JPH0760038B2 - Defroster for refrigerator - Google Patents

Defroster for refrigerator

Info

Publication number
JPH0760038B2
JPH0760038B2 JP63158362A JP15836288A JPH0760038B2 JP H0760038 B2 JPH0760038 B2 JP H0760038B2 JP 63158362 A JP63158362 A JP 63158362A JP 15836288 A JP15836288 A JP 15836288A JP H0760038 B2 JPH0760038 B2 JP H0760038B2
Authority
JP
Japan
Prior art keywords
cooling coil
pipe
cooling
distributor
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63158362A
Other languages
Japanese (ja)
Other versions
JPH028668A (en
Inventor
昭三 富田
Original Assignee
株式会社西日本精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西日本精機製作所 filed Critical 株式会社西日本精機製作所
Priority to JP63158362A priority Critical patent/JPH0760038B2/en
Publication of JPH028668A publication Critical patent/JPH028668A/en
Publication of JPH0760038B2 publication Critical patent/JPH0760038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷却コイルに霜が付着した場合、冷却コイル
内に霜取り用の冷媒ガスを流しその凝縮熱で霜を取り除
く形式の除霜機構を備えた冷凍機に関し、特にそのうち
冷却コイルを複数本有するものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a defrosting mechanism of a type in which, when frost adheres to a cooling coil, a refrigerant gas for defrosting is flown into the cooling coil to remove the frost by its condensation heat. TECHNICAL FIELD The present invention relates to a refrigerator provided with, and in particular, to an improvement of a refrigerator having a plurality of cooling coils.

(従来の技術) 冷却コイルが複数本有る場合、冷却コイルの入口側に分
配器を接続して各冷却コイルに膨張弁からの冷媒を分配
する。
(Prior Art) When there are a plurality of cooling coils, a distributor is connected to the inlet side of the cooling coils to distribute the refrigerant from the expansion valve to each cooling coil.

このように分配器を有する複数本の冷却コイルに霜取り
用の冷媒ガスを供給する場合、従来は、霜取りガス供給
管の先端を分配器に直結し、霜取りガスを冷凍サイクル
中の冷媒の流れと同様に、分配器を経由して各冷却コイ
ルに供給していた。
When supplying the refrigerant gas for defrosting to a plurality of cooling coils having a distributor in this way, conventionally, the tip of the defrosting gas supply pipe is directly connected to the distributor, and the defrosting gas is connected to the flow of the refrigerant in the refrigeration cycle. Similarly, each cooling coil was supplied via a distributor.

(発明が解決しようとする課題) しかし、霜取りガスは冷凍サイクルに流れる冷媒と違い
完全なガス体であるから、流動抵抗が大きい。このため
分配器を通過しにくく冷却コイルに充分な量の霜取りガ
スを供給できず、除霜効率が悪いという欠点が従来あっ
た。
(Problem to be Solved by the Invention) However, the defrosting gas is a perfect gas body unlike the refrigerant flowing in the refrigeration cycle, and therefore has a large flow resistance. For this reason, there has been a drawback that it is difficult to pass through the distributor and a sufficient amount of defrosting gas cannot be supplied to the cooling coil, resulting in poor defrosting efficiency.

分配器の管路を拡張すれば、抵抗が減り、充分な量の霜
取りガスを流すことができるが、反面、分配器全体が大
型化し管の溶接もむづかしくなってコスト高になる。
If the pipe of the distributor is expanded, the resistance is reduced and a sufficient amount of defrost gas can be flown, but on the other hand, the entire distributor becomes large and welding of the pipe becomes difficult, resulting in high cost.

これに対し分配器を経由することなく、霜取りガス専用
の太い管をヘッダを介して各冷却コイルに接続して霜取
りガスを供給するようにすれば、分配器は大型化せずに
従来どおりでも充分な量の霜取りガスを冷却コイルに供
給でき都合がよい。
On the other hand, if a thick pipe dedicated to the defrosting gas is connected to each cooling coil via the header to supply the defrosting gas without passing through the distributor, the distributor does not need to be upsized and can be used as before. It is convenient to supply a sufficient amount of defrost gas to the cooling coil.

しかしこの場合、冷凍サイクルにおいては冷却用の冷媒
ガスがヘッダに流入するから、冷媒ガスが通過抵抗のよ
り小さい冷却コイルへ集中するおそれをまぬがれない。
冷媒が一ヶ所の冷却コイルへ集中すると、単に他の冷却
コイルが有効に働かないことになるばかりでなく、冷却
コイルより液が戻り、出口側に備える膨張弁の感温筒が
これを感知して膨張弁を自動的に絞ることになるから、
冷却効率が著しく低下してしまう。
However, in this case, in the refrigeration cycle, since the cooling refrigerant gas flows into the header, it is unavoidable that the refrigerant gas concentrates on the cooling coil having a smaller passage resistance.
If the refrigerant concentrates in one cooling coil, not only the other cooling coils will not work effectively, but also the liquid will return from the cooling coil and the temperature sensing cylinder of the expansion valve on the outlet side will detect this. Will automatically throttle the expansion valve,
Cooling efficiency is significantly reduced.

そこで本発明では、こうした事情を考慮して、分配器の
大型化を避ける都合上、霜取りガス供給管をヘッダを介
して冷却コイルに接続はするが、冷凍サイクルの際、冷
媒のヘッダの流入を阻止する構造にし、これにより一部
の冷却コイルに冷媒が集中するのを防止し、以て冷却効
率を落とすことなく除霜することを目的とする。
Therefore, in the present invention, in consideration of such a situation, the defrosting gas supply pipe is connected to the cooling coil through the header for the sake of convenience in avoiding an increase in the size of the distributor. The purpose is to prevent the refrigerant from concentrating on a part of the cooling coil by using the structure to prevent the defrosting without deteriorating the cooling efficiency.

(課題を解決するための手段) 本発明では、複数本の冷却コイルの各入口側端部にヘッ
ダを介して霜取りガス供給管を接続すると共に、膨張弁
の出口側配管に分配器を接続し、この分配器の出口側に
外径が冷却コイルの内径より細い分岐管を前記冷却コイ
ルと同様本備え、各分岐管を前記冷却コイルの各入口側
端部より冷却コイル管内にそれぞれ挿通して冷却コイル
の内周と分岐管の外周の間に空間を形成すると共に、各
分岐管先端を冷却コイルの出口側に向けるように構成す
る。
(Means for Solving the Problems) In the present invention, a defrosting gas supply pipe is connected to each inlet side end of a plurality of cooling coils via a header, and a distributor is connected to an outlet side pipe of an expansion valve. A branch pipe having an outer diameter smaller than the inner diameter of the cooling coil is provided on the outlet side of the distributor, similarly to the cooling coil, and each branch pipe is inserted into the cooling coil pipe from each inlet end of the cooling coil. A space is formed between the inner circumference of the cooling coil and the outer circumference of the branch pipe, and the tip of each branch pipe is directed toward the outlet side of the cooling coil.

(作用) 本発明の霜取り中は、霜取りガスはその供給管よりヘッ
ダを経て分岐管の挿入部分の外周を流れながら各冷却コ
イルに行き渡る。
(Operation) During the defrosting of the present invention, the defrosting gas reaches the respective cooling coils while flowing from the supply pipe through the header to the outer periphery of the insertion portion of the branch pipe.

冷凍サイクルのときは、膨張弁より噴出する霧状の冷媒
が分配器より分岐管を経てその先端開口より各冷却コイ
ル中に供給され、冷媒は冷却コイル内でガス化が促進さ
れるから、ガス化し体積が膨張して流動抵抗を増す。そ
して冷却コイル中の入口側の実質的な管径が分岐管の挿
入により狭小になっていることに加え、分岐管より吐出
する液分がこの狭小な管径を通過してヘッダ側に仮に逆
流しても途中でガス化して抵抗が増すから、冷媒液は冷
却コイルをヘッダ側に逆流しないでことごとく冷却コイ
ルの出口側に向って流れる。
During the refrigeration cycle, the atomized refrigerant ejected from the expansion valve is supplied from the distributor through the branch pipe to each cooling coil through the tip opening of the distributor, and the refrigerant is gasified in the cooling coil. The volume expands and the flow resistance increases. In addition to the fact that the pipe diameter on the inlet side of the cooling coil is narrowed due to the insertion of the branch pipe, the liquid component discharged from the branch pipe passes through this narrow pipe diameter and tentatively flows back to the header side. Even if it is gasified in the middle and resistance increases, the refrigerant liquid flows toward the outlet side of the cooling coil without backflowing to the header side.

従って、仮に各冷却コイル間に流通抵抗の差があって
も、いったん冷却コイルに供給された冷媒は他の冷却コ
イルに流出することがなく、一部の冷却コイルに冷媒が
集中するおそれはない。
Therefore, even if there is a difference in flow resistance between the cooling coils, the refrigerant once supplied to the cooling coils does not flow out to other cooling coils, and there is no possibility that the refrigerant will concentrate on some cooling coils. .

(実施例) 第1、2図は本発明実施例の要部を示し、第3図はその
全体の配管図を示す。
(Embodiment) FIGS. 1 and 2 show a main part of an embodiment of the present invention, and FIG. 3 shows an overall piping diagram thereof.

3本の冷却コイル1の入口側端部にヘッダ2を接続し、
ヘッダ2の一端に霜取りガス供給管3を接続する。4は
膨張弁で、その出口側配管に従来公知の分配器5より分
岐する3本の分岐管6a、6b、6cをそれぞれヘッダ2を貫
通して各冷却コイル1の入口側端部よりその管内に挿通
し、各分岐管6a、6b、6cの先端を冷却コイル1の出口側
に向けて開口する。
Connect the header 2 to the inlet side end of the three cooling coils 1,
The defrosting gas supply pipe 3 is connected to one end of the header 2. An expansion valve 4 has three branch pipes 6a, 6b, 6c branched from a conventionally known distributor 5 in its outlet side pipe, which penetrate the header 2 from the inlet side end of each cooling coil 1 inside the pipe. And the ends of the respective branch pipes 6a, 6b, 6c are opened toward the outlet side of the cooling coil 1.

7は冷却コイル1の外周に等間隔に連接した多数のフィ
ンで、分岐管6a、6b、6cの先端はいちばん外側のフィン
より4ないし5枚内側のフィン7に達する位置まで深く
挿入する。
Reference numeral 7 denotes a large number of fins connected to the outer periphery of the cooling coil 1 at equal intervals, and the tips of the branch pipes 6a, 6b, 6c are inserted deeply to reach the fins 7 which are 4 to 5 inward of the outermost fin.

なお、分岐管の挿入部分の長さは、その先端が少くもい
ちばん外側のフィンより内側に達することが望ましい。
The length of the insertion part of the branch pipe is preferably such that the tip reaches at least the inner side of the outer fin.

8は圧縮機で、その吐出側8aの高圧側配管に凝縮器9と
膨張弁4を接続し、低圧側配管の冷却コイル1の出口
は、圧力調整弁10と液ガス分離タンク11を経て圧縮器8
の吸引側8bに接続する。
Reference numeral 8 is a compressor. A condenser 9 and an expansion valve 4 are connected to a high pressure side pipe of a discharge side 8a of the compressor, and an outlet of a cooling coil 1 of the low pressure side pipe is compressed via a pressure regulating valve 10 and a liquid gas separation tank 11. Bowl 8
Connect to the suction side 8b of.

液ガス分離タンク11の底部には受熱コイル12を接続し、
高圧側配管の一部の加熱コイル14と共に保温材(図示し
ない)を積めた畜熱槽13内に埋設する。そして霜取りガ
ス供給管3の始端を、加熱コイル14と凝縮器9の間の高
圧側配管に接続する。
A heat receiving coil 12 is connected to the bottom of the liquid gas separation tank 11,
It is embedded in a heat storage tank (13) in which a heat insulating material (not shown) is stacked together with a part of the heating coil (14) of the high-pressure side pipe. Then, the starting end of the defrosting gas supply pipe 3 is connected to the high pressure side pipe between the heating coil 14 and the condenser 9.

15は霜取り用電磁弁、16は過冷却防止用のサーモ電磁弁
である。
Reference numeral 15 is a defrosting solenoid valve and 16 is a thermo solenoid valve for preventing overcooling.

冷凍サイクル中、圧縮機8より吐出する高圧の冷媒ガス
は、加熱コイル14で畜熱槽13を加熱したのち凝縮器9に
達して液化し、さらにサーモ電磁弁16と膨張弁4を経て
圧力降下し霧状態になり、分配器5より分岐管6a、6b、
6cを経て各冷却コイル1に供給される。
During the refrigeration cycle, the high-pressure refrigerant gas discharged from the compressor 8 heats the storage tank 13 by the heating coil 14, reaches the condenser 9, and is liquefied. Further, the pressure drops through the thermo-electromagnetic valve 16 and the expansion valve 4. It becomes a mist state and the branch pipes 6a, 6b from the distributor 5
It is supplied to each cooling coil 1 via 6c.

冷媒は冷却コイル1において蒸発し周囲を冷却してガス
状態になり、圧力調整弁10を経て液ガス分離タンク11に
流入し、さらに圧縮機8に吸引されこれを循環する。
The refrigerant evaporates in the cooling coil 1 and cools the surroundings to become a gas state, flows into the liquid-gas separation tank 11 via the pressure regulating valve 10, is further sucked by the compressor 8 and circulates therein.

除霜サイクルのときは、霜取り用電磁弁15を開け圧縮機
8を運転してその吐出ガスをヘッダ2より冷却コイル1
の内周と分岐管6a、6b、6cの外周の間の空間を経て各冷
却コイル1に供給し、ここで液化しその凝縮熱で霜を取
る。液化した冷媒は液ガス分離タンク11に入り、さらに
受熱コイル12に流下して畜熱槽13の熱により再蒸発した
のち圧縮機8に吸引され、これを循環する。
In the defrosting cycle, the defrosting solenoid valve 15 is opened to operate the compressor 8 so that the discharge gas from the header 2 is cooled by the cooling coil 1.
Is supplied to each cooling coil 1 through a space between the inner circumference of the cooling pipe 1 and the outer circumferences of the branch pipes 6a, 6b, 6c, where it is liquefied and frost is removed by its condensation heat. The liquefied refrigerant enters the liquid-gas separation tank 11, further flows down to the heat receiving coil 12, is re-evaporated by the heat of the heat storage tank 13, and is then sucked into the compressor 8 and circulates therein.

しかして冷凍サイクルの際、分岐管6a、6b、6cの先端よ
り流出する冷媒は、フィン7の作用によりガス化が促進
されるから、冷却コイルの内周と分岐管の外周の間の空
間をヘッダ2側へ逆流することがない。従って、冷媒は
尽く分岐管先端開口より、挿入した冷却コイル1の出口
側に向って流れ、隣接する他の冷却コイルには流出しな
い。
However, during the refrigeration cycle, the refrigerant flowing out from the tips of the branch pipes 6a, 6b, 6c is promoted to gasify by the action of the fins 7, so that the space between the inner circumference of the cooling coil and the outer circumference of the branch pipe is It does not flow back to the header 2 side. Therefore, the refrigerant flows from the exhaust end of the branch pipe toward the outlet side of the inserted cooling coil 1 and does not flow out to another adjacent cooling coil.

第4図は、ヘッダ2が冷却コイル1の上方に位置する実
施例を示す。この場合、分岐管6は、ヘッダ2に接続す
る冷却コイル1のL字形屈曲部の管壁を貫いて冷却コイ
ル中に挿通する。
FIG. 4 shows an embodiment in which the header 2 is located above the cooling coil 1. In this case, the branch pipe 6 penetrates the pipe wall of the L-shaped bent portion of the cooling coil 1 connected to the header 2 and is inserted into the cooling coil.

(発明の効果) これを要するに、本発明においては、分配器の出口側に
外径が冷却コイルの内径より細い分岐管を前記冷却コイ
ルと同数本備え、各分岐管を前記冷却コイルの各入口側
端部より冷却コイル管内にそれぞれ挿通して冷却コイル
の内周と分岐管の外周の間に空間を形成するから、冷却
コイルの入口側を霜取りガス供給用のヘッダで連結し、
霜取り中は霜取りガスをヘッダより冷却コイルの内周と
分岐管の外周の間の空間を経て各冷却コイルへ供給する
が、冷凍サイクル中は分岐管より流出する冷媒液は冷却
コイルの内周と分岐管の外周の間の空間を通過できない
ためにヘッダ側へ逆流せず、各冷却コイルは相互に分離
独立した状態にある。
(Effects of the invention) In short, in the present invention, the same number of branch pipes as the cooling coil are provided on the outlet side of the distributor, the branch pipes having an outer diameter smaller than the inner diameter of the cooling coil. Since a space is formed between the inner circumference of the cooling coil and the outer circumference of the branch pipe by inserting the cooling coil tubes from the side ends, the cooling coil inlet side is connected with a defrosting gas supply header,
During defrosting, defrosting gas is supplied from the header to each cooling coil through the space between the inner circumference of the cooling coil and the outer circumference of the branch pipe, but during the refrigeration cycle, the refrigerant liquid flowing out from the branch pipe is Since it cannot pass through the space between the outer peripheries of the branch pipes, it does not flow back to the header side, and the cooling coils are separated from each other and independent of each other.

従って、一部の冷却コイルが他より流通抵抗が小さい場
合でも冷媒がそこに集中せず、複数本の冷却コイル全部
に平均して流れ、冷却効率を良く維持するという効果を
奏する。
Therefore, even if a part of the cooling coils has a smaller flow resistance than the others, the refrigerant does not concentrate there, and flows evenly to all of the plurality of cooling coils, so that the cooling efficiency is maintained well.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の要部の側面図、第2図はその平
面図(但し、第1、2図はフィンを一部省略してい
る。)、第3図は全体の配管図である。 第4図は他の実施例の要部の側面図である。 1は冷却コイル、2はヘッダ、3は霜取りガス供給管、
4は膨張弁、5は分配器、6a、6b、6cは分岐管、7はフ
ィン、8は圧縮機、9は凝縮器、11は液ガス分離タン
ク、15は霜取り用電磁弁。
FIG. 1 is a side view of an essential part of an embodiment of the present invention, FIG. 2 is a plan view thereof (however, fins are partially omitted in FIGS. 1 and 2), and FIG. 3 is an overall piping diagram. Is. FIG. 4 is a side view of the main part of another embodiment. 1 is a cooling coil, 2 is a header, 3 is a defrosting gas supply pipe,
4 is an expansion valve, 5 is a distributor, 6a, 6b and 6c are branch pipes, 7 is a fin, 8 is a compressor, 9 is a condenser, 11 is a liquid gas separation tank, and 15 is a solenoid valve for defrosting.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数本の冷却コイルの各入口側端部にヘッ
ダを介して霜取りガス供給管を接続すると共に、膨張弁
の出口側配管に分配器を接続し、この分配器の出口側に
外径が冷却コイルの内径より細い分岐管を前記冷却コイ
ルと同数本備え、各分岐管を前記冷却コイルの各入口側
端部より冷却コイル管内にそれぞれ挿通して冷却コイル
の内周と分岐管の外周の間に空間を形成すると共に、各
分岐管先端を冷却コイルの出口側に向けて開口して成る
冷凍機の除霜装置。
1. A defrosting gas supply pipe is connected to each inlet end of a plurality of cooling coils via a header, and a distributor is connected to an outlet side pipe of an expansion valve, and an outlet side of this distributor is connected. The same number of branch pipes as the cooling coil, the outer diameter of which is smaller than the inner diameter of the cooling coil, is provided, and the respective branch pipes are inserted into the cooling coil pipe from the respective inlet side end portions of the cooling coil, and the inner circumference of the cooling coil and the branch pipes are inserted. A defroster for a refrigerator in which a space is formed between the outer peripheries and the ends of each branch pipe are opened toward the outlet side of the cooling coil.
JP63158362A 1988-06-27 1988-06-27 Defroster for refrigerator Expired - Fee Related JPH0760038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158362A JPH0760038B2 (en) 1988-06-27 1988-06-27 Defroster for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158362A JPH0760038B2 (en) 1988-06-27 1988-06-27 Defroster for refrigerator

Publications (2)

Publication Number Publication Date
JPH028668A JPH028668A (en) 1990-01-12
JPH0760038B2 true JPH0760038B2 (en) 1995-06-28

Family

ID=15670021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158362A Expired - Fee Related JPH0760038B2 (en) 1988-06-27 1988-06-27 Defroster for refrigerator

Country Status (1)

Country Link
JP (1) JPH0760038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196301A1 (en) * 2020-12-18 2022-06-23 Carrier Corporation Air-cooled chiller with heat recovery system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583354Y2 (en) * 1993-09-24 1998-10-22 株式会社西日本精機製作所 Refrigerator defroster
US6051898A (en) * 1998-01-02 2000-04-18 Japan Servo Co., Ltd. Stepping motor having external rotor and electromagnetic-combined-permanent-magnet stator
CN102003842B (en) * 2010-11-04 2013-04-10 三花控股集团有限公司 Evaporator and refrigeration system with same
US20130312436A1 (en) * 2012-05-22 2013-11-28 Nordyne Llc Heat pump with improved defrost cycle and method of defrosting a heat exchanger
US8869545B2 (en) 2012-05-22 2014-10-28 Nordyne Llc Defrosting a heat exchanger in a heat pump by diverting warm refrigerant to an exhaust header
CN106288532B (en) * 2016-10-13 2018-06-29 珠海格力电器股份有限公司 Heat exchanger assembly, air cooler, refrigerating unit and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747670U (en) * 1980-08-30 1982-03-17
JPS60129579A (en) * 1983-12-17 1985-07-10 大冷工業株式会社 Method and device for defrosting cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196301A1 (en) * 2020-12-18 2022-06-23 Carrier Corporation Air-cooled chiller with heat recovery system
US11781792B2 (en) * 2020-12-18 2023-10-10 Carrier Corporation Air-cooled chiller with heat recovery system

Also Published As

Publication number Publication date
JPH028668A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
US3633378A (en) Hot gas defrosting system
US20110271703A1 (en) Refrigerator
US2876630A (en) Refrigeration system including defrosting apparatus
JP2827404B2 (en) Refrigerant condenser
JPH0760038B2 (en) Defroster for refrigerator
US5715689A (en) Evaporator for combination refrigerator/freezer
US20080016896A1 (en) Refrigeration system with thermal conductive defrost
US7073347B2 (en) Evaporator for a refrigeration system
US4019341A (en) Heat exchanging process of refrigerant gas in refrigerator
ITMI962739A1 (en) A DEFROSTING EQUIPMENT FOR A HEAT EXCHANGER AND A METHOD USING IT TO REMOVE ICE
JP2000205735A (en) Refrigerator
JP2583354Y2 (en) Refrigerator defroster
JPS5826511B2 (en) Defrosting device for refrigerators
JPS6015081Y2 (en) Refrigeration equipment
KR0129240B1 (en) Refraining apparatus of liquid compression for refrigerator cycle
JPS5838362Y2 (en) refrigerator
KR100238762B1 (en) Automatic vending machine with function of cool and hot
US6370901B1 (en) Compound evaporation system and device thereof
JPS632858Y2 (en)
JPH07101136B2 (en) Refrigeration equipment
KR900005991Y1 (en) Refrigeration cycle
JPH0424471A (en) Refrigerating cycle
JPS5820867Y2 (en) Cooler
JPS6130131Y2 (en)
JP2000320993A (en) Fan coil evaporator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees