition having the following composition.

すなわち、一般式(Sr1-x-zBaxCazMy)TilO3+mN+nZ
(但、Mは、Nb、Ta、W、及び希土類元素のうち少なく
とも1種類、Nは、Mn、Al、及びSiのうち少なくとも1
種類、Zは、Ge、Feの一方又は両方)で表され、x、
y、z、l、m、nがそれぞれ、0.0001≦x≦0.05、0.
001≦y≦0.03、0<z≦0.03、0.990≦l≦1.010、0.0
001≦m≦0.01、0.001≦n≦0.03、の範囲にある半導体
磁器の結晶粒界が、Cu、Bi、Pb、B、及びSiのうち少な
くとも1種を含む化合物により絶縁された粒界絶縁型半
導体磁器組成物である。
In other words, the general formula (Sr 1-xz Ba x Ca z M y) Ti l O 3 + mN + nZ
(However, M is at least one of Nb, Ta, W, and a rare earth element, and N is at least one of Mn, Al, and Si.
Type, Z is represented by one or both of Ge and Fe), x,
y, z, l, m and n are 0.0001 ≦ x ≦ 0.05 and 0, respectively.
001 ≦ y ≦ 0.03, 0 <z ≦ 0.03, 0.990 ≦ l ≦ 1.010, 0.0
Grain boundary insulation type in which the crystal grain boundaries of the semiconductor porcelain in the range of 001 ≦ m ≦ 0.01 and 0.001 ≦ n ≦ 0.03 are insulated by a compound containing at least one of Cu, Bi, Pb, B and Si It is a semiconductor porcelain composition.

また、一般式(Sr1-x-zBaxCazMy)TilO3+mN+nZ(但、
Mは、Nb、Ta、W、及び希土類元素のうち少なくとも1
種類、Nは、Mn、Al、及びSiのうち少なくとも1種類、
Zは、Ge、Feの一方又は両方)で表され、x、y、z、
l、m、nがそれぞれ、0.0001≦x≦0.05、0.001≦y
≦0.03、0<z≦0.30、0.990≦l≦1.010、0.0001≦m
≦0.01、0.001≦n≦0.03、の範囲になるように配合し
た後、焼成することによって半導体磁器を得る工程と、
前記工程によって得られた半導体磁器の結晶粒界をCu、
Bi、Pb、B、及びSiのうち少なくとも1種を含む化合物
を用いて絶縁化する工程とを有する粒界絶縁型半導体磁
器組成物の製造方法である。
In general formula (Sr 1-xz Ba x Ca z M y) Ti l O 3 + mN + nZ ( however,
M is at least 1 of Nb, Ta, W, and a rare earth element
Type, N is at least one of Mn, Al and Si,
Z is represented by one or both of Ge and Fe), and x, y, z,
l, m, and n are 0.0001 ≦ x ≦ 0.05 and 0.001 ≦ y, respectively.
≦ 0.03, 0 <z ≦ 0.30, 0.990 ≦ l ≦ 1.010, 0.0001 ≦ m
A step of obtaining a semiconductor porcelain by firing after blending so as to be in the range of ≦ 0.01, 0.001 ≦ n ≦ 0.03
Cu crystal grain boundaries of the semiconductor porcelain obtained by the process,
And a step of insulative using a compound containing at least one of Bi, Pb, B, and Si.

以下、本発明の数値範囲の限定理由について説明する。The reasons for limiting the numerical range of the present invention will be described below.

本発明のxの範囲は、0.0001≦x≦0.05である。すなわ
ち、0.0001未満では、原材料の精製が困難であり実用上
問題がある。また、0.05よりも大きいと、見掛け誘電率
が低下してしまい、本発明の目的を達成することができ
ない。
The range of x in the present invention is 0.0001 ≦ x ≦ 0.05. That is, if it is less than 0.0001, it is difficult to purify the raw materials and there is a practical problem. On the other hand, if it is larger than 0.05, the apparent dielectric constant is lowered, and the object of the present invention cannot be achieved.

本発明のzの範囲は、0<z≦0.30である。すなわち、
Caを含ませることにより、静電容量の温度変化率を制御
することが可能になる。しかし、0.30よりも大きいと、
見掛け誘電率が低下してしまい、本発明の目的を達成す
ることができない。
In the present invention, the range of z is 0 <z ≦ 0.30. That is,
Inclusion of Ca makes it possible to control the temperature change rate of the capacitance. However, if it is greater than 0.30,
The apparent dielectric constant is lowered, and the object of the present invention cannot be achieved.

一般式中Mとして用いられるNb、Ta、W、及び希土類元
素のうち少なくとも1種類の含有範囲を示すyの範囲
は、0.001≦y≦0.03である。0.001未満であっても、0.
03よりも大きくても、結晶の半導体化が困難になり本発
明の目的を達成することができない。
The range of y showing the content range of at least one of Nb, Ta, W, and rare earth elements used as M in the general formula is 0.001 ≦ y ≦ 0.03. Even if it is less than 0.001, 0.
Even if it is larger than 03, it becomes difficult to form a crystal into a semiconductor and the object of the present invention cannot be achieved.

一般式中のTiの含有範囲を示すlの範囲は、0.990≦l
≦1.010である。0.990未満では、粒径70μmよりも大き
い結晶粒子が生じてしまう。また、1.010よりも大きく
なると、結晶粒子の平均粒径が40μm以下になってしま
い、十分な見掛け誘電率を得ることができなくなり、本
発明の目的を達成することができない。
In the general formula, the range of l indicating the content range of Ti is 0.990 ≦ l
≦ 1.010. If it is less than 0.990, crystal grains larger than 70 μm in diameter are generated. On the other hand, when it is larger than 1.010, the average particle size of the crystal particles becomes 40 μm or less, and it becomes impossible to obtain a sufficient apparent dielectric constant, so that the object of the present invention cannot be achieved.

一般式中Nとして用いられるMn、Al、及びSiのうち少な
くとも1種類の含有範囲を示すmの範囲は、0.0001≦m
≦0.01である。0.0001未満では、見掛け誘電率が低くな
り、本発明の目的を達成することができない。また、0.
01よりも大きいと、見掛け誘電率が低下してしまい、ま
た、誘電体損失(tanδ)も悪くなり、本発明の目的を
達成することができない。
The range of m, which indicates the content range of at least one of Mn, Al, and Si used as N in the general formula, is 0.0001 ≦ m.
≦ 0.01. If it is less than 0.0001, the apparent dielectric constant becomes low and the object of the present invention cannot be achieved. Also, 0.
If it is larger than 01, the apparent dielectric constant is lowered and the dielectric loss (tan δ) is also deteriorated, so that the object of the present invention cannot be achieved.

一般式中Zとして用いられるGe、Feの一方又は両方を含
有させることにより、結晶粒子の制御が可能になる。そ
の範囲を示すnの範囲は、0.001≦n≦0.03である。0.0
01未満では、70μmよりも大きい結晶粒子が生じ、絶縁
破壊電圧が低くなる。また、0.03よりも大きいと、焼成
温度が高くなり、また絶縁破壊電圧も低くなり、本発明
の目的を達成することができない。
By containing one or both of Ge and Fe used as Z in the general formula, it becomes possible to control the crystal grains. The range of n showing the range is 0.001 ≦ n ≦ 0.03. 0.0
When it is less than 01, crystal grains larger than 70 μm are generated, and the dielectric breakdown voltage is lowered. On the other hand, if it is larger than 0.03, the firing temperature becomes high and the dielectric breakdown voltage becomes low, so that the object of the present invention cannot be achieved.

なお、本発明の一般式中、m及びnは、酸化物の形で含
まれる場合には、例えば一般式Xa Obとして示されるも
のを、XOb/aの形に直したときのXの元素の量で表され
る。
In the general formula of the present invention, when m and n are included in the form of an oxide, for example, the one represented by the general formula Xa Ob is converted into the form of XOb / a to represent the element of X. Expressed in quantity.

また、本発明に用いられている数値は、すべてモル(mo
l)で示した値である。
Further, all the numerical values used in the present invention are molar (mo
It is the value shown in l).

[実施例] 以下、実施例により本発明を具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

まず、第1表の試料番号1の調製方法とその電気的特性
について説明する。
First, the method for preparing Sample No. 1 in Table 1 and its electrical characteristics will be described.

SrCO3、BaCO3、CaCO3、TiO2、Y2O3、MnO2、GeO2の化合
物を第1表に示す組成比になるように配合し、1150℃で
2時間仮焼を行った。
Compounds of SrCO 3 , BaCO 3 , CaCO 3 , TiO 2 , Y 2 O 3 , MnO 2 and GeO 2 were mixed in such a composition ratio as shown in Table 1, and calcined at 1150 ° C. for 2 hours.

これを粉砕し、アクリル系バインダを10wt%加え、攪拌
した後、50メッシュのふるいで造粒し、成形圧力1ton/c
m2、直径12.5mm、肉厚0.3mmの円板に成形した。
This is crushed, 10 wt% of acrylic binder is added, stirred, and then granulated with a 50-mesh sieve, molding pressure 1 ton / c
It was formed into a disc with m 2 , a diameter of 12.5 mm, and a wall thickness of 0.3 mm.

得られた円板状成形体を、窒素98vol%、水素2vol%か
らなる還元雰囲気にて1400℃で3時間焼成し、半導体磁
器を得た。
The obtained disk-shaped compact was fired at 1400 ° C. for 3 hours in a reducing atmosphere containing 98 vol% nitrogen and 2 vol% hydrogen to obtain a semiconductor porcelain.

得られた半導体磁器の表面に金属酸化物ペースト、具体
的には、Bi2O3を40wt%、Pb3O4を46wt%、B2O3を7wt
%、CuOを6wt%、SiO2を1wt%および樹脂を溶剤に添加
したペーストを塗布し、1150℃で2時間熱拡散させ、結
晶粒界を絶縁化した。
Metal oxide paste on the surface of the obtained semiconductor porcelain, specifically 40 wt% Bi 2 O 3 , 46 wt% Pb 3 O 4 , 7 wt% B 2 O 3 .
%, CuO 6 wt%, SiO 2 1 wt%, and a resin solvent were applied as a paste, and thermal diffusion was performed at 1150 ° C. for 2 hours to insulate the crystal grain boundaries.

さらに、この粒界絶縁型半導体磁器の表面に銀ペースト
を印刷することによって塗布し、800℃で1時間焼き付
けることによってコンデンサを作成した。
Further, a silver paste was applied by printing on the surface of the grain boundary insulating type semiconductor porcelain, and baked at 800 ° C. for 1 hour to prepare a capacitor.

得られたコンデンサの電気的特性を測定したところ、第
2表の試料番号1に示す結果を得ることができた。
When the electrical characteristics of the obtained capacitor were measured, the results shown in Sample No. 1 in Table 2 could be obtained.

試料番号2以降の組成物についても、同様の条件にてコ
ンデンサを作成し、同様の条件にて電気的特性を測定し
た。
With respect to the compositions of Sample No. 2 and later, capacitors were prepared under the same conditions, and the electrical characteristics were measured under the same conditions.

表中、見掛け誘電率(ε)、誘電体損失(Tanδ)は、
温度25℃にて周波数1kHz、電圧1Vγmsで測定した値であ
り、絶縁抵抗(IR)は、温度25℃にて25Vの直流電圧を
印加した15秒後の値であり、温度特性(TC)は、温度20
℃を基準とし、−25℃〜85℃の温度範囲における最大容
量変化率の値であり、表中、上段は、最大容量増加率を
示し、下段は、最大容量減少率を示す。また、誘電率と
絶縁破壊電圧との積(ε×BDV)は、1mm当りの誘電率と
絶縁破壊電圧との積を示す。
In the table, the apparent permittivity (ε) and dielectric loss (Tanδ) are
It is a value measured at a frequency of 1kHz and a voltage of 1Vγms at a temperature of 25 ° C. The insulation resistance (IR) is a value 15 seconds after applying a DC voltage of 25V at a temperature of 25 ° C, and the temperature characteristic (TC) is , Temperature 20
It is the value of the maximum capacity change rate in the temperature range of -25 ° C to 85 ° C with reference to ° C. In the table, the upper row shows the maximum capacity increase rate, and the lower row shows the maximum capacity decrease rate. The product of the dielectric constant and the dielectric breakdown voltage (ε × BDV) indicates the product of the dielectric constant per 1 mm and the dielectric breakdown voltage.

なお、表中、試料番号の右上に示される*は、本発明の
範囲外の試料、すなわち、比較例であることを示す。
In the table, * indicated at the upper right of the sample number indicates a sample outside the scope of the present invention, that is, a comparative example.

本実施例の試料番号1〜4、6〜9、12〜14、17〜19、
22〜24及び27〜29に示されるように、本発明によれば、
最大粒径が40〜70μmであり、誘電体損失が0.5%以下
であり、絶縁抵抗が1500MΩ以上であり、温度特性が±1
5%の範囲内であり、かつ、厚み当りの誘電率と絶縁破
壊電圧との積が7.0×107以上の粒界絶縁型半導体磁器組
成物を得ることができる。
Sample Nos. 1 to 4, 6 to 9, 12 to 14, 17 to 19 of this example,
According to the present invention, as shown in 22-24 and 27-29,
Maximum particle size is 40 ~ 70μm, dielectric loss is 0.5% or less, insulation resistance is 1500MΩ or more, temperature characteristic is ± 1
It is possible to obtain a grain boundary insulating type semiconductor ceramic composition within the range of 5% and having a product of dielectric constant per thickness and dielectric breakdown voltage of 7.0 × 10 7 or more.

一方、本発明の範囲外の試料番号5、10、11、15、16、
20、21、25、26、30においては、本発明の目的を達成す
ることができない。
On the other hand, sample numbers 5, 10, 11, 15, 16, out of the range of the present invention,
At 20, 21, 25, 26 and 30, the object of the present invention cannot be achieved.

なお、本発明者らは、表中に示される実施例の組成に限
られず、特許請求の範囲に記載された組成範囲であれ
ば、本発明の範囲内の他の物質であっても本発明の効果
を得ることができることがわかっている。
It should be noted that the inventors of the present invention are not limited to the compositions of the examples shown in the table, and the present invention can be applied to other substances within the scope of the present invention as long as they are in the composition range described in the claims. It is known that the effect of can be obtained.

[効果] 本発明によれば、最大粒径を40〜70μmに制御可能であ
り、かつ、厚み当りの誘電率と絶縁破壊電圧との積が大
きい粒界絶縁型半導体磁器組成物およびその製造方法を
提供することができる。
[Effect] According to the present invention, the maximum grain size can be controlled to 40 to 70 μm, and the grain boundary insulation type semiconductor porcelain composition having a large product of the dielectric constant per thickness and the breakdown voltage and the method for producing the same are provided. Can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式(Sr1-x-zBaxCazMy)TilO3+mN+nZ
(但、Mは、Nb、Ta、W、及び希土類元素のうち少なく
とも1種類、Nは、Mn、Al、及びSiのうち少なくとも1
種類、Zは、Ge、Feの一方又は両方)で表され、 x、y、z、l、m、nがそれぞれ 0.0001≦x≦0.05 0.001≦y≦0.03 0<z≦0.30 0.990≦l≦1.010 0.0001≦m≦0.01 0.001≦n≦0.03 の範囲にある半導体磁器の結晶粒界が、Cu、Bi、Pb、
B、及びSiのうち少なくとも1種を含む化合物により絶
縁された粒界絶縁型半導体磁器組成物。
1. A general formula (Sr 1-xz Ba x Ca z M y) Ti l O 3 + mN + nZ
(However, M is at least one of Nb, Ta, W, and a rare earth element, and N is at least one of Mn, Al, and Si.
Type, Z is represented by one or both of Ge and Fe), and x, y, z, l, m and n are 0.0001 ≦ x ≦ 0.05 0.001 ≦ y ≦ 0.030 0 <z ≦ 0.30 0.990 ≦ l ≦ 1.010 0.0001 ≤ m ≤ 0.01 0.001 ≤ n ≤ 0.03 The crystal grain boundaries of the semiconductor porcelain are Cu, Bi, Pb,
A grain boundary insulating semiconductor ceramic composition insulated by a compound containing at least one of B and Si.
【請求項2】一般式(Sr1-x-zBaxCazMy)TilO3+mN+nZ
(但、Mは、Nb、Ta、W、及び希土類元素のうち少なく
とも1種類、Nは、Mn、Al、及びSiのうち少なくとも1
種類、Zは、Ge、Feの一方又は両方)で表され、 x、y、z、l、m、nがそれぞれ 0.0001≦x≦0.05 0.001≦y≦0.03 0<z≦0.30 0.990≦l≦1.010 0.0001≦m≦0.01 0.001≦n≦0.03 の範囲になるように配合した後、焼成することによって
半導体磁器を得る工程と、 前記工程によって得られた半導体磁器の結晶粒界をCu、
Bi、Pb、B、及びSiのうち少なくとも1種を含む化合物
を用いて絶縁化する工程とを有する粒界絶縁型半導体磁
器組成物の製造方法。
Wherein the general formula (Sr 1-xz Ba x Ca z M y) Ti l O 3 + mN + nZ
(However, M is at least one of Nb, Ta, W, and a rare earth element, and N is at least one of Mn, Al, and Si.
Type, Z is represented by one or both of Ge and Fe), and x, y, z, l, m and n are 0.0001 ≦ x ≦ 0.05 0.001 ≦ y ≦ 0.030 0 <z ≦ 0.30 0.990 ≦ l ≦ 1.010 0.0001 ≤ m ≤ 0.01 Compounding so as to be in the range of 0.001 ≤ n ≤ 0.03 and then firing to obtain a semiconductor porcelain, and the crystal grain boundaries of the semiconductor porcelain obtained by the above steps are Cu,
And a step of insulating with a compound containing at least one of Bi, Pb, B, and Si.
JP2085248A 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same Expired - Fee Related JPH0761895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085248A JPH0761895B2 (en) 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085248A JPH0761895B2 (en) 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03285869A JPH03285869A (en) 1991-12-17
JPH0761895B2 true JPH0761895B2 (en) 1995-07-05

Family

ID=13853271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085248A Expired - Fee Related JPH0761895B2 (en) 1990-03-30 1990-03-30 Grain boundary insulating semiconductor ceramic composition and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0761895B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820133B2 (en) * 1976-06-03 1983-04-21 松下電器産業株式会社 Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS5654026A (en) * 1979-10-09 1981-05-13 Murata Manufacturing Co Grain boundary insulating type semiconductor porcelain composition

Also Published As

Publication number Publication date
JPH03285869A (en) 1991-12-17

Similar Documents

Publication Publication Date Title
JP2004238251A (en) Dielectric ceramic composition and ceramic electronic component
JPS6249977B2 (en)
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761895B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761894B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH07108812B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS6249976B2 (en)
JP2970405B2 (en) Grain boundary insulating semiconductor porcelain composition and method for producing the same
JPS6129903B2 (en)
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JPH0687364B2 (en) High dielectric constant porcelain composition
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPS6342849B2 (en)
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS6249975B2 (en)
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JP3512587B2 (en) Multilayer ceramic capacitors
JP2734888B2 (en) Method for producing semiconductor porcelain composition
KR100254799B1 (en) Low firing dielectric ceramic capacitor composition
JPH06231994A (en) Semiconductor ceramic composition
JPH07277818A (en) Grain boudnary insulated semiconductor porcelain composition
JPS6126207B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees