JPH0759711B2 - Equipment for producing fine particle colloids and magnetic fluids - Google Patents

Equipment for producing fine particle colloids and magnetic fluids

Info

Publication number
JPH0759711B2
JPH0759711B2 JP9517990A JP9517990A JPH0759711B2 JP H0759711 B2 JPH0759711 B2 JP H0759711B2 JP 9517990 A JP9517990 A JP 9517990A JP 9517990 A JP9517990 A JP 9517990A JP H0759711 B2 JPH0759711 B2 JP H0759711B2
Authority
JP
Japan
Prior art keywords
reaction
fine particle
metal nitride
producing
flow resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9517990A
Other languages
Japanese (ja)
Other versions
JPH03294398A (en
Inventor
功 中谷
政行 土方
務 高橋
Original Assignee
科学技術庁金属材料技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁金属材料技術研究所長 filed Critical 科学技術庁金属材料技術研究所長
Priority to JP9517990A priority Critical patent/JPH0759711B2/en
Priority to US07/684,387 priority patent/US5180512A/en
Publication of JPH03294398A publication Critical patent/JPH03294398A/en
Publication of JPH0759711B2 publication Critical patent/JPH0759711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/442Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a metal or alloy, e.g. Fe

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、微粒子コロイドおよび磁性流体の製造装置
に関するものである。さらに詳しくは、この発明は、高
効率で、簡便に微粒子コロイド、または磁性流体の製造
を可能とする新しい気相液相反応装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to an apparatus for producing fine particle colloid and magnetic fluid. More specifically, the present invention relates to a new gas-phase liquid-phase reaction apparatus which enables highly efficient and convenient production of fine particle colloids or magnetic fluids.

(従来の技術とその課題) 窒化金属微粒子コロイドあるいは窒化金属磁性流体を製
造する方法として、この発明の発明者らによる気相液相
反応法がすでに提案されており、またそのための気相液
相反応装置も知られている。
(Prior Art and Problems Thereof) As a method for producing a metal nitride fine particle colloid or a metal nitride magnetic fluid, a vapor phase liquid phase reaction method has already been proposed by the inventors of the present invention, and a vapor phase liquid phase for that purpose has been proposed. Reactors are also known.

すでに提案されているこの方法は、たとえば鉄カーボニ
ルFe(CO)等の遷移金属カーボニルと界面活性剤の非
水溶液に、アンモニアガス(NH3)等を導入して加熱
し、非水溶液中にたとえば窒化鉄のような窒化金属の微
粒子を生成させ、同時に界面活性剤の働きにより、窒化
金属微粒子を非水溶媒中に分散させることにより、窒化
金属微粒子コロイド、あるいは窒化金属磁性流体を得る
ことを特徴としている。この方法では、溶液中で微粒子
の核形成と成長が行われるため、微粒子のサイズが均一
になりやすいことが特徴でもある。
This method, which has already been proposed, is prepared by introducing ammonia gas (NH 3 ) or the like into a non-aqueous solution of a transition metal carbonyl such as iron carbonyl Fe (CO) 5 and a surfactant and heating the non-aqueous solution in the non-aqueous solution. Characterized by producing fine particles of metal nitride such as iron nitride and, at the same time, dispersing the metal nitride fine particles in a non-aqueous solvent by the action of a surfactant to obtain a metal nitride fine particle colloid or a metal nitride magnetic fluid. I am trying. In this method, since nucleation and growth of fine particles are performed in a solution, the size of the fine particles is likely to be uniform.

また、この方法を発展させ、低濃度ではもちろんのこ
と、高濃度の窒化金属微粒子コロイドおよび高濃度の窒
化金属磁性流体を、微粒子径を小さく、かつ、さらにそ
の微粒子の径を均一に揃えて製造することのできる改良
された方法もこの発明の発明者により見出されている。
その方法は鉄カーボニルFe(CO)のような遷移金属カ
ーボニルと界面活性剤の非水溶液に、アンモニアガスNH
3等を導入しながら、100℃より低い温度で前駆物質を合
成するための反応を行った後に、反応生成物を減圧蒸留
することにより未反応のFe(CO)を除去した上で、そ
れに続いて含窒素化合物を導入しながら、120℃以上の
高い温度で前駆物質から窒化鉄を合成する非連続的な2
段階の反応を行うものである。高濃度の窒化金属微粒子
コロイドあるいは窒化金属磁性流体を得ようとするとき
は、この系にさらに原料の遷移金属カーボニル、たとえ
ばFe(CO)を添加し、上記の反応過程を繰り返すこと
により、段階的に濃度を上げていくことができる。なお
減圧蒸留を行うかわりに、前駆物質の合成反応を極めて
長時間にわたって行うことも同様な作用効果を持つと考
えられる。しかしながら、この方法の場合には、質量作
用の法則からも明かなように、反応が進むにつれて、反
応速度が小さくなり、目的の反応が終了するまでに極め
て長時間を必要とし、現実的ではない。
Further, by developing this method, it is possible to produce not only a low concentration but also a high concentration metal nitride fine particle colloid and a high concentration metal nitride magnetic fluid with a small fine particle diameter and a uniform fine particle diameter. An improved method of doing this has also been found by the inventor of this invention.
The method is to use non-aqueous solution of transition metal carbonyl such as iron carbonyl Fe (CO) 5 and surfactant, ammonia gas NH
While introducing 3 etc., the reaction for synthesizing the precursor at a temperature lower than 100 ° C. was performed, and then the unreacted Fe (CO) 6 was removed by distillation of the reaction product under reduced pressure. Then, while introducing a nitrogen-containing compound, a non-continuous method for synthesizing iron nitride from a precursor at a high temperature of 120 ° C or higher
It is a step-wise reaction. In order to obtain a high-concentration metal nitride fine particle colloid or a metal nitride magnetic fluid, a transition metal carbonyl such as Fe (CO) 5 as a raw material is further added to this system, and the above reaction process is repeated. The concentration can be increased. It is considered that instead of performing the vacuum distillation, carrying out the synthesis reaction of the precursor for an extremely long time has the same effect. However, in the case of this method, as is clear from the law of mass action, as the reaction progresses, the reaction rate decreases, and it takes an extremely long time to complete the desired reaction, which is not realistic. .

一方、真空ポンプを作動させて未反応原料である金属カ
ーボニルを減圧蒸留により除去する前者の方法は、操作
が煩雑であり、作業効率の高いものではなかった。また
減圧蒸留のために反応系をいったん室温まで冷却する必
要があり、エネルギー効率も高くなかった。さらに未反
応原料を除去するため、原料の利用効率も低いものであ
った。
On the other hand, the former method of operating the vacuum pump to remove the unreacted metal carbonyl by vacuum distillation is complicated in operation and not high in work efficiency. Further, the reaction system had to be once cooled to room temperature for vacuum distillation, and the energy efficiency was not high. Further, since the unreacted raw material is removed, the utilization efficiency of the raw material is low.

この発明は、以上の通りの事情を踏まえてなされたもの
であり、これまでの方法と同等な作用効果をもちなが
ら、上記のような煩雑なプロセスを必要とすることな
く、高効率で微粒子コロイドおよび磁性流体を製造する
ことのできる新しい反応の装置を提供することを目的と
している。
The present invention has been made in view of the circumstances as described above, and has a high-efficiency fine particle colloid without requiring the complicated process described above while having the same effect as the conventional methods. It is also an object of the present invention to provide a new reaction device capable of producing a magnetic fluid.

(課題を解決するための手段) この発明は、上記の問題を解決するものとして、前段の
低い温度での前駆物質の合成反応の終了後、残留してい
る未反応成分としての遷移金属カーボニル、たとえばFe
(CO)を、それに続いて行う高温度での前駆物質から
窒化金属を合成する後段の反応との間に、反応槽から空
間的に遠ざけて、後段の反応に関与しないようにする合
理的な装置を提供しようとするものである。
(Means for Solving the Problems) As a solution to the above problems, the present invention provides a transition metal carbonyl as an unreacted component remaining after the completion of a precursor synthesis reaction at a low temperature in the preceding stage, For example Fe
(CO) 5 should be spatially separated from the reaction tank during the subsequent reaction of synthesizing the metal nitride from the precursor at a high temperature, so that it does not participate in the subsequent reaction. To provide such a device.

すなわち、この発明は、気相液相反応法における窒化金
属微粒子コロイドの製造装置において、流動抵抗素子を
介して排ガス排出口を備えた還流冷却装置を反応槽に接
続してなることを特徴とする遷移金属カーボニルとアン
モニアとの加熱反応により窒化金属微粒子コロイドを生
成させる微粒子コロイドの製造装置と、これを用いてな
る窒化金属磁性流体の製造装置を提供する。
That is, the present invention is characterized in that, in the apparatus for producing metal nitride fine particle colloid in the vapor phase liquid phase reaction method, a reflux cooling device having an exhaust gas outlet is connected to a reaction tank through a flow resistance element. Provided are an apparatus for producing a fine particle colloid which produces a fine particle metal nitride colloid by a heating reaction of a transition metal carbonyl and ammonia, and an apparatus for producing a metal nitride magnetic fluid using the same.

次にこの発明による装置の概要を第1図に沿って説明す
る。
Next, the outline of the apparatus according to the present invention will be described with reference to FIG.

たとえばこの第1図に示したように、この発明の装置で
は、耐熱材料、望ましくは金属製の丸底の反応槽(4)
にいくつかの気密な導入フランジ(5)、(6)、
(7)等をもつ蓋(8)を気密になるように接続する。
導入フランジ(5)には、回転軸を挿入し、その回転時
の先端には撹はん子(9)をとりつけて、溶液(10)を
撹はんできるようにする。導入管(11)を通じて、アン
モニアNH3ガスを導入し、導入管(12)を通じて、たと
えばArガスのような不活性ガスを溶液(10)に導入す
る。また、一例として、反応温度を計測し制御するため
の熱電対あるいは抵抗温度計(13)を導入フランジ
(6)を通じて、反応槽(4)に挿入する。導入フラン
ジ(7)から原料の遷移金属カーボニル液体(14)を導
入できるようにし、また導入口(15)から界面活性剤
(16)を反応系に添加できるようにする。反応槽(4)
の底部は抵抗加熱装置(17)により加熱できる構造にな
っている。
For example, as shown in FIG. 1, in the apparatus of the present invention, a round bottom reaction vessel (4) made of a heat-resistant material, preferably metal.
With several airtight introduction flanges (5), (6),
A lid (8) having (7) etc. is connected so as to be airtight.
A rotating shaft is inserted into the introduction flange (5), and a stirrer (9) is attached to the tip of the rotating shaft so that the solution (10) can be stirred. Ammonia NH 3 gas is introduced through the introduction pipe (11), and an inert gas such as Ar gas is introduced into the solution (10) through the introduction pipe (12). Further, as an example, a thermocouple or a resistance thermometer (13) for measuring and controlling the reaction temperature is inserted into the reaction tank (4) through the introduction flange (6). The transition metal carbonyl liquid (14) as a raw material can be introduced from the introduction flange (7), and the surfactant (16) can be added to the reaction system from the introduction port (15). Reaction tank (4)
The bottom of is structured so that it can be heated by a resistance heating device (17).

また、この発明の装置においては、冷却管(1)の下部
に気体に対しては流動抵抗が低く、液体に対しては流動
抵抗が高い流動抵抗素子(2)を設け、流動抵抗素子
(2)を介して、冷却管(1)を反応槽(4)の蓋
(8)の排ガス排出口に接続し、更に冷却管(1)の上
部には液体溜(3)を設け、液体溜(3)を経て排ガス
を系外に排出するようにしている。
Further, in the device of the present invention, a flow resistance element (2) having a low flow resistance for gas and a high flow resistance for liquid is provided below the cooling pipe (1), and the flow resistance element (2) is provided. ), The cooling pipe (1) is connected to the exhaust gas discharge port of the lid (8) of the reaction tank (4), and the liquid pool (3) is provided on the upper part of the cooling pipe (1). The exhaust gas is discharged to the outside of the system through 3).

適切な構造と特性をもつ流動抵抗素子(2)は次のよう
な作用効果を呈する。すなわち、前段の低い温度、たと
えば100℃より低い温度での前駆物質の合成反応時、す
なわち、原料の遷移金属カーボニル、たとえばFe(CO)
が低い蒸気圧をもつとき、流動抵抗素子(2)を通っ
て下方から上方に流動する気体の量は少ないので、冷却
器(1)で凝結した遷移金属カーボニルの液体は流動抵
抗素子(2)を通って反応槽(4)に流下する。それに
続いて行う高い温度、たとえば120℃における前駆物質
から窒化金属を合成する後段の反応の際には、原料の遷
移金属カーボニルは高い蒸気圧を持つため、流動抵抗素
子(2)を通って下方から上方に流動する気体の量は多
くなり、冷却器(1)で凝縮した金属カーボニルの液体
は流下せず、上方に押し上げられて液体溜(3)に貯留
され、後段の反応が継続する問、ずっと反応槽内の金属
カーボニル濃度は極めて低く維持される。
The flow resistance element (2) having an appropriate structure and characteristics has the following effects. That is, during the synthesis reaction of the precursor at a low temperature in the previous stage, for example, at a temperature lower than 100 ° C.
When 5 has a low vapor pressure, the amount of gas flowing from the lower side to the upper side through the flow resistance element (2) is small, so that the liquid of the transition metal carbonyl condensed in the cooler (1) flows in the flow resistance element (2). ) And flow down to the reaction tank (4). During the subsequent subsequent reaction for synthesizing the metal nitride from the precursor at a high temperature, for example, 120 ° C., the transition metal carbonyl of the raw material has a high vapor pressure, so that it passes downward through the flow resistance element (2). The amount of gas flowing upwards from the above increases, the liquid of the metal carbonyl condensed in the cooler (1) does not flow down, but is pushed up and stored in the liquid reservoir (3), and the reaction in the latter stage continues. , The concentration of metal carbonyl in the reaction tank is kept extremely low all the time.

また、コロイド濃度を高めるために、再び100℃より低
い温度で前駆物質の合成反応を行なう際には、液体溜
(3)に貯留された遷移金属カーボニルは再び反応槽
(4)内に流下していく。このように遷移金属カーボニ
ルはその全部が反応にあずかるまで、反応槽と液体溜の
問を交互に移動しながら、反応に関与していく。
Further, in order to increase the colloid concentration, when the synthesis reaction of the precursor is performed again at a temperature lower than 100 ° C., the transition metal carbonyl stored in the liquid reservoir (3) flows down into the reaction tank (4) again. To go. In this way, the transition metal carbonyl takes part in the reaction while alternately moving between the reaction tank and the liquid reservoir until all the carbonyl participates in the reaction.

このような特徴的な作用効果を奏する流動抵抗素子
(2)としては、たとえば第2図(a)に示すように一
枚のオリフィス(18)を管の途中に挿入した構造のもの
でもよいし、第2図(b)のように複数枚のオリフィス
を設けたものであってもよい。また適当に細い内径と適
当な長さをもった蛇管でもよい。これらの形状、構造、
大きさ等はそこを流れる気体の流量、遷移金属カーボニ
ルの蒸気圧、遷移金属カーボニルの粘性を考慮し、適宜
に採用することができる。
As the flow resistance element (2) having such a characteristic effect, for example, a structure in which a single orifice (18) is inserted in the middle of the pipe as shown in FIG. 2 (a) may be used. Alternatively, a plurality of orifices may be provided as shown in FIG. 2 (b). Also, a flexible tube having an appropriately thin inner diameter and an appropriate length may be used. These shapes, structures,
The size and the like can be appropriately selected in consideration of the flow rate of gas flowing therethrough, the vapor pressure of the transition metal carbonyl, and the viscosity of the transition metal carbonyl.

(発明の効果) 以上詳しく説明したように、この発明により、 1)窒化金属コロイドおよび窒化金属磁性流体の製造に
おいて、製造プロセスが簡略化され、製造効率が大きく
向上する、 2)製造工程が減少し、作業能率が向上する、 3)高濃度の微粒子分散系の製造が可能となり、大きい
磁化をもつ磁性流体の製造が可能となる、 等の優れた効果が実現される。
(Effects of the Invention) As described in detail above, according to the present invention, 1) in the production of a metal nitride colloid and a metal nitride magnetic fluid, the production process is simplified and the production efficiency is greatly improved, and 2) the production process is reduced. However, the work efficiency is improved, 3) it is possible to manufacture a high-concentration fine particle dispersion system, and it is possible to manufacture a magnetic fluid having large magnetization.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の装置の概要を示した断面図であ
る。第2図(a)(b)は、各々、流動抵抗素子を例示
した断面図である。 1……冷却管 2……流動抵抗素子 3……液体溜 4……反応槽 5、6、7……導入フランジ 8……蓋 9……撹はん了 10……溶液 11……導入管 12……導入管 13……熱電対/抵抗温度計 14……遷移金属カーボニル液体 15……導入口 16……界面活性剤 17……抵抗加熱装置 18……オリフィス
FIG. 1 is a sectional view showing an outline of the device of the present invention. 2 (a) and 2 (b) are cross-sectional views each illustrating a flow resistance element. 1 ... Cooling tube 2 ... Flow resistance element 3 ... Liquid reservoir 4 ... Reaction tanks 5, 6, 7 ... Introduction flange 8 ... Lid 9 ... Stirring 10 ... Solution 11 ... Introduction tube 12 …… Introduction tube 13 …… Thermocouple / resistance thermometer 14 …… Transition metal carbonyl liquid 15 …… Inlet port 16 …… Surfactant 17 …… Resistance heating device 18 …… Orifice

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C10N 10:16 40:14 70:00 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C10N 10:16 40:14 70:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】気相液相反応法による窒化金属微粒子コロ
イドの製造装置において、流動抵抗素子を介して排ガス
排出口を備えた還流冷却装置を反応槽に接続してなるこ
とを特徴とする遷移金属カーボニルとアンモニアとの加
熱反応により窒化金属微粒子コロイドを生成させる微粒
子コロイドの製造装置。
1. A transition in which a reflux cooling device having an exhaust gas discharge port is connected to a reaction tank through a flow resistance element in an apparatus for producing metal nitride fine particle colloid by a gas phase liquid phase reaction method. An apparatus for producing fine particle colloid, which produces fine particles of metal nitride fine particles by heating reaction of metal carbonyl and ammonia.
【請求項2】請求項(1)記載の装置からなる窒化金属
磁性流体の製造装置。
2. An apparatus for producing a metal nitride magnetic fluid comprising the apparatus according to claim 1.
【請求項3】排ガス排出口と還流冷却装置との間に液体
溜を設け、さらに還流冷却装置と反応槽との間に流動抵
抗素子を設けたことを特徴とする請求項(1)または
(2)記載の製造装置。
3. A liquid reservoir is provided between the exhaust gas outlet and the reflux cooling device, and a flow resistance element is further provided between the reflux cooling device and the reaction tank. 2) The manufacturing apparatus described.
JP9517990A 1990-04-12 1990-04-12 Equipment for producing fine particle colloids and magnetic fluids Expired - Lifetime JPH0759711B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9517990A JPH0759711B2 (en) 1990-04-12 1990-04-12 Equipment for producing fine particle colloids and magnetic fluids
US07/684,387 US5180512A (en) 1990-04-12 1991-04-12 Method of manufacturing fine-particle colloid or magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9517990A JPH0759711B2 (en) 1990-04-12 1990-04-12 Equipment for producing fine particle colloids and magnetic fluids

Publications (2)

Publication Number Publication Date
JPH03294398A JPH03294398A (en) 1991-12-25
JPH0759711B2 true JPH0759711B2 (en) 1995-06-28

Family

ID=14130524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9517990A Expired - Lifetime JPH0759711B2 (en) 1990-04-12 1990-04-12 Equipment for producing fine particle colloids and magnetic fluids

Country Status (1)

Country Link
JP (1) JPH0759711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864379B1 (en) * 2007-05-18 2008-10-28 (주)솔고나노어드벤스 Noblemetal nano colloid maker

Also Published As

Publication number Publication date
JPH03294398A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
US4038372A (en) Process for manufacturing chloramine
CN100457250C (en) Preparing method and device of composite material of black lead for synthesizing diamond and catalyst
US5779995A (en) Sludge phase reactor and process for performing sludge phase reactions
JPH0269389A (en) Formation of saturated vapor of solid organometallic compound in vapor growth method
CN107597033B (en) A kind of spring-tube type flexibility micro chemical reactor
CN108579639A (en) A kind of device and method preparing ketoisophorone
EP0131796A2 (en) Method and apparatus for making fine magnetic powder
JPH09122481A (en) Tube reactor
JPH0759711B2 (en) Equipment for producing fine particle colloids and magnetic fluids
CN208275398U (en) A kind of device preparing ketoisophorone
CN111151205A (en) Propionaldehyde continuous production method and reaction system
US2376668A (en) Process for production of formaldehyde
CN215823047U (en) System for on-line preparation of etching liquid
CN110201611A (en) A kind of three-phase flow reaction unit and its operating method for olefin hydroformylation
CN107377994A (en) A kind of large-scale production apparatus and method of nanometer silver paste
JPS5839776Y2 (en) spray equipment
CN211677677U (en) Continuous reaction system for propionaldehyde production
JP2007117818A (en) Method for manufacturing oxide catalyst
CA1307379C (en) Process for manufacture of ferric nitrate
JP2019019024A (en) Method for producing tungsten hexafluoride
US3510519A (en) Preparation of deuterized compounds
CN111704157A (en) Preparation method of microchannel of nano zinc oxide
JPH0656418A (en) Production of inorganic oxide particle
CN206215185U (en) A kind of isothermal reactor for polymethoxy dimethyl ether synthesis
CN219111575U (en) Production system for synthesizing benzonitrile compounds

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term