JPH0760800B2 - Vapor growth method for compound semiconductors - Google Patents

Vapor growth method for compound semiconductors

Info

Publication number
JPH0760800B2
JPH0760800B2 JP21876286A JP21876286A JPH0760800B2 JP H0760800 B2 JPH0760800 B2 JP H0760800B2 JP 21876286 A JP21876286 A JP 21876286A JP 21876286 A JP21876286 A JP 21876286A JP H0760800 B2 JPH0760800 B2 JP H0760800B2
Authority
JP
Japan
Prior art keywords
vapor phase
aluminum
compound semiconductor
kept
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21876286A
Other languages
Japanese (ja)
Other versions
JPS6373617A (en
Inventor
文夫 長谷川
Original Assignee
住友化学工業株式会社
文夫 長谷川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学工業株式会社, 文夫 長谷川 filed Critical 住友化学工業株式会社
Priority to JP21876286A priority Critical patent/JPH0760800B2/en
Publication of JPS6373617A publication Critical patent/JPS6373617A/en
Publication of JPH0760800B2 publication Critical patent/JPH0760800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はIII−V族化合物半導体、特にAlを含んだ化合
物半導体の新規な気相成長法に関する。さらに詳しく
は、融点以下に保たれた金属AlとHClまたはV族元素の
塩化物を反応させることにより、Alの塩化物を作ること
を特徴とするIII−V族化合物半導体の気相成長法に関
する。
TECHNICAL FIELD The present invention relates to a novel vapor phase growth method for III-V group compound semiconductors, particularly Al-containing compound semiconductors. More specifically, the present invention relates to a vapor phase growth method for a III-V group compound semiconductor, which is characterized in that a chloride of Al is produced by reacting a metal Al kept below a melting point with chloride of HCl or a group V element. .

〔従来の技術〕[Conventional technology]

最近、III−V族化合物半導体は半導体レーザ、FET、LE
D等の種々のデバイスとして実用化されている。とくにA
lGaAsはAsの組成を変えても格子定数がほとんど変わら
ないため、理想的なAlGaAs−GaAsヘテロ接合が形成さ
れ、レーザ・ダイオード、HEMT(高電子移動度トランジ
スタ)等に応用されている。また、AlInGaPは可視光レ
ーザ・ダイオード用材料として期待されている。
Recently, III-V group compound semiconductors are used for semiconductor lasers, FETs, LEs.
It has been put to practical use as various devices such as D. Especially A
Since the lattice constant of lGaAs remains almost unchanged even if the composition of As is changed, an ideal AlGaAs-GaAs heterojunction is formed and is applied to laser diodes, HEMTs (high electron mobility transistors), etc. AlInGaP is also expected as a material for visible light laser diodes.

Alを含んだ化合物半導体は現在、主としてLPE法(液相
エピタキシャル成長法)で生産されている。また最近、
Alを含んだ化合物半導体の新しい成長法としてMBE法
(分子線エピタキシャル成長法)やMOCVD法(有機金属
気相成長法)が開発されている。
At present, compound semiconductors containing Al are mainly produced by the LPE method (liquid phase epitaxial growth method). Also recently
MBE (Molecular Beam Epitaxial Growth) and MOCVD (Metal Organic Chemical Vapor Deposition) have been developed as new growth methods for Al-containing compound semiconductors.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、LPE法は表面平滑性、量産性に問題があ
る。また、MBE法は超格子構造等、非常に微細な構造を
実験室的レベルで製作するには非常に優れた方法である
が、装置が高価である上にランニングコストも高く量産
性に乏しいという欠点がある。
However, the LPE method has problems in surface smoothness and mass productivity. The MBE method is a very excellent method for producing a very fine structure such as a superlattice structure at a laboratory level, but it is expensive in equipment, high in running cost, and poor in mass productivity. There are drawbacks.

またさらにMOCVD法はクロライド法、ハイドライド法等
の気相成長法(VPE法)に較べて熱平衡状態からずれた
状態で成長が行われるため結晶性が悪いという欠点があ
る。
Further, the MOCVD method has a drawback that the crystallinity is poor because the growth is performed in a state deviated from the thermal equilibrium state as compared with the vapor phase growth method (VPE method) such as the chloride method and the hydride method.

事実、現状では超高周波FET用エピタキシャルウェーハ
はすべて金属の塩化物としてIII族元素を供給するクロ
ライド気相成長法(クロライドVPE法)により生産され
ている。しかし、クロライドVPE法の最大の欠点はAlを
含んだ化合物半導体の成長ができないことである。クロ
ライドVPE法ではGaやInの金属を800〜900℃に保ち、こ
れとAsCl3を反応させてGaClやInClを作り、これを700〜
800℃の成長領域に導くことにより次式の反応によりGsA
s等のエピタキシャル層を得る。
In fact, at present, all epitaxial wafers for ultra-high frequency FETs are produced by the chloride vapor phase epitaxy method (chloride VPE method) in which a group III element is supplied as a metal chloride. However, the biggest drawback of the chloride VPE method is the inability to grow compound semiconductors containing Al. In the chloride VPE method, the metals Ga and In are kept at 800 to 900 ℃, and this is reacted with AsCl 3 to make GaCl and InCl, which is 700 to
By leading to the growth region of 800 ° C, GsA
Obtain an epitaxial layer such as s.

3GaCl+1/2As4→2GaAs+GaCl3 しかしながら、溶融Alは石英ボードと反応して石英が溶
けてしまう。またAlは非常に酸化されやすいため、溶融
Alの表面が酸化されてアルミナ被覆が生成し、HClある
いはAsCl3と内部の溶融Alの反応が進まなくなり、その
ため、AlGa溶液中にHClをバブルさせるとか、1000℃程
度に保たれたアルミナボード中のAl金属とHClとを反応
させ、アルシンガス(AsH3)でAsを供給し、AlGaAsある
いはAlAsを成長させたという報告はあるが、GaAsのエピ
タキシャル成長に使われているような、いわゆるクロラ
イドVPE法によるAl化合物半導体の成長の報告はない。
3GaCl + 1 / 2As 4 → 2GaAs + GaCl 3 However, molten Al reacts with the quartz board and the quartz melts. Also, since Al is very easily oxidized, it melts.
The surface of Al is oxidized to form an alumina coating, and the reaction between HCl or AsCl 3 and the molten Al inside does not proceed. Therefore, HCl is bubbled into the AlGa solution, or in an alumina board kept at about 1000 ° C. Although there is a report that Al metal and HCl are reacted with HCl and As is supplied by arsine gas (AsH 3 ) to grow AlGaAs or AlAs, by the so-called chloride VPE method used for epitaxial growth of GaAs. There are no reports of growth of Al compound semiconductors.

本発明の目的は上記の欠点を改良する気相成長法を提供
することにある。
It is an object of the present invention to provide a vapor phase growth method which ameliorates the above drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はIII−V族化合物半導体の気相成長法におい
て、(1)ヘリウムを主体とするキャリヤガスにより送
られるHClまたはV族元素の塩化物と、融点以下に保た
れた金属アルミニウムとを反応させて塩化アルミニウム
を作る工程、(2)該塩化アルミニウムを700〜800℃に
加熱する工程および(3)加熱された塩化アルミニウム
に水素を主体とするガスを導入することによりAlを含ん
だ化合物半導体を気相エピタキシャル成長させる工程を
含むことを特徴とする化合物半導体の気相成長法を提供
する。
The present invention, in the vapor phase growth method of a III-V group compound semiconductor, reacts (1) HCl or a chloride of a V group element sent by a carrier gas mainly composed of helium with metallic aluminum kept at a melting point or lower. To produce aluminum chloride, (2) heating the aluminum chloride to 700 to 800 ° C., and (3) introducing a gas mainly containing hydrogen into the heated aluminum chloride to thereby form a compound semiconductor containing Al. A vapor phase epitaxy method for a compound semiconductor is provided, which comprises a step of vapor phase epitaxy growth.

本発明はIII−V族化合物半導体の気相成長法においてA
l源の供給方法に特徴があり、本発明によれば、金属Al
は融点以下に保たれているために石英ボードと反応する
ことなく、また塩化Alは成長領域において水素を導入す
ることによって還元析出される(通常のクロライドVPE
法では温度を下げることにより3GaCl→2Ga+GaCl3のよ
うな反応によりIII族元素の析出を行う)ので、金属Al
をソースとするAlを含んだ化合物半導体のクロライドVP
E成長が可能となる。
The present invention is applicable to the III-V compound semiconductor vapor phase epitaxy.
According to the present invention, a metal Al
Does not react with the quartz board because it is kept below the melting point, and Al chloride is reduced and precipitated by introducing hydrogen in the growth region (normal chloride VPE
In the method, the group III element is deposited by a reaction such as 3GaCl → 2Ga + GaCl 3 by lowering the temperature).
Chloride VP of compound semiconductor containing Al as the source
E growth becomes possible.

また、他の元素、例えばGa、In等の成長は従来のクロラ
イドVPE法、ハイドライドVPE法の手法が採用できる。
For the growth of other elements such as Ga and In, the conventional chloride VPE method and hydride VPE method can be adopted.

〔実施例〕〔Example〕

以下、本発明の実施態様を図面を用いて具体的に説明す
る。第1図は本発明によりAlGaAsを成長させる場合の成
長装置の模式図である。石英反応管1は大きく分けてソ
ース領域2と成長領域3とからなり、そしてソース領域
2は2つのソース領域反応室6、7と水素ガス供給用の
パス8を有する。一方のソース領域反応室6の入口に近
い側に金属Alソース9、もう一方のソース領域反応室7
の成長領域3に近い部分に金属Gaのソース10を置く。こ
のソースおよび成長領域の温度は抵抗加熱炉4、5によ
って金属Alソース9は600℃(Alの融点以下)に保たれ
ており、金属Gaのソース10部分および成長領域3は約75
0℃に保たれている。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic diagram of a growth apparatus for growing AlGaAs according to the present invention. The quartz reaction tube 1 is roughly divided into a source region 2 and a growth region 3, and the source region 2 has two source region reaction chambers 6 and 7 and a path 8 for supplying hydrogen gas. The metal Al source 9 is provided on the side closer to the inlet of one source region reaction chamber 6, and the other source region reaction chamber 7 is provided.
A metal Ga source 10 is placed in a portion close to the growth region 3 of. The temperature of the source and the growth region is kept at 600 ° C. (below the melting point of Al) by the resistance heating furnaces 4 and 5, and the source 10 portion of the metal Ga and the growth region 3 are about 75 ° C.
It is kept at 0 ℃.

成長は次のように行われる。ガスライン11より水素を約
1%含んだヘリウムガスが送られ、流量計12、13でそれ
ぞれ例えば200CC/分に制御されて一定の温度に保たれた
AsCl3バプラー14、15中をバブルされる。AsCl3を含んだ
(He+1%H2)ガスはAlソース9、Gaソース10の部分に
導かれ、それぞれ次の反応によってAl、Gaの塩化物とな
る。
Growth occurs as follows. Helium gas containing about 1% of hydrogen was sent from the gas line 11 and kept at a constant temperature by controlling the flowmeters 12 and 13 to, for example, 200 CC / min.
Bubbles in AsCl 3 bubblers 14 and 15. The (He + 1% H 2 ) gas containing AsCl 3 is introduced into the Al source 9 and Ga source 10, and becomes Al and Ga chlorides by the following reactions.

Al+AsCl3→AlCl3+1/4As4 …(1) 3Ga+AsCl3→3GaCl+1/4As4 …(2) これらの塩化物は成長領域3に運ばれた後、ライン16よ
り流量計17で所定の流量に制御され、パス8から導入さ
れる水素ガスによって還元され、As4と反応して次式の
ようにAlAs、GaAsとなる。
Al + AsCl 3 → AlCl 3 + 1 / 4As 4 … (1) 3Ga + AsCl 3 → 3GaCl + 1 / 4As 4 … (2) These chlorides are carried to the growth region 3 and then controlled by the flow meter 17 from the line 16 to a predetermined flow rate. Is reduced by the hydrogen gas introduced from the path 8 and reacts with As 4 to form AlAs and GaAs as shown in the following equation.

AlCl3+3/2H2+1/4As4→AlAs+3HCl …(3) GaCl+1/2H2+1/4As4→GaAs+HCl …(4) したがってAlソース、Gaソースに送られるAlCl3の量を
制御することにより成長領域の基板18上にはAlXGa1-XAs
(0<x<1)の化合物半導体を成長させることができ
る。なお、反応後のガスは排気部19から排気される。
AlCl 3 + 3 / 2H 2 + 1 / 4As 4 → AlAs + 3HCl… (3) GaCl + 1 / 2H 2 + 1 / 4As 4 → GaAs + HCl… (4) Therefore, the growth region is controlled by controlling the amount of AlCl 3 sent to the Al source and Ga source. Al X Ga 1-X As on the substrate 18 of
A compound semiconductor of (0 <x <1) can be grown. The gas after the reaction is exhausted from the exhaust unit 19.

第2図は上記の方法でGaAs基板上にAlAsを約1μ、AlGa
Asを約1μ成長させた場合のエピタキシャル層の組成分
布をスパッタリング・オージェ電子分光計により測定し
た結果を示す。この結果からAlGaAsのエピタキシャル層
が成長していることが認められる。すなわち、Alを含ん
だIII−V族化合物半導体の気相成長が可能であること
が判る。また、AlInGaPの成長を行うには、第1図にお
いてIn用の第3のソース領域反応室(図示せず)を設け
ればよい。InソースはAlソースにおけるような問題はな
いのでGaソースと同一温度に保って成長を行うことがで
きる。勿論、AlInGaPの成長を行うためにはClおよびP
の供給源としてAsCl3の代わりにPCl3を用いることが必
要である。
Figure 2 shows AlAs on the GaAs substrate of about 1μ and AlGa by the above method.
The result of measuring the composition distribution of the epitaxial layer when As is grown by about 1 μm by a sputtering Auger electron spectrometer is shown. From this result, it is confirmed that the AlGaAs epitaxial layer is growing. That is, it is understood that the vapor phase growth of the III-V group compound semiconductor containing Al is possible. To grow AlInGaP, a third source region reaction chamber (not shown) for In may be provided in FIG. Since the In source does not have the same problem as the Al source, the growth can be performed while maintaining the same temperature as the Ga source. Of course, in order to grow AlInGaP, Cl and P
It is necessary to use PCl 3 instead of AsCl 3 as a source of.

このようにして上記のAlXGa1-XAsの場合と同様AlXInYGa
1-X-YP(0<x,y<1)の気相成長を行うことができ
る。
In this way, as in the case of Al X Ga 1-X As above, Al X In Y Ga
Vapor phase growth of 1-XY P (0 <x, y <1) can be performed.

以上の説明ではAsCl3またはPCl3を用いて成長を行う場
合について述べたが、全く同様な原理に基づいてHClとA
sH3を用いることによりAl化合物のハイドライド気相成
長法を行うことができることは勿論である。
In the above description, the case where AsCl 3 or PCl 3 was used for growth was described.
It goes without saying that the hydride vapor phase epitaxy method of the Al compound can be performed by using sH 3 .

その場合には第1図に示すAsCl3のバブラーは必要な
く、第3図に示すようにガスライン11より、水素を数
%、例えば1%含むHeガスで希釈したHClを送ればよ
い。AlCl3とGaClの比は流量計12、13によって所定の比
になるよう制御される。Asの供給はガスライン16よりH2
希釈のAsH3を送ることによって行う。このH2は成長領域
に導入され、AsCl3、GaClを還元するために使われる。
In that case, the bubbler of AsCl 3 shown in FIG. 1 is not necessary, and HCl diluted with He gas containing several% of hydrogen, for example 1%, may be sent from the gas line 11 as shown in FIG. The ratio of AlCl 3 to GaCl is controlled by the flowmeters 12 and 13 so as to be a predetermined ratio. As supply is H 2 from gas line 16
It carried out by sending the AsH 3 dilution. This H 2 is introduced into the growth region and used to reduce AsCl 3 and GaCl.

〔発明の効果〕〔The invention's effect〕

本発明によればクロライドまたはハイドライド気相成長
法においてAlを含んだ化合物半導体の製造が可能とな
る。
According to the present invention, a compound semiconductor containing Al can be manufactured by a chloride or hydride vapor phase epitaxy method.

【図面の簡単な説明】[Brief description of drawings]

第1および3図は本発明を実施するための装置の模式
図、第2図は本発明で得られたエピタキシャル層の深さ
方向の組成分布を示すための図である。 1……石英管反応器、2……ソース領域、3……成長領
域、4および5……加熱炉
1 and 3 are schematic diagrams of an apparatus for carrying out the present invention, and FIG. 2 is a diagram showing a composition distribution in a depth direction of an epitaxial layer obtained by the present invention. 1 ... Quartz tube reactor, 2 ... Source region, 3 ... Growth region, 4 and 5 ... Heating furnace

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】III−V族化合物半導体の気相成長法にお
いて、ソース領域においてヘリウムを主体とするキャリ
ヤガスにより送られるHClまたはV族元素の塩化物と融
点以下に保たれた金属アルミニウムとを反応させて塩化
アルミニウムを作る工程、該塩化アルミニウムを700〜8
00℃に加熱する工程および成長領域において加熱された
該塩化アルミニウムに水素を主体とするガスを導入する
ことによりAlを含んだ化合物半導体を気相エピタキシャ
ル成長させる工程を含むことを特徴とする化合物半導体
の気相成長法
1. A vapor phase growth method for a III-V group compound semiconductor, wherein HCl or a chloride of a V group element sent by a carrier gas mainly containing helium in the source region and metallic aluminum kept below the melting point. The step of reacting to produce aluminum chloride, the aluminum chloride being 700 to 8
A compound semiconductor including a step of heating to 00 ° C. and a step of vapor phase epitaxially growing a compound semiconductor containing Al by introducing a gas mainly containing hydrogen into the aluminum chloride heated in a growth region. Vapor growth method
【請求項2】V族元素の塩化物がAsCl3である特許請求
の範囲第(1)項記載の気相成長法
2. The vapor phase growth method according to claim 1, wherein the chloride of the group V element is AsCl 3.
【請求項3】V族元素の塩化物がPCl3である特許請求の
範囲第(1)項記載の気相成長法
3. The vapor phase growth method according to claim 1, wherein the chloride of the group V element is PCl 3.
【請求項4】III−V族化合物半導体の気相成長法にお
いて、ソース領域においてヘリウムを主体とするキャリ
ヤガスにより送られるHClまたはAsCl3と融点以下に保た
れた金属アルミニウムとを反応させて塩化アルミニウム
を作り、ついで700〜800℃に加熱された塩化アルミニウ
ムと、V族元素の塩化物としてAsCl3を用い700〜800℃
に保たれた金属Gaとヘリウムを主体とするキャリヤガス
により送られるAsCl3とを反応させて得られたGaClおよ
びAs4とを成長領域へ導入、混合し、該混合物を水素と
反応させることによりAlXGa1-XAs(0<x<1)の気相
成長を行うことを特徴とする化合物半導体の気相成長法
4. In a vapor phase growth method for a III-V compound semiconductor, HCl or AsCl 3 sent by a carrier gas mainly containing helium in a source region is reacted with metallic aluminum kept at a melting point or lower to chlorinate. made of aluminum, then the aluminum chloride heated to 700 to 800 ° C., 700 to 800 ° C. with AsCl 3 as chlorides of group V element
By introducing GaCl and As 4 obtained by reacting AsCl 3 sent by a carrier gas mainly composed of helium and Ga kept in the growth region into the growth region, mixing them, and reacting the mixture with hydrogen. Vapor phase growth method of compound semiconductor characterized by performing vapor phase growth of Al X Ga 1-X As (0 <x <1)
【請求項5】III−V族化合物半導体の気相成長法にお
いて、ソース領域においてヘリウムを主体とするキャリ
ヤガスにより送られるHClまたはPCl3と融点以下に保た
れた金属アルミニウムとを反応させて塩化アルミニウム
を作り、ついで700〜800℃に加熱された塩化アルミニウ
ム、700〜800℃に保たれた金属Gaとヘリウムを主体とす
るキャリヤガスにより送られるPCl3とを反応させて得ら
れたGaClおよびP4、および700〜800℃に保たれた金属In
とヘリウムを主体とするキャリヤガスにより送られるPC
l3とを反応させて得られたInClおよびP4とを成長領域へ
導入、混合し、該混合物を水素と反応させることにより
AlxInYGa1-X-YP(0<x,y<1)の気相成長を行うこと
を特徴とする化合物半導体の気相成長法
5. In the vapor phase growth method of a III-V compound semiconductor, HCl or PCl 3 sent by a carrier gas containing helium as a main component in a source region is reacted with aluminum metal kept at a melting point or lower to chlorinate. GaCl and P obtained by making aluminum and then reacting aluminum chloride heated to 700 to 800 ° C., metallic Ga kept at 700 to 800 ° C., and PCl 3 sent by a carrier gas mainly containing helium. 4 , and metal In kept at 700-800 ℃
And PC sent by carrier gas mainly consisting of helium
By introducing InCl and P 4 obtained by reacting with l 3 into the growth region, mixing and reacting the mixture with hydrogen.
Vapor phase growth method of compound semiconductor characterized by performing vapor phase growth of Al x In Y Ga 1-XY P (0 <x, y <1)
【請求項6】III−V族化合物半導体の気相成長法にお
いて、ソース領域においてヘリウムを主体とするキャリ
ヤガスにより送られるHClまたはPCl3と融点以下に保た
れた金属アルミニウムとを反応させて塩化アルミニウム
を作り、ついで700〜800℃に加熱された塩化アルミニウ
ム、700〜800℃に保たれた金属GaとHClを反応させて得
られたGaCl、およびAsH3とを成長領域へ導入、混合し、
該混合物を水素と反応させることによりAlXGa1-XAs(0
<x<1)の気相成長を行うことを特徴とする化合物半
導体の気相成長法
6. In the vapor phase growth method of a III-V compound semiconductor, HCl or PCl 3 sent by a carrier gas mainly containing helium is reacted with metal aluminum kept at a melting point or lower in a source region to form a chloride. Aluminum is made, then aluminum chloride heated to 700 to 800 ° C., GaCl obtained by reacting metallic Ga kept at 700 to 800 ° C. with HCl, and AsH 3 are introduced into a growth region and mixed,
By reacting the mixture with hydrogen, Al X Ga 1-X As (0
<X <1) vapor deposition method for compound semiconductor vapor deposition
JP21876286A 1986-09-17 1986-09-17 Vapor growth method for compound semiconductors Expired - Fee Related JPH0760800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21876286A JPH0760800B2 (en) 1986-09-17 1986-09-17 Vapor growth method for compound semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21876286A JPH0760800B2 (en) 1986-09-17 1986-09-17 Vapor growth method for compound semiconductors

Publications (2)

Publication Number Publication Date
JPS6373617A JPS6373617A (en) 1988-04-04
JPH0760800B2 true JPH0760800B2 (en) 1995-06-28

Family

ID=16725001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21876286A Expired - Fee Related JPH0760800B2 (en) 1986-09-17 1986-09-17 Vapor growth method for compound semiconductors

Country Status (1)

Country Link
JP (1) JPH0760800B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803788B2 (en) 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Vapor phase growth method of Al III-V compound semiconductor, Al III-V compound semiconductor manufacturing method and manufacturing apparatus
JP4749792B2 (en) * 2005-08-03 2011-08-17 国立大学法人東京農工大学 Method for producing aluminum group III nitride crystal and crystal laminated substrate
CN107902695A (en) * 2017-11-21 2018-04-13 红河砷业有限责任公司 A kind of method for efficiently preparing high-purity aluminium arsenide

Also Published As

Publication number Publication date
JPS6373617A (en) 1988-04-04

Similar Documents

Publication Publication Date Title
KR100693078B1 (en) VAPOR PHASE GROWTH METHOD FOR Al-CONTAINING ?-V GROUP COMPOUND SEMICONDUCTOR, AND METHOD AND DEVICE FOR PRODUCING Al-CONTAINING ?-V GROUP COMPOUND SEMICONDUCTOR
US4404265A (en) Epitaxial composite and method of making
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
US4368098A (en) Epitaxial composite and method of making
EP0238830B1 (en) Epitaxial growth method and apparatus therefor
JP3879173B2 (en) Compound semiconductor vapor deposition method
US3394390A (en) Method for making compond semiconductor materials
US3338761A (en) Method and apparatus for making compound materials
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JP3991393B2 (en) Compound semiconductor manufacturing equipment
US8728233B2 (en) Method for the production of group III nitride bulk crystals or crystal layers from fused metals
JPH1017400A (en) Method for magnesium-doped nitride type iii-v group compound semiconductor crystal
JPH0760800B2 (en) Vapor growth method for compound semiconductors
JP2714824B2 (en) Molecular beam epitaxial growth method and apparatus for implementing the method
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
EP0349781A2 (en) Metal organic vapor phase epitaxial growth of group III-V compounds
JPS63227007A (en) Vapor growth method
Cheng et al. Material Technologies
JPH01103982A (en) Production of single crystal of group iii-v compound semiconductor
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JPS5858316B2 (en) 3-5 Zokukago Buttsunokisou Seichiyouhouhou
JPH04124098A (en) Process for vapor-phase growth of compound semiconductor mixed crystal
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPH04359509A (en) Epitaxial growth method of ternary compound semiconductor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees