JPH0759576A - Expression regulating dna, expression vector containing the dna and production of protein using the vector - Google Patents

Expression regulating dna, expression vector containing the dna and production of protein using the vector

Info

Publication number
JPH0759576A
JPH0759576A JP5209705A JP20970593A JPH0759576A JP H0759576 A JPH0759576 A JP H0759576A JP 5209705 A JP5209705 A JP 5209705A JP 20970593 A JP20970593 A JP 20970593A JP H0759576 A JPH0759576 A JP H0759576A
Authority
JP
Japan
Prior art keywords
dna
expression
protein
ala
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5209705A
Other languages
Japanese (ja)
Inventor
Atsuo Tanaka
渥夫 田中
Atsumi Ueda
充美 植田
Haruyuki Atomi
晴幸 跡見
Yutaka Teranishi
豊 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5209705A priority Critical patent/JPH0759576A/en
Publication of JPH0759576A publication Critical patent/JPH0759576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain an expression regulating DNA exhibiting promoter activity in procaryotic cell and eucaryotic cell, inducing its activity with acetic acid, glycerol and lactic acid in procaryotic cell and with ethanol and oleic acid in addition to these compounds in eucaryotic cell and having high expressing efficiency. CONSTITUTION:This expression regulating DNA exhibits a promoter activity in both procaryotic cell and eucaryotic cell hosts, induces its activity with acetic acid, glycerol and lactic acid when procaryotic cell is used as the host and with acetic acid, glycerol, lactic acid, ethanol and oleic acid when eucaryotic cell is used as the host and is capable of producing protein in high expression efficiency. It can be produced by separating genomic DNA from Candida tropicalis pK233, treating with restriction enzymes, preparing a genomic DNA library by conventional method, screening the library using a DNA fragment coding a partial amino acid sequence of isocitric acid lyase (ICL), selecting positive clone, recovering the DNA and treating with restriction enzymes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な発現調節DN
A、該DNAを含む発現ベクターおよびそれを用いたタ
ンパク質の産生方法に関し、詳細には酢酸、グリセロー
ル、乳酸等の安価な化合物の存在下においてそのプロモ
ーター活性が誘導される新規な発現調節DNA、当該D
NAを含む発現ベクターおよびそれを用いたタンパク質
の産生方法に関する。
The present invention relates to a novel expression-regulating DN.
A, an expression vector containing the DNA and a method for producing a protein using the same, more specifically, a novel expression-regulating DNA whose promoter activity is induced in the presence of an inexpensive compound such as acetic acid, glycerol or lactic acid, D
The present invention relates to an NA-containing expression vector and a method for producing a protein using the same.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近
年、遺伝子組換え技術を用いて産業上有用なタンパク質
を大量に発現させようという試みが盛んに行われてい
る。具体的には、目的とするタンパク質をコードする構
造遺伝子を原核細胞、真核細胞、動物細胞等の宿主細胞
に導入し、その上流に当該構造遺伝子の発現を調節する
DNA、例えばプロモーターを存在させる。その結果、
目的とする当該タンパク質はプロモーターが機能する特
定の条件下において大量に発現されることになる。すな
わち遺伝子操作でタンパク質を経済的に生産するために
は、このプロモーターの機能を十二分に活用する必要が
ある。
2. Description of the Related Art Recently, many attempts have been made to express a large amount of industrially useful proteins by gene recombination technology. Specifically, a structural gene encoding a target protein is introduced into a host cell such as a prokaryotic cell, a eukaryotic cell, or an animal cell, and a DNA that regulates the expression of the structural gene, such as a promoter, is present upstream of the host gene. . as a result,
The protein of interest will be expressed in large quantities under the specific conditions under which the promoter functions. That is, in order to economically produce a protein by genetic manipulation, it is necessary to fully utilize the function of this promoter.

【0003】このプロモーターを効率よく機能させるた
めには、形質転換された宿主細胞の培養時にプロモータ
ーの発現誘導剤が添加される。例えば宿主細胞として大
腸菌を使用する場合、発現調節DNAとしてlacプロ
モーター(ラクトースオペロンのプロモーター)等が知
られているが、このプロモーターの発現誘導剤としてI
PTG(イソプロピル−β−D−チオガラクトピラノシ
ド)が用いられている。また酵母を宿主細胞として使用
する場合、発現調節DNAとしてGAL系プロモーター
が知られているが、このプロモーターの発現誘導剤はガ
ラクトースである。従って遺伝子組換え技術を用いて産
業上有用なタンパク質を生産するには、プロモータおよ
びその発現誘導剤の選択が生産性に大きな影響を与える
重要な鍵となっている。
In order to allow this promoter to function efficiently, a promoter expression inducer is added during the culture of the transformed host cell. For example, when E. coli is used as a host cell, the lac promoter (lactose operon promoter) is known as an expression-regulating DNA, and I is used as an expression inducer of this promoter.
PTG (isopropyl-β-D-thiogalactopyranoside) has been used. When yeast is used as a host cell, a GAL promoter is known as an expression control DNA, and the expression inducer of this promoter is galactose. Therefore, in order to produce industrially useful proteins using gene recombination technology, the selection of promoters and their expression inducers is an important key that greatly affects productivity.

【0004】ところで従来使用されてきたプロモーター
およびその発現誘導剤は、前述のlacプロモーター−
IPTGの組合わせに代表されるように性能としてはす
ぐれるものの、IPTGが高価であるという問題があっ
た。よって、従来より使用されてきたプロモーターの発
現を誘導し得る安価で新しい誘導剤の開発や、安価な物
質により発現の調節を行うことができる新たなDNA
(プロモーター)の開発が望まれていた。
By the way, conventionally used promoters and their expression inducers are the above-mentioned lac promoter-
Although excellent in performance as represented by a combination of IPTGs, there is a problem that IPTGs are expensive. Therefore, a new DNA capable of inducing the expression of a conventionally used promoter at a low price and developing a new inducer, and controlling the expression by an inexpensive substance
Development of (promoter) was desired.

【0005】[0005]

【課題を解決するための手段】本発明者らは、安価な物
質により発現が誘導され得る新規なDNAを提供するべ
く検討を重ねてきた結果、酢酸、グリセロール等により
誘導が可能で、しかも原核細胞および真核細胞のいずれ
においてもプロモーター活性を機能し得るDNAを初め
て見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to provide a novel DNA whose expression can be induced by an inexpensive substance, and as a result, can be induced by acetic acid, glycerol, etc. The present invention has been completed for the first time by discovering a DNA capable of functioning as a promoter activity in both cells and eukaryotic cells.

【0006】すなわち本発明の要旨は、下記性質を有す
ることを特徴とする発現調節DNA、該DNAを含む発
現ベクターおよびそれを用いたタンパク質の産生方法に
存する。 (1) 原核細胞および真核細胞の両宿主においてプロ
モーター活性を有する。 (2) 原核細胞を宿主とした場合、酢酸またはグリセ
ロール並びに乳酸によりプロモーター活性が誘導され
る。 (3) 真核細胞を宿主とした場合、酢酸、グリセロー
ル並びに乳酸、エタノールまたはオレイン酸によりプロ
モーター活性が誘導される。
That is, the gist of the present invention resides in an expression regulatory DNA characterized by having the following properties, an expression vector containing the DNA, and a method for producing a protein using the same. (1) It has promoter activity in both prokaryotic and eukaryotic host cells. (2) When a prokaryotic cell is used as a host, the promoter activity is induced by acetic acid or glycerol and lactic acid. (3) When a eukaryotic cell is used as a host, promoter activity is induced by acetic acid, glycerol, lactic acid, ethanol or oleic acid.

【0007】以下、本発明につき詳細に説明する。本発
明の発現調節DNAは、例えばカンジダ・トロピカリス
Candidatropicalis) pK233
(ATCC 20336)が有するイソクエン酸リアー
ゼ(以下、「ICL」と略記する)をコードする遺伝子
の上流より調製することができる。
The present invention will be described in detail below. Expression regulatory DNA of the present invention, for example, Candida tropicalis (Candidatropicalis) pK233
(ATCC 20336) has an isocitrate lyase (hereinafter, abbreviated as "ICL"), which can be prepared from the upstream of the gene.

【0008】本発明の発現調節DNAを含有するDNA
ライブラリーとしては、C.tropicalis
K233から調製してきた染色体DNAを用いて、常法
により作成したファージライブラリーが利用できる。こ
のDNAライブラリーからファージを富沢らの方法(バ
クテリオファージの実験法,p.99−174,岩波書
店1970年5月30日発行)により大腸菌に感染させ
培養する。培養後に形成されたプラークを、FEBS
Lett.,220,31−35(1987)に記載の
部分DNA断片、もしくはICLタンパク質の部分アミ
ノ酸配列に対応する塩基配列を有するDNAをプローブ
として、Bentonらのプラークハイブリダイゼーシ
ョン法(Science,196,180−182(1
977))によって選択し、目的とするDNAを含むD
NAフラグメントを得ることができる。
DNA containing the expression-regulating DNA of the present invention
As the library, C.I. tropicalis p
A phage library prepared by a conventional method can be used using the chromosomal DNA prepared from K233. Escherichia coli is infected with the phage from this DNA library by the method of Tomizawa et al. (Experimental method of bacteriophage, p.99-174, published by Iwanami Shoten on May 30, 1970) and cultured. The plaque formed after the culture was treated with FEBS.
Lett. , 220 , 31-35 (1987), or a DNA having a nucleotide sequence corresponding to the partial amino acid sequence of the ICL protein as a probe, the plaque hybridization method of Benton et al. (Science, 196 , 180-182). (1
977)) selected and containing the DNA of interest.
NA fragments can be obtained.

【0009】さらに上記のスクリーニング陽性のファー
ジから富沢らの方法によりファージを増殖させ、T.M
aniatisらの方法(Molecular Clo
ning,Cold Spring Harbor L
aboratory,p.85,1982)によりDN
Aを調製し、適当な制限酵素で切断後、pUC19(G
ene,33,103−119(1985))等のプラ
スミドにクローニングし、Sangerらのジデオキシ
法(Proc.Natl.Acad.Sci.USA,
74,5463(1977))によって目的とするDN
Aを含むDNAフラグメントの塩基配列が決定できる。
このようにして決定されるDNAフラグメントの塩基配
列は、ICLタンパク質の全コーディング領域およびそ
の上流域を含むものである。
Further, the phages were propagated from the above screening positive phages by the method of Tomizawa et al. M
aniatis et al. (Molecular Clo
Ning, Cold Spring Harbor L
laboratory, p. 85, 1982) by DN
A was prepared, cleaved with an appropriate restriction enzyme, and pUC19 (G
ene, 33 , 103-119 (1985)) and the like, and the dideoxy method of Sanger et al. (Proc. Natl. Acad. Sci. USA,
74 , 5463 (1977))
The base sequence of the DNA fragment containing A can be determined.
The nucleotide sequence of the DNA fragment thus determined includes the entire coding region of ICL protein and its upstream region.

【0010】本発明の発現調節DNAは、例えば以下の
ようにして決定することができる。すなわち、上述した
ICLタンパク質の全コーディング領域およびその上流
域を含むクローンを用いて、ICLタンパク質をコード
する遺伝子の上流域の5’側から種々の長さに調製した
欠失クローンを、kilo−Deletion kit
(宝酒造社製)、ポリメラーゼチェインリアクション法
(以下、「P.C.R.法」と略記する:Scienc
e,239,487−491(1983))等によって
作製する。これらのDNAをpUC19、pMT34
(−G7)(Mol.Cell.Biol.,,24
6−256(1986)に記載のプラスミドpMT34
BamHIおよびBglIIと反応させて、GAL7
プロモーターを除いたもの)等にクローニングし、この
プラスミドをHanahanの方法(DNA Clon
ing vol.1,IRL Press,p109−
136(1985))により大腸菌等の原核細胞へ、ま
たはHinnenらのプロトプラスト法(Proc.N
atl.Acad.Sci.USA,75,1929
(1978))により酵母等の真核細胞へ形質転換す
る。
The expression-regulating DNA of the present invention can be determined, for example, as follows. That is, using the clones containing the entire coding region of the ICL protein and the upstream region thereof, deletion clones prepared in various lengths from the 5 ′ side of the upstream region of the gene encoding the ICL protein were cloned into the kilo-deletion. kit
(Manufactured by Takara Shuzo), polymerase chain reaction method (hereinafter abbreviated as “PCR method”: Science)
e, 239 , 487-491 (1983)) and the like. These DNAs were cloned into pUC19 and pMT34
(-G7) (Mol. Cell. Biol., 6 , 24
6-256 (1986).
It is reacted with Bam HI and Bgl II, GAL7
Cloned into a plasmid (without the promoter) and the like, and used this plasmid according to the method of Hanahan (DNA Clon).
ing vol. 1, IRL Press, p109-
136 (1985)) to prokaryotic cells such as Escherichia coli, or the protoplast method of Hinnen et al. (Proc. N.
atl. Acad. Sci. USA, 75 , 1929
(1978)) to transform eukaryotic cells such as yeast.

【0011】続いて例えば大腸菌を用いた場合、得られ
た形質転換体をグルコースを含むLB培地で培養し、適
当な時期に酢酸ナトリウムを加えICLタンパク質を誘
導させ、さらに培養を続ける。この菌体を用いて、Ag
ric.Biol.Chem.,41(2),275−
279(1977))に詳述されるようにフェニルヒド
ラジン−塩酸から生成されたグリオキシレイト−フェニ
ルヒドラゾンが有する324nmの吸収を測定すること
により、ICLタンパク質の発現量を測定し、これから
本発明の発現調節DNA部位を決定することができる。
Subsequently, for example, when Escherichia coli is used, the obtained transformant is cultured in an LB medium containing glucose, sodium acetate is added at an appropriate time to induce the ICL protein, and the culture is further continued. Using these cells, Ag
ric. Biol. Chem. , 41 (2), 275-
279 (1977)), the expression level of the ICL protein was measured by measuring the absorption at 324 nm of the glyoxylate-phenylhydrazone produced from phenylhydrazine-hydrochloric acid. Expression regulatory DNA sites can be determined.

【0012】また酵母を用いた場合、S系(0.67%
Bacto−Yeast Nitrogen bas
e w/o A.A.,20mg/l Adenin
Sulfate,20mg/l L−Histide−
HCl,20mg/l L−Tryptophan,3
0mg/l L−Leucine)+グルコースで前培
養し、S系+酢酸ナトリウムあるいは他の誘導剤で本培
養を行い、ICLタンパク質を誘導させる。その後上記
の大腸菌の例と同様に、フェニルヒドラジン−塩酸から
生成されたグリオキシレイト−フェニルヒドラゾンが有
する324nmの吸収を測定することにより、ICLタ
ンパク質の発現量、ひいては本発明の発現調節DNAを
決定することができる。またこのICLタンパク質を用
いて、常法によりウサギ血清より得たICLタンパク質
抗体でウエスタンブロットによっても発現タンパクを確
認することができる。
When yeast is used, S type (0.67%
Bacto-Yeast Nitrogen bas
e w / o A. A. , 20mg / l Adenin
Sulfate, 20 mg / l L-Histide-
HCl, 20 mg / l L-Tryptophan, 3
Pre-culture with 0 mg / l L-Lucine) + glucose and main culture with S system + sodium acetate or other inducer to induce ICL protein. Then, in the same manner as in the case of Escherichia coli above, by measuring the absorption at 324 nm of glyoxylate-phenylhydrazone produced from phenylhydrazine-hydrochloric acid, the expression level of ICL protein, and thus the expression-regulating DNA of the present invention was determined can do. Also, using this ICL protein, the expressed protein can be confirmed by Western blotting using an ICL protein antibody obtained from rabbit serum by a conventional method.

【0013】本発明の発現調節DNAが、原核細胞およ
び真核細胞の両宿主でプロモーター活性を有し、タンパ
ク質を産生できることは、例えば以下のようにして確認
することができる。すなわち、本発明の発現調節DNA
の下流にICLタンパク質をコードする遺伝子が連結さ
れたフラグメントを、pMT34(−G7)ベクター等
に挿入する。このベクター用いて、常法に従い大腸菌等
の原核細胞および酵母等の真核細胞の両宿主に形質転換
を行う。上述したようにICLタンパク質を誘導させ、
フェニルヒドラジン−塩酸からグリオキシレイト−フェ
ニルヒドラゾンを形成させる能力を測定し、ICLタン
パク質の発現を確認することにより、原核細胞および真
核細胞の両宿主でプロモーター活性を有するか否かが確
認できる。
The fact that the expression-regulating DNA of the present invention has a promoter activity in both prokaryotic and eukaryotic hosts and can produce a protein can be confirmed, for example, as follows. That is, the expression-regulating DNA of the present invention
The fragment in which the gene encoding the ICL protein is ligated downstream thereof is inserted into pMT34 (-G7) vector or the like. This vector is used to transform both prokaryotic cells such as Escherichia coli and eukaryotic cells such as yeast according to a conventional method. Induce ICL protein as described above,
By measuring the ability to form glyoxylate-phenylhydrazone from phenylhydrazine-hydrochloric acid and confirming the expression of ICL protein, it is possible to confirm whether or not it has promoter activity in both prokaryotic and eukaryotic cells.

【0014】また本発明の発現調節DNAは、公知のプ
ロモーター、例えばlacプロモーター等と組み合わせ
ることにより、融合発現調節DNAとして用いることも
できる。例えば、本発明の発現調節DNAの下流にIC
Lタンパク質をコードする遺伝子が連結されたフラグメ
ントをpUC19ベクターのlacプロモーターの下
流、具体的にはBamHIサイト等に挿入する。このベ
クターを用いて、常法に従い大腸菌を形質転換する。上
記と同様にICLタンパク質を誘導させ、フェニルヒド
ラジン−塩酸からのグリオキシレイト−フェニルヒドラ
ゾン形成能を測定してICLタンパク質の発現を確認す
ることにより、融合発現調節DNAの大腸菌でのプロモ
ーター活性を測定することができる。
The expression-regulating DNA of the present invention can also be used as a fusion expression-regulating DNA by combining it with a known promoter such as the lac promoter. For example, IC may be provided downstream of the expression-regulating DNA of the present invention.
The fragment to which the gene encoding the L protein is ligated is inserted downstream of the lac promoter of the pUC19 vector, specifically, at the Bam HI site or the like. E. coli is transformed with this vector according to a conventional method. Inducing ICL protein in the same manner as above and measuring the glyoxylate-phenylhydrazone forming ability from phenylhydrazine-hydrochloric acid to confirm the expression of ICL protein, the promoter activity of the fusion expression regulatory DNA in E. coli was measured. can do.

【0015】さらに本発明の発現調節DNAを用いるこ
とにより、タンパク質を遺伝子組換え法により効率よく
生産することができる。すなわち、本発明の発現調節D
NA、タンパク質をコードする構造遺伝子、転写終結配
列、およびプロモーター活性を制御する遺伝子よりなる
発現ベクターを構築する。これを、常法に従って大腸菌
等の原核細胞および/または酵母等の真核細胞に導入す
る。かかる形質転換体をMolecular Clon
ing(Cold Spring Harbor La
boratory,1982)に記載の方法あるいはそ
れに準じて培養する。このときプロモーター活性を誘導
する目的で、培養時に発現誘導剤を添加してもよい。か
かる発現誘導剤としては、原核細胞を宿主とする場合は
酢酸、またはグリセロールと乳酸との併用が好適で、真
核細胞を宿主とする場合は酢酸、グリセロールと乳酸と
の併用、エタノールまたはオレイン酸が好適に使用され
る。目的とするタンパク質は、常法により宿主細胞から
単離・精製される。
Furthermore, by using the expression-regulating DNA of the present invention, the protein can be efficiently produced by the gene recombination method. That is, the expression regulation D of the present invention
An expression vector comprising NA, a structural gene encoding a protein, a transcription termination sequence, and a gene controlling promoter activity is constructed. This is introduced into a prokaryotic cell such as Escherichia coli and / or a eukaryotic cell such as yeast according to a conventional method. Such a transformant was designated as Molecular Clon.
ing (Cold Spring Harbor La
culture, 1982) or according to it. At this time, an expression inducer may be added during the culture for the purpose of inducing the promoter activity. As such an expression inducer, acetic acid is preferably used when prokaryotic cells are used as a host, or glycerol and lactic acid are used in combination, and acetic acid, glycerol and lactic acid is used as a host, and ethanol or oleic acid is used as eukaryotic cells. Is preferably used. The target protein is isolated and purified from the host cell by a conventional method.

【0016】[0016]

【発明の効果】本発明の発現調節DNAは、大腸菌等の
原核細胞および酵母等の真核細胞の両宿主において、酢
酸、グリセロール、乳酸等の低分子かつ安価な化合物の
存在下、そのプロモーター活性が誘導されることから、
これらを宿主細胞とする発現効率のよいタンパク質の生
産法を提供することができる。
INDUSTRIAL APPLICABILITY The expression-regulating DNA of the present invention has promoter activity in both prokaryotic cells such as Escherichia coli and eukaryotic cells such as yeast in the presence of low-molecular-weight and inexpensive compounds such as acetic acid, glycerol and lactic acid. Is induced,
It is possible to provide a method for producing a protein with high expression efficiency using these as host cells.

【0017】[0017]

【実施例】以下、本発明につき実施例を挙げてより具体
的に説明するが、その要旨を越えない限り以下に限定さ
れるものではない。 実施例1 カンジダ・トロピカリス(Candida
tropicalis)pK233の遺伝子ライブラリ
ーの調製C.tropicalis pK233のゲノミックD
NAライブラリーは、J.Biochem.,107
262−266(1990)およびFEBSLet
t.,220,31−35(1987)に記載の方法に
従って調製した。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the invention is not limited thereto unless it exceeds the gist. Example 1 Candida tropicalis (Candida
T. tropicalis ) pK233 gene library preparation . genomic D of tropicalis pK233
The NA library is described in J. Biochem. , 107 ,
262-266 (1990) and FEBSLet
t. , 220 , 31-35 (1987).

【0018】このゲノミックDNAライブラリーは、I
CLタンパク質の部分アミノ酸配列から推定されるDN
A断片を用いてスクリーニングされた。陽性クローンの
中で約16kbの挿入断片を有するクローン(λCT−
ICL)を選び出し、常法に従い約2kbのBamHI
BamHIフラグメントを得た。このフラグメントが
ICLタンパク質をコードする部分DNA断片とハイブ
リダイズすることから、かかるフラグメント内にICL
タンパク質をコードするDNAが含まれていることが確
認された。かかるBamHI−BamHIフラグメント
の塩基配列を常法により決定した(配列表の配列番号
1)。
This genomic DNA library is
DN deduced from the partial amino acid sequence of CL protein
Screened with the A fragment. Among the positive clones, a clone having an insertion fragment of about 16 kb (λCT-
ICL) is selected and Bam HI of about 2 kb is prepared according to a conventional method.
-Bam HI fragment was obtained. Since this fragment hybridizes with a partial DNA fragment encoding the ICL protein, ICL
It was confirmed that the DNA encoding the protein was included. The nucleotide sequence of such Bam HI- Bam HI fragment was determined by a conventional method (SEQ ID NO: 1).

【0019】実施例2 発現調節DNA部位の測定 実施例1で作製したBamHI−BamHIフラグメン
トを、pUC19のBamHIサイトに組み込み、IC
Lタンパク質をコードする遺伝子とその上流を含むクロ
ーン(以下、「pUC19−ICL」と略記する)を得
た。以下の実施例ではこのクローンを使い、kilo−
Deletion kit(宝酒造社製)およびP.
C.R.法を用いた。
[0019] The Bam HI- Bam HI fragment prepared in Measurement Example 1 Example 2 Expression regulatory DNA site was incorporated into pUC19 BamHI site, IC
A clone (hereinafter abbreviated as "pUC19-ICL") containing the gene encoding the L protein and its upstream was obtained. In the following examples, this clone was used to
Deletion kit (manufactured by Takara Shuzo) and P.I.
C. R. The method was used.

【0020】すなわちkilo−Deletion k
itを用いる場合、pUC19−ICL 3μgを制限
酵素PstIおよびSalIで切断した。反応液をフェ
ノール:クロロホルム=1:1溶液で抽出し、続いてク
ロロホルム:イソアミルアルコール=24:1溶液で更
に抽出した(以下、この操作を「フェノール抽出」と略
記する)。この抽出液に終濃度が0.3Mとなるように
酢酸ナトリウム(pH5.2)を加え、更に2.5倍量
のエタノールを加えて−20℃で1時間以上冷却した
後、15000r.p.m.で遠心し、沈殿させた。上
清を除き、70%エタノールを加えて攪拌した後、再度
15000r.p.m.で遠心し、沈殿させた(以下、
この操作を「エタノール沈殿」と略記する)。この沈殿
を乾燥後、20μlの滅菌イオン水に溶解した。この切
断したプラスミドにkilo−Deletion ki
tを使用説明書に従い用いて、種々の長さのDNA断片
を有するDeletion mutantを得た。
That is, kilo-Deletion k
When it was used, 3 μg of pUC19-ICL was cut with restriction enzymes Pst I and Sal I. The reaction solution was extracted with a phenol: chloroform = 1: 1 solution, and then further extracted with a chloroform: isoamyl alcohol = 24: 1 solution (hereinafter, this operation is abbreviated as “phenol extraction”). Sodium acetate (pH 5.2) was added to this extract to a final concentration of 0.3 M, 2.5 times the amount of ethanol was added, and the mixture was cooled at -20 ° C for 1 hour or more, then at 15000 r.p. p. m. It was centrifuged in and precipitated. The supernatant was removed, 70% ethanol was added, and the mixture was stirred. p. m. Centrifuge at
This operation is abbreviated as "ethanol precipitation"). This precipitate was dried and then dissolved in 20 μl of sterile ionized water. This cut plasmid was added to the kilo-Deletion ki.
The deletion mutants having DNA fragments of various lengths were obtained by using t according to the instruction manual.

【0021】これらを常法に従い宿主大腸菌に形質転換
し、得られたコロニーからプラスミドを常法(Mole
cular Cloning,Cold Spring
Harbor Laboratory,p.86,1
982)に従い調製した。これらを制限酵素SphIで
切断し、得られた反応液をフェノール抽出、エタノール
沈殿処理した。得られた沈殿を16μlの滅菌イオン水
に溶解し、10倍濃度のT4DNAポリメラーゼ緩衝液
(0.03M トリス−酢酸(pH7.9),0.66
M 酢酸カリウム,0.1M 酢酸マグネシウム,5m
M DTT)2μl、1.25mM 4dNTP 1μ
l、T4DNAポリメラーゼ 1μl(6ユニット)を
加えて20μlの系とし、37℃で30分間反応させ、
2本鎖の平滑末端DNAを得た(以下、この処理を「B
lunting処理」と略記する)。この反応液をフェ
ノール抽出、エタノール沈殿処理した。この沈殿を乾燥
後、20μlの滅菌イオン水に溶解し、SalIリンカ
ーDNAとライゲーションキット(宝酒造社製)を使用
説明書に従って連結した。得られたベクターをユニバー
サルプライマーとリバースプライマー(ともにファルマ
シア社製)を用いて、Sangerらのジデオキシ法
(Proc.Natl.Acad.Sci.USA,
,5463(1977))によりその塩基配列を決定
した。配列の決定後、SalIおよびSmaIで切断
し、得られた反応液をフェノール抽出、エタノール沈殿
処理した。得られた沈殿を10μlの滅菌イオン水に溶
解し、5%ポリアクリルアミドゲル電気泳動を行い、目
的とするバンドを常法に従って切り出してDNAフラグ
メントを回収し、エタノール沈殿処理した。このDNA
フラグメントを大腸菌−酵母間のシャトルベクターであ
るpMT34(−G7)のSalIおよびPvuIIサ
イトにライゲーションキット(宝酒造社製)を用いて組
み込んだ。
These were transformed into host Escherichia coli according to a conventional method, and the resulting colonies were used to transform a plasmid into a conventional method (Mole.
color Cloning, Cold Spring
Harbor Laboratory, p. 86,1
982). These were cleaved with restriction enzyme Sph I, and the resulting reaction solution was subjected to phenol extraction and ethanol precipitation. The obtained precipitate was dissolved in 16 μl of sterilized ionic water, and a 10-fold concentrated T4 DNA polymerase buffer solution (0.03M Tris-acetic acid (pH 7.9), 0.66) was added.
M potassium acetate, 0.1M magnesium acetate, 5m
M DTT) 2 μl, 1.25 mM 4dNTP 1 μ
1, T4 DNA polymerase 1 μl (6 units) was added to make a system of 20 μl, and the mixture was reacted at 37 ° C. for 30 minutes,
A double-stranded blunt-ended DNA was obtained (hereinafter, this treatment is referred to as "B
"runting process"). This reaction liquid was subjected to phenol extraction and ethanol precipitation treatment. After drying this precipitate, it was dissolved in 20 μl of sterilized ionic water, and Sal I linker DNA and the ligation kit (manufactured by Takara Shuzo) were ligated according to the instruction manual. The obtained vector was subjected to the dideoxy method of Sanger et al. (Proc. Natl. Acad. Sci. USA, 7 ) using a universal primer and a reverse primer (both manufactured by Pharmacia).
4 , 5463 (1977)). After the sequence was determined, it was cleaved with Sal I and Sma I, and the resulting reaction solution was subjected to phenol extraction and ethanol precipitation. The obtained precipitate was dissolved in 10 μl of sterilized ionic water, subjected to 5% polyacrylamide gel electrophoresis, and the desired band was cut out according to a conventional method to recover a DNA fragment and subjected to ethanol precipitation treatment. This DNA
The fragment was incorporated into the SalI and PvuII sites of pMT34 (-G7), which is a shuttle vector between E. coli and yeast, using a ligation kit (Takara Shuzo).

【0022】P.C.R.法は、パーキンエルマーシー
タス DNAサーマルサイクラーを使用して、その使用
説明書に基づき、ジーンアンプキットを使って行った。
すなわち基質DNA pUC19−ICLを1μl
(0.5μg相当量)、10倍濃度の反応緩衝液(50
0mM KCl,100mM Tris−HCl(pH
8.3),15mM MgCl2 ,0.1%(w/v)
ゼラチン)10μl、1.25mM 4dNTP 1
6μl、50μM M13プライマーM3(宝酒造社
製)、種々の長さのDNA断片を得るためにSalIサ
イトを導入したプライマー(配列表の配列番号14〜2
0)各5μl、Taqポリメラーゼ 0.5μlを加え
て100μlの系とする。反応は94℃で2分間(変性
ステップ)、55℃で2分間(アニーリングステッ
プ)、72℃で2分30秒間(伸長ステップ)のインキ
ュベーションを25サイクル行った。得られた反応液を
フェノール抽出、エタノール沈殿処理した。得られた沈
殿を16μlの滅菌イオン水に溶解した。SalIで切
断し、得られた反応液をフェノール抽出、エタノール沈
殿処理した。得られた沈殿を10μlの滅菌イオン水に
溶解し、5%ポリアクリルアミドゲル電気泳動を行い、
目的とするバンドを常法に従って切り出してDNAフラ
グメントを回収し、エタノール沈殿処理した。このDN
AフラグメントをベクターpUC19のSalIおよび
SmaIサイトに、またベクターpMT34(−G7)
PvuIIおよびSalIサイトにライゲーションキ
ット(宝酒造社製)を用いて組み込んだ。
P. C. R. The method was performed using a Perkin Elmer Cetus DNA Thermal Cycler, using the Gene Amp Kit, based on its instructions.
That is, 1 μl of the substrate DNA pUC19-ICL
(Corresponding to 0.5 μg) 10 times concentration of reaction buffer (50
0 mM KCl, 100 mM Tris-HCl (pH
8.3), 15 mM MgCl2, 0.1% (w / v)
Gelatin) 10 μl, 1.25 mM 4dNTP 1
6 μl, 50 μM M13 primer M3 (manufactured by Takara Shuzo Co., Ltd.), a primer introduced with a Sal I site to obtain DNA fragments of various lengths (SEQ ID NOS: 14 to 2 in Sequence Listing)
0) Add 5 μl of each and 0.5 μl of Taq polymerase to make a system of 100 μl. The reaction was incubated at 94 ° C. for 2 minutes (denaturation step), 55 ° C. for 2 minutes (annealing step), and 72 ° C. for 2 minutes and 30 seconds (extension step) for 25 cycles. The obtained reaction liquid was subjected to phenol extraction and ethanol precipitation treatment. The obtained precipitate was dissolved in 16 μl of sterile ionized water. Cleavage with Sal I, the resulting reaction solution was subjected to phenol extraction and ethanol precipitation. The obtained precipitate is dissolved in 10 μl of sterilized deionized water and subjected to 5% polyacrylamide gel electrophoresis,
The desired band was cut out according to a conventional method to recover a DNA fragment, which was subjected to ethanol precipitation. This DN
A fragment of the vector pUC19 with Sal I and
Sma I site and vector pMT34 (-G7)
Was incorporated into the Pvu II and Sal I sites of the above using a ligation kit (Takara Shuzo).

【0023】以上の操作により、配列表の配列番号2〜
13に示す種々の長さの発現調節DNA、およびそれと
ICLタンパク質の全コーディング領域とが連結されて
いるベクターpUC19、ベクターpMT34(−G
7)を得た。かくして得たベクターを、常法に従い大腸
菌(Escherichia coli)および酵母
Saccharomyces cerevisia
)に形質転換した。大腸菌の場合、LB培地(0.5
% 酵母抽出物,1% バクトトリプトン,0.5%塩
化ナトリウム)+1% グルコース 3mlで前培養
し、LB培地+1.37% 酢酸ナトリウム 8mlに
前培養液80μlを添加し、本培養を行った。酢酸によ
り誘導をかけ、ICLタンパク質を発現させた。本培養
を一晩行い、培養液を3000r.p.m.で5分間遠
心分離し、菌体を回収した。これらを滅菌イオン水で2
回洗い、0.05M リン酸カリウム(pH7.5)緩
衝液に溶かし、1ml当たり乾燥重量20mgとなるよ
うにした。懸濁液を4℃下、20kilocycle/
secで20秒間ソニケイションした。その後1000
0gで20分間遠心分離し、その上清を酵素画分として
用いた。酵母の場合、S系(0.67% Bacto−
Yeast Nitrogen base w/oA.
A.,20mg/l Adenin Sulfate,
20mg/l L−Histide−HCl,20mg
/l L−Tryptophan,30mg/l L−
Leucine)+2% グルコースで前培養し、S系
+1.37% 酢酸ナトリウム 8mlに前培養液80
μlを添加し、本培養を行った。その後の操作は大腸菌
を培養した際と同様に行った。
By the above operations, SEQ ID NOs: 2 to 2 in the sequence listing
Expression-regulating DNAs of various lengths shown in 13 and vectors pUC19 and pMT34 (-G) in which the expression-regulating DNAs are linked to the entire coding region of ICL protein
7) was obtained. The thus obtained vector was transformed into Escherichia coli and yeast ( Saccharomyces cerevisiae ) by a conventional method.
e ). In the case of E. coli, LB medium (0.5
% Yeast extract, 1% bactotryptone, 0.5% sodium chloride) + 1% glucose was precultured with 3 ml, and 80 μl of the preculture liquid was added to 8 ml of LB medium + 1.37% sodium acetate to carry out main culture. . Induction was performed with acetic acid to express the ICL protein. Main culture was performed overnight, and the culture solution was added to 3000 r. p. m. The cells were collected by centrifugation at 5 minutes for 5 minutes. 2 with sterile ionized water
It was washed twice, dissolved in a 0.05 M potassium phosphate (pH 7.5) buffer solution, and the dry weight was adjusted to 20 mg per 1 ml. The suspension was placed at 4 ° C. under 20 kilocycle /
I sonicated for 20 seconds. Then 1000
After centrifugation at 0 g for 20 minutes, the supernatant was used as an enzyme fraction. In the case of yeast, S type (0.67% Bacto-
Yeast Nitrogen base w / oA.
A. , 20 mg / l Adenin Sulfate,
20 mg / l L-Histide-HCl, 20 mg
/ L L-Tryptophan, 30 mg / l L-
Leucine) + 2% glucose was pre-cultured, and S-system + 1.37% sodium acetate 8 ml was pre-cultured 80
μl was added and main culture was performed. Subsequent operations were performed in the same manner as when culturing E. coli.

【0024】ICLタンパク質の活性の測定は、以下の
溶液のもとで行った。すなわち、100μM リン酸カ
リウム(pH7.0)、7.5μM 塩化マグネシウ
ム、5μM フェニルヒドラジン−塩酸、3μM シス
テイン−塩酸、12.5μMsodium D,L−i
socitrate、これに調製した酵素画分を加え、
1.5mlとした。生成されたグリオキシレイト−フェ
ニルヒドラゾンが持つ324nmの吸収を測定すること
により、ICLタンパク質の活性、すなわちタンパクの
発現量を測定した。結果を表1に示す。
The activity of ICL protein was measured in the following solution. That is, 100 μM potassium phosphate (pH 7.0), 7.5 μM magnesium chloride, 5 μM phenylhydrazine-hydrochloric acid, 3 μM cysteine-hydrochloric acid, 12.5 μM sodium D, L-i
socitrate, add the enzyme fraction prepared to it,
It was 1.5 ml. By measuring the absorption at 324 nm of the generated glyoxylate-phenylhydrazone, the activity of the ICL protein, that is, the protein expression level was measured. The results are shown in Table 1.

【0025】またこのICLタンパク質を用いて常法に
よりウサギ血清より得たICLタンパク質抗体でウエス
タンブロッティングを行ったところ、ICLタンパク質
の発現が確認された。大腸菌における発現は、ウエスタ
ンブロッティングにより確認した。
When this ICL protein was subjected to Western blotting with an ICL protein antibody obtained from rabbit serum by a conventional method, the expression of ICL protein was confirmed. Expression in E. coli was confirmed by Western blotting.

【0026】[0026]

【表1】 ──────────────────────────────── 配列表の配列番号 ICLタンパク質の産生量 (配列の長さ) (nmol/min・mg) ──────────────────────────────── 2(1530) 55 3( 728) 6 4( 631) 3.8 5( 546) 8.7 6( 442) 8.5 7( 422) 6.2 8( 391) 5 9( 355) 7.6 10( 327) 4.5 11( 156) 3.6 12( 118) 2.1 13( 69) 8.1 参考( 0) 1.5 ──────────────────────────────── [Table 1] ──────────────────────────────── Sequence number of the sequence listing ICL protein production (sequence length (Nmol / min.mg) ──────────────────────────────── 2 (1530) 553 (728) 6 4 (631) 3.8 5 (546) 8.7 6 (442) 8.5 7 (422) 6.2 8 (391) 5 9 (355) 7.6 10 (327) 4.5 11 ( 156) 3.6 12 (118) 2.1 13 (69) 8.1 Reference (0) 1.5 ────────────────────────── ────────

【0027】実施例3 発現誘導剤の検討 配列表の配列番号2〜13に示す本発明の発現調節DN
A、およびその下流にICLタンパク質をコードする遺
伝子が連結されたDNAフラグメントを有するベクター
pMT34(−G7)を用いて、大腸菌(E.col
)および酵母(S.cerevisiae)の両宿主
細胞を形質転換し、実施例2と同様にしてICLタンパ
ク質を発現させた。このとき、大腸菌においては酢酸ナ
トリウム、グリセロールと乳酸で誘導をかけ、酵母にお
いては酢酸ナトリウム、グリセロールと乳酸、エタノー
ルおよびオレイン酸で誘導をかけて発現させた。発現さ
れたICLタンパク質は、実施例2と同様に確認し、活
性を測定した。結果を表2に示す。なお、大腸菌での発
現およびオレイン酸による酵母での発現は、ウエスタン
ブロッティングにより確認した。
Example 3 Examination of expression inducer Expression-regulating DN of the present invention shown in SEQ ID NOS: 2 to 13 of the sequence listing
A, and a vector pMT34 (-G7) having a DNA fragment downstream of which a gene encoding an ICL protein was ligated, was used to transform E. coli ( E.
i ) and yeast ( S. cerevisiae ) host cells were transformed to express the ICL protein in the same manner as in Example 2. At this time, expression was induced in E. coli with sodium acetate, glycerol and lactic acid, and in yeast with sodium acetate, glycerol and lactic acid, ethanol and oleic acid. The expressed ICL protein was confirmed in the same manner as in Example 2 and the activity was measured. The results are shown in Table 2. The expression in E. coli and the expression in yeast by oleic acid were confirmed by Western blotting.

【0028】[0028]

【表2】 ──────────────────────────────────── 配列番号 ICLタンパク質の産生量(nmol/min・mg) 酢酸ナトリウム グリセロール+乳酸 エタノール ──────────────────────────────────── 2 2900 4200 4800 3 2000 4 3100 5 2500 6 5600 7 4100 2300 8 4200 1400 9 380 110 10 240 11 190 12 260 13 230 ────────────────────────────────────[Table 2] ──────────────────────────────────── SEQ ID NO: ICL protein production (nmol / min ・ mg) Sodium acetate glycerol + lactic acid ethanol ──────────────────────────────────── 2 2900 4200 4800 3 2000 4 3100 5 2500 6 6 5600 7 4100 2300 8 4200 1400 9 380 110 110 10 240 11 11 190 12 260 13 230 ───────────────────────── ───────────

【0029】 実施例4 lacプロモーターとの融合発現調節DNA 配列表の配列番号2〜13に示す本発明の発現調節DN
A、およびその下流にICLタンパク質をコードする遺
伝子が連結されたDNAフラグメントを有するベクター
pUC19を用いて、大腸菌(E.coli)を形質転
換し、これを培養してICLタンパク質を発現させた。
なお発現誘導剤として、酢酸ナトリウムを使用した。発
現されたICLタンパク質は、実施例2と同様に確認
し、活性を測定した。結果を表3に示す。なお「参考」
とあるのは、本発明の発現調節DNAを持たないもの、
すなわちlacプロモーターのみを有するものである。
Example 4 Expression-regulated DNA fused with lac promoter Expression-regulated DN of the present invention shown in SEQ ID NOS: 2 to 13 of Sequence Listing
Escherichia coli ( E. coli ) was transformed with A, and the vector pUC19 having a DNA fragment to which a gene encoding the ICL protein was ligated downstream was transformed, and this was cultured to express the ICL protein.
In addition, sodium acetate was used as an expression inducer. The expressed ICL protein was confirmed in the same manner as in Example 2 and the activity was measured. The results are shown in Table 3. "Reference"
Means that the expression-regulating DNA of the present invention is not present,
That is, it has only the lac promoter.

【0030】[0030]

【表3】 ─────────────────────────────────── 配列番号 ICLタンパク質の産生量(nmol/min・mg) 誘導なし 酢酸ナトリウム ─────────────────────────────────── 2 0.71 900 3 49 620 4 27 110 5 45 170 6 28 1800 7 27 1100 8 42 1200 9 45 1300 10 57 2100 12 47 2400 13 59 1000 参考 0.69 ─────────────────────────────────── [Table 3] ─────────────────────────────────── SEQ ID NO: ICL protein production (nmol / min・ Mg) No induction Sodium acetate ──────────────────────────────────── 2 0.71 900 3 49 620 4 27 110 5 45 170 170 6 28 1800 7 27 1100 8 42 42 1200 9 45 1300 10 57 2100 12 47 2400 13 59 1000 Reference 0.69 ─────────────────── ────────────────

【0031】[0031]

【配列表】[Sequence list]

配列番号:1 配列の長さ:3508 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 GGATCCGTCT GAAGAAATCA AGAACCAACA GTTGGATATC ATCAAGGGAA TATTAGGCGA 60 AGAGGCATCT AGTAGTAGTG GCAGTGGTGA GAACGTGGGC GCTGCTATAG TGAACAATCT 120 CCAGTCGATG GTTAAGAAGA AGAGTGACAA ACCAGCAGTG AATGACTTGT CTGGGTCCGT 180 GAGGAAAAGA AAGAAGCCCG ACACAAAGGA CAGTAACGTC AAGAAACCCA AGAAATAGGG 240 GGGACCTGTT TAGATGTATA GGAATAAAAA CTCCGAGATG ATCTCAATGT GTAATGGAGT 300 TGTAATATTG CAAAGGGGGA AAATCAAGAC TCAAACGTGT GTATGAGTGA GCGTACGTAT 360 ATCTCCGAGA GTAGTATGAC ATAATGATGA CTGTGAATCA TCGTAATCTC ACACAAAAAC 420 CCCATTGTCG GCCATATACC ACACCAAGCA ACACCACATA TCCCCCGGAA AAAAAAACGT 480 GAAAAAAAGA AACAATCAAA ACTACAACCT ACTCCTTGAT CACACAGTCA TTGATCAAGT 540 TACAGTTCCT GCTAGGGAAT GACCAAGGTA CAAATCAGCA CCTTAATGGT TAGCACGCTC 600 TCTTACTCTC TCTCACAGTC TTCCGGCCCC TATTCAAAAT TCTGCACTTC CATTTGACCC 660 CAGGGTTGGG AAACAGGGCC ACAAAAGAAA AACCCGACGT GAATGAAAAA ACTAAGAAAA 720 GAAAAAAAAT TATCACACCA GAAATTTACC TAATTGGGTA ATTCCCATCG GTGTTTTTCC 780 TGGATTGTCG CACGCACGCA TGCTGAAAAA AGTGTTCGAG TTTTGCTTTT GCCTCGGAGT 840 TTCACGCAAG TTTTTCGATC TCGGAACCGG AGGGCGGTCG CCTTGTTGTT TGTGATGTCG 900 TGCTTTGGGT GTTCTAATGT GCTGTTATTG TGCTCTTTTT TTTTCTTCTT TTTTTGGTGA 960 TCATATGATA TTGCTCGGTA GATTACTTTC GTGTGTAGGT ATTCTTTTAG ACGTTTGGTT 1020 ATTGGGTAGA TATGAGAGAG AGAGAGTGGG TGGGGGAGGA GTTGGTTGTA GGAGGGACCC 1080 CTGGGAGGAA GTGTAGTTGA GTTTTCCCTG ACGAATGAAA ATACGTTTTT GAGAAGATAA 1140 TACAGGAAAG GTGTGTCGGT GAATTTCCAT CTATCCGAGG ATATGAGTGG AGGAGAGTCG 1200 TGTGCGTGTG GTTAATTTAG GATCAGTGGA ACACACAAAG TAACTAAGAC AGAGAGACAG 1260 AGAGAAAAAT CTGGGGAAGA GACAAAGAGT CAGAGTGTGT GAGTTATTCT GTATTGTGAA 1320 ATTTTTTTGC CCAACTACAT AATATTGCTG AAACTAATTT TACTTAAAAA GAAAAGCCAA 1380 CAACGTCCCC AGTAAAACTT TTCTATAAAT ATCAGCAGTT TTCCCTTTCC TCCATTCCTC 1440 TTCTTGTCTT TTTTCTTACT TTCCCTTTTT TATACCTTTT CATTATCATC CTTTATAATT 1500 GTCTAACCAA CAACTATATA TCTATCAACC ATG GCT TAC ACA AAG ATC GAC ATC 1554 Met Ala Tyr Thr Lys Ile Asp Ile 1 5 AAC CAA GAA GAA GCT GAC TTC CAA AAA GAA GTT GCT GAA ATC AAA AAA 1602 Asn Gln Glu Glu Ala Asp Phe Gln Lys Glu Val Ala Glu Ile Lys Lys 10 15 20 TGG TGG TCC GAA CCA AGA TGG AGA AAG ACC AAG AGA ATC TAT TCC GCT 1650 Trp Trp Ser Glu Pro Arg Trp Arg Lys Thr Lys Arg Ile Tyr Ser Ala 25 30 35 40 GAA GAC ATC GCT AAG AAG AGA GGT ACC TTG AAG ATT GCC TAC CCA TCT 1698 Glu Asp Ile Ala Lys Lys Arg Gly Thr Leu Lys Ile Ala Tyr Pro Ser 45 50 55 TCT CAA CAA TCC GAC AAA TTG TTC AAG TTG TTG GAA AAG CAC GAC GCT 1746 Ser Gln Gln Ser Asp Lys Leu Phe Lys Leu Leu Glu Lys His Asp Ala 60 65 70 GAA AAG TCT GTC TCC TTC ACC TTT GGT GCT TTG GAC CCA ATC CAC GTT 1796 Glu Lys Ser Val Ser Phe Thr Phe Gly Ala Leu Asp Pro Ile His Val 75 80 85 GCT CAA ATG GCC AAG TAC TTG GAC TCC ATC TAC GTT TCC GGA TGG CAA 1842 Ala Gln Met Ala Lys Tyr Leu Asp Ser Ile Tyr Val Ser Gly Trp Gln 90 95 100 TGT TCC TCC ACC GCT TCC ACT TCT AAC GAA CCA TCC CCA GAT TTG GCC 1890 Cys Ser Ser Thr Ala Ser Thr Ser Asn Glu Pro Ser Pro Asp Leu Ala 105 110 115 120 GAC TAC CCT ATG GAC ACC GTT CCA AAC AAG GTC GAA CAC TTG TGG TTT 1938 Asp Tyr Pro Met Asp Thr Val Pro Asn Lys Val Glu His Leu Trp Phe 125 130 135 GCT CAG TTG TTC CAC GAC AGA AAG CAA AGA GAA GAA AGA TTG AAC ATG 1986 Ala Gln Leu Phe His Asp Arg Lys Gln Arg Glu Glu Arg Leu Asn Met 140 145 150 ACC AAG GAA GAA AGA GCA AAC ACC CCA TAC ATT GAC TTT TTG AGA CCC 2034 Thr Lys Glu Glu Arg Ala Asn Thr Pro Tyr Ile Asp Phe Leu Arg Pro 155 160 165 ATC ATT GCT GAT GCC GAC ACT GGT CAC GGT GGT ATC ACC GCC ATT ATC 2082 Ile Ile Ala Asp Ala Asp Thr Gly His Gly Gly Ile Thr Ala Ile Ile 170 175 180 AAG TTG ACC AAG TTG TTC ATC GAA AGA GGT GCT GCT GGT ATC CAC ATT 2130 Lys Leu Thr Lys Leu Phe Ile Glu Arg Gly Ala Ala Gly Ile His Ile 185 190 195 200 GAA GAT CAA GCT CCA GGT ACC AAG AAG TGT GGT CAC ATG GCC GGT AAG 2178 Glu Asp Gln Ala Pro Gly Thr Lys Lys Cys Gly His Met Ala Gly Lys 205 210 215 GTC TTG GTT CCA GTC CAA GAA CAC ATC AAC AGA TTG GTT GCC ATC AGA 2226 Val Leu Val Pro Val Gln Glu His Ile Asn Arg Leu Val Ala Ile Arg 220 225 230 GCT TCT GCT GAT ATC TTT GGT TCC AAC TTG TTG GCT GTT GCC AGA ACT 2274 Ala Ser Ala Asp Ile Phe Gly Ser Asn Leu Leu Ala Val Ala Arg Thr 235 240 245 GAT TCT GAA GCT GCT ACT TTG ATC ACC TCC ACC ATT GAC CAC AGA GAC 2322 Asp Ser Glu Ala Ala Thr Leu Ile Thr Ser Thr Ile Asp His Arg Asp 250 255 260 CAT TAC TTT ATC ATT GGT GCC ACC AAC CCA GAA TCC GGC GAC TTG GCT 2370 His Tyr Phe Ile Ile Gly Ala Thr Asn Pro Glu Ser Gly Asp Leu Ala 265 270 275 280 GCC TTG ATG GCT GAA GCT GAA GCT AAG GGT ATC TAC GGT GAC GAA TTG 2418 Ala Leu Met Ala Glu Ala Glu Ala Lys Gly Ile Tyr Gly Asp Glu Leu 285 290 295 GCC CGT ATT GAA ACC GAA TGG ACC AAG AAA GCT GGC TTG AAA TTG TTC 2466 Ala Arg Ile Glu Thr Glu Trp Thr Lys Lys Ala Gly Leu Lys Leu Phe 300 305 310 CAC GAA GCC GTC ATC GAC GAA ATC AAG GCC GGT AAC TAC TCC AAC AAG 2514 His Glu Ala Val Ile Asp Glu Ile Lys Ala Gly Asn Tyr Ser Asn Lys 315 320 325 GAA GCT TTG ATC AAG AAG TTC ACC GAC AAG GTT AAC CCA TTG TCC CAC 2564 Glu Ala Leu Ile Lys Lys Phe Thr Asp Lys Val Asn Pro Leu Ser His 330 335 340 ACC TCC CAC AAG GAA GCC AAG AAG TTG GCC AAG GAA TTG ACC GGT AAG 2610 Thr Ser His Lys Glu Ala Lys Lys Leu Ala Lys Glu Leu Thr Gly Lys 345 350 355 360 GAC ATC TAC TTC AAC TGG GAC GTT GCC AGA GCC AGA GAA GGT TAC TAC 2658 Asp Ile Tyr Phe Asn Trp Asp Val Ala Arg Ala Arg Glu Gly Tyr Tyr 365 370 375 AGA TAC CAA GGT GGT ACC CAA TGT GCC GTC ATG AGA GGT AGA GCT TTT 2706 Arg Tyr Gln Gly Gly Thr Gln Cys Ala Val Met Arg Gly Arg Ala Phe 380 385 390 GCT CCA TAC GCC GAC TTG ATC TGG ATG GAG TCC GCT TTG CCA GAC TAC 2754 Ala Pro Tyr Ala Asp Leu Ile Trp Met Glu Ser Ala Leu Pro Asp Tyr 395 400 405 AAC CAA GCC AAG GAA TTC GCT GAC GGT GTC AAG GCT GCT GTC CCA GAC 2802 Asn Gln Ala Lys Glu Phe Ala Asp Gly Val Lys Ala Ala Val Pro Asp 410 415 420 CAA TGG TTG GCT TAC AAC TTG TCC CCA TCT TTC AAC TGG AAC AAA GCC 2850 Gln Trp Leu Ala Tyr Asn Leu Ser Pro Ser Phe Asn Trp Asn Lys Ala 425 430 435 440 ATG CCA GCT GAC GAG CAA GAA ACT TAC ATC AAG AGA TTG GGT CAA TTG 2898 Met Pro Ala Asp Glu Gln Glu Thr Tyr Ile Lys Arg Leu Gly Gln Leu 445 450 455 GGT TAC GTG TGG CAA TTC ATC ACC TTG GCC GGT TTG CAC ACC ACT GCT 2946 Gly Tyr Val Trp Gln Phe Ile Thr Leu Ala Gly Leu His Thr Thr Ala 460 465 470 TTG GCT GTT GAT GAC TTC GCT AAC CAA TAC TCT CAA ATT GGT ATG AGA 2994 Leu Ala Val Asp Asp Phe Ala Asn Gln Tyr Ser Gln Ile Gly Met Arg 475 480 485 GCA TAC GGT CAA ACC GTC CAA CAA CCA GAA ATC GAA AAG GGT GTC GAA 3042 Ala Tyr Gly Gln Thr Val Gln Gln Pro Glu Ile Glu Lys Gly Val Glu 490 495 500 GTT GTC AAG CAC CAG AAA TGG TCC GGT GCC AAC TAC ATT GAC GGT TTG 3090 Val Val Lys His Gln Lys Trp Ser Gly Ala Asn Tyr Ile Asp Gly Leu 505 510 515 520 TTG AGA ATG GTC AGT GGT GGT GTC ACT TCT ACT GCT GCT ATG GGT GCT 3138 Leu Arg Met Val Ser Gly Gly Val Thr Ser Thr Ala Ala Met Gly Ala 525 530 535 GGT GTT ACT GAA GAT CAA TTC AAG GAA ACC AAG GCT AAG GTT TAA 3183 Gly Val Thr Glu Asp Gln Phe Lys Glu Thr Lys Ala Lys Val Stop 540 545 550 AAGAAAAAAG AAAAGGTAAA GAACTTCATT TGAGATGAAC TTTTGTATAT GACTTTTAGT 3243 TTCTACTTTT TTTTTTATTT ATTGCTTAAT TTTCTTTATT TCAATCCCCC ATAGTTTGTG 3303 TAGAATATAT TTATTCATTC TGGTAACTCA AACACGTAGC AAGCTCGTTG CATCTCGCCT 3363 CGTCACGGGT ACAGCTCTGG AACCAAAGAC AAAAAAAAAA GTTGATCCGA ACCCTCTCGC 3423 TATTCCTTGC TATGCTATCC ACGAGATGGG GTTTATCAGC CCAGGCAAGT CACTAAAGAG 3483 ACAAAGACCC AGAAAGAATG GATCC 3508
SEQ ID NO: 1 Sequence length: 3508 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin Biological name: Candida tropicalis pK
233 sequence GGATCCGTCT GAAGAAATCA AGAACCAACA GTTGGATATC ATCAAGGGAA TATTAGGCGA 60 AGAGGCATCT AGTAGTAGTG GCAGTGGTGA GAACGTGGGC GCTGCTATAG TGAACAATCT 120 CCAGTCGATG GTTAAGAAGA AGAGTGACAA ACCAGCAGTG AATGACTTGT CTGGGTCCGT 180 GAGGAAAAGA AAGAAGCCCG ACACAAAGGA CAGTAACGTC AAGAAACCCA AGAAATAGGG 240 GGGACCTGTT TAGATGTATA GGAATAAAAA CTCCGAGATG ATCTCAATGT GTAATGGAGT 300 TGTAATATTG CAAAGGGGGA AAATCAAGAC TCAAACGTGT GTATGAGTGA GCGTACGTAT 360 ATCTCCGAGA GTAGTATGAC ATAATGATGA CTGTGAATCA TCGTAATCTC ACACAAAAAC 420 CCCATTGTCG GCCATATACC ACACCAAGCA ACACCACATA TCCCCCGGAA AAAAAAACGT 480 GAAAAAAAGA AACAATCAAA ACTACAACCT ACTCCTTGAT CACACAGTCA TTGATCAAGT 540 TACAGTTCCT GCTAGGGAAT GACCAAGGTA CAAATCAGCA CCTTAATGGT TAGCACGCTC 600 TCTTACTCTC TCTCACAGTC TTCCGGCCCC TATTCAAAAT TCTGCACTTC CATTTGACCC 660 CAGGGTTGGG AAACAGGGCC ACAAAAGAAA AACCCGACGT GAATGAAAAA ACTAAGAAAA 720 GAAAAAAAAT TATCACACCA GAAATTTACC TAATTGGGTA ATTCCCATCG GTGTTTTTCC 780 TGGATTGTCG CACGCACGCA TGCTGAAAAA AGTGTTCGAG TTTTGCTTTT GCCTCGGAGT 840 TTCA CGCAAG TTTTTCGATC TCGGAACCGG AGGGCGGTCG CCTTGTTGTT TGTGATGTCG 900 TGCTTTGGGT GTTCTAATGT GCTGTTATTG TGCTCTTTTT TTTTCTTCTT TTTTTGGTGA 960 TCATATGATA TTGCTCGGTA GATTACTTTC GTGTGTAGGT ATTCTTTTAG ACGTTTGGTT 1020 ATTGGGTAGA TATGAGAGAG AGAGAGTGGG TGGGGGAGGA GTTGGTTGTA GGAGGGACCC 1080 CTGGGAGGAA GTGTAGTTGA GTTTTCCCTG ACGAATGAAA ATACGTTTTT GAGAAGATAA 1140 TACAGGAAAG GTGTGTCGGT GAATTTCCAT CTATCCGAGG ATATGAGTGG AGGAGAGTCG 1200 TGTGCGTGTG GTTAATTTAG GATCAGTGGA ACACACAAAG TAACTAAGAC AGAGAGACAG 1260 AGAGAAAAAT CTGGGGAAGA GACAAAGAGT CAGAGTGTGT GAGTTATTCT GTATTGTGAA 1320 ATTTTTTTGC CCAACTACAT AATATTGCTG AAACTAATTT TACTTAAAAA GAAAAGCCAA 1380 CAACGTCCCC AGTAAAACTT TTCTATAAAT ATCAGCAGTT TTCCCTTTCC TCCATTCCTC 1440 TTCTTGTCTT TTTTCTTACT TTCCCTTTTT TATACCTTTT CATTATCATC CTTTATAATT 1500 GTCTAACCAA CAACTATATA TCTATCAACC ATG GCT TAC ACA AAG ATC GAC ATC 1554 Met Ala Tyr Thr Lys Ile Asp Ile 1 5 AAC CAA GAA GAA GCT GAC TTC CAA AAA GAA GTT GCT GAA ATC AAA AAA 1602 Asn Gln Glu Glu Ala Asp Phe Gln Lys Glu Val Ala Gl u Ile Lys Lys 10 15 20 TGG TGG TCC GAA CCA AGA TGG AGA AAG ACC AAG AGA ATC TAT TCC GCT 1650 Trp Trp Ser Glu Pro Arg Trp Arg Lys Thr Lys Arg Ile Tyr Ser Ala 25 30 35 40 GAA GAC ATC GCT AAG AAG AGA GGT ACC TTG AAG ATT GCC TAC CCA TCT 1698 Glu Asp Ile Ala Lys Lys Arg Gly Thr Leu Lys Ile Ala Tyr Pro Ser 45 50 55 TCT CAA CAA TCC GAC AAA TTG TTC AAG TTG TTG GAA AAG CAC GAC GCT 1746 Ser Gln Gln Ser Asp Lys Leu Phe Lys Leu Leu Glu Lys His Asp Ala 60 65 70 GAA AAG TCT GTC TCC TTC ACC TTT GGT GCT TTG GAC CCA ATC CAC GTT 1796 Glu Lys Ser Val Ser Phe Thr Phe Gly Ala Leu Asp Pro Ile His Val 75 80 85 GCT CAA ATG GCC AAG TAC TTG GAC TCC ATC TAC GTT TCC GGA TGG CAA 1842 Ala Gln Met Ala Lys Tyr Leu Asp Ser Ile Tyr Val Ser Gly Trp Gln 90 95 100 TGT TCC TCC ACC GCT TCC ACT TCT AAC GAA CCA TCC CCA GAT TTG GCC 1890 Cys Ser Ser Thr Ala Ser Thr Ser Asn Glu Pro Ser Pro Asp Leu Ala 105 110 115 120 GAC TAC CCT ATG GAC ACC GTT CCA AAC AAG GTC GAA CAC TTG TGG TTT 1938 Asp Tyr Pro Met Asp Thr Val Pro Asn Lys Val G lu His Leu Trp Phe 125 130 135 GCT CAG TTG TTC CAC GAC AGA AAG CAA AGA GAA GAA AGA TTG AAC ATG 1986 Ala Gln Leu Phe His Asp Arg Lys Gln Arg Glu Glu Arg Leu Asn Met 140 145 150 ACC AAG GAA GAA AGA GCA AAC ACC CCA TAC ATT GAC TTT TTG AGA CCC 2034 Thr Lys Glu Glu Arg Ala Asn Thr Pro Tyr Ile Asp Phe Leu Arg Pro 155 160 165 ATC ATT GCT GAT GCC GAC ACT GGT CAC GGT GGT ATC ACC GCC ATT ATC 2082 Ile Ile Ala Asp Ala Asp Thr Gly His Gly Gly Ile Thr Ala Ile Ile 170 175 180 AAG TTG ACC AAG TTG TTC ATC GAA AGA GGT GCT GCT GGT ATC CAC ATT 2130 Lys Leu Thr Lys Leu Phe Ile Glu Arg Gly Ala Ala Gly Ile His Ile 185 190 195 200 GAA GAT CAA GCT CCA GGT ACC AAG AAG TGT GGT CAC ATG GCC GGT AAG 2178 Glu Asp Gln Ala Pro Gly Thr Lys Lys Cys Gly His Met Ala Gly Lys 205 210 215 GTC TTG GTT CCA GTC CAA GAA CAC ATC AAC AGA TTG GTT GCC ATC AGA 2226 Val Leu Val Pro Val Gln Glu His Ile Asn Arg Leu Val Ala Ile Arg 220 225 230 GCT TCT GCT GAT ATC TTT GGT TCC AAC TTG TTG GCT GTT GCC AGA ACT 2274 Ala Ser Ala Asp Ile Phe Gl y Ser Asn Leu Leu Ala Val Ala Arg Thr 235 240 245 GAT TCT GAA GCT GCT ACT TTG ATC ACC TCC ACC ATT GAC CAC AGA GAC 2322 Asp Ser Glu Ala Ala Thr Leu Ile Thr Ser Thr Ile Asp His Arg Asp 250 255 260 CAT TAC TTT ATC ATT GGT GCC ACC AAC CCA GAA TCC GGC GAC TTG GCT 2370 His Tyr Phe Ile Ile Gly Ala Thr Asn Pro Glu Ser Gly Asp Leu Ala 265 270 275 280 GCC TTG ATG GCT GAA GCT GAA GCT AAG GGT ATC TAC GGT GAC GAA TTG 2418 Ala Leu Met Ala Glu Ala Glu Ala Lys Gly Ile Tyr Gly Asp Glu Leu 285 290 295 GCC CGT ATT GAA ACC GAA TGG ACC AAG AAA GCT GGC TTG AAA TTG TTC 2466 Ala Arg Ile Glu Thr Glu Trp Thr Lys Lys Ala Gly Leu Lys Leu Phe 300 305 310 CAC GAA GCC GTC ATC GAC GAA ATC AAG GCC GGT AAC TAC TCC AAC AAG 2514 His Glu Ala Val Ile Asp Glu Ile Lys Ala Gly Asn Tyr Ser Asn Lys 315 320 325 GAA GCT TTG ATC AAG AAG TTC ACC GAC AAG GTT AAC CCA TTG TCC CAC 2564 Glu Ala Leu Ile Lys Lys Phe Thr Asp Lys Val Asn Pro Leu Ser His 330 335 340 ACC TCC CAC AAG GAA GCC AAG AAG TTG GCC AAG GAA TTG ACC GGT AAG 2610 Thr Ser His Lys Glu Ala Lys Lys Leu Ala Lys Glu Leu Thr Gly Lys 345 350 355 360 GAC ATC TAC TTC AAC TGG GAC GTT GCC AGA GCC AGA GAA GGT TAC TAC 2658 Asp Ile Tyr Phe Asn Trp Asp Val Ala Arg Ala Arg Glu Gly Tyr Tyr 365 370 375 AGA TAC CAA GGT GGT ACC CAA TGT GCC GTC ATG AGA GGT AGA GCT TTT 2706 Arg Tyr Gln Gly Gly Thr Gln Cys Ala Val Met Arg Gly Arg Ala Phe 380 385 390 GCT CCA TAC GCC GAC TTG ATC TGG ATG GAG TCC GCT TTG CCA GAC TAC 2754 Ala Pro Tyr Ala Asp Leu Ile Trp Met Glu Ser Ala Leu Pro Asp Tyr 395 400 405 AAC CAA GCC AAG GAA TTC GCT GAC GGT GTC AAG GCT GCT GTC CCA GAC 2802 Asn Gln Ala Lys Glu Phe Ala Asp Gly Val Lys Ala Ala Val Pro Asp 410 415 420 CAA TGG TTG GCT TAC AAC TTG TCC CCA TCT TTC AAC TGG AAC AAA GCC 2850 Gln Trp Leu Ala Tyr Asn Leu Ser Pro Ser Phe Asn Trp Asn Lys Ala 425 430 435 440 ATG CCA GCT GAC GAG CAA GAA ACT TAC ATC AAG AGA TTG GGT CAA TTG 2898 Met Pro Ala Asp Glu Gln Glu Thr Tyr Ile Lys Arg Leu Gly Gln Leu 445 450 455 GGT TAC GTG TGG CAA TTC ATC ACC TTG GCC GGT TTG CAC A CC ACT GCT 2946 Gly Tyr Val Trp Gln Phe Ile Thr Leu Ala Gly Leu His Thr Thr Ala 460 465 470 TTG GCT GTT GAT GAC TTC GCT AAC CAA TAC TCT CAA ATT GGT ATG AGA 2994 Leu Ala Val Asp Asp Phe Ala Asn Gln Tyr Ser Gln Ile Gly Met Arg 475 480 485 GCA TAC GGT CAA ACC GTC CAA CAA CCA GAA ATC GAA AAG GGT GTC GAA 3042 Ala Tyr Gly Gln Thr Val Gln Gln Pro Glu Ile Glu Lys Gly Val Glu 490 495 500 GTT GTC AAG CAC CAG AAA TGG TCC GGT GCC AAC TAC ATT GAC GGT TTG 3090 Val Val Lys His Gln Lys Trp Ser Gly Ala Asn Tyr Ile Asp Gly Leu 505 510 515 520 TTG AGA ATG GTC AGT GGT GGT GTC ACT TCT ACT GCT GCT ATG GGT GCT 3138 Leu Arg Met Val Ser Gly Gly Val Thr Ser Thr Ala Ala Met Gly Ala 525 530 535 GGT GTT ACT GAA GAT CAA TTC AAG GAA ACC AAG GCT AAG GTT TAA 3183 Gly Val Thr Glu Asp Gln Phe Lys Glu Thr Lys Ala Lys Val Stop 540 545 550 AAGAAAAAAG AAAAGGTAAA GAACTTCATT TGAGATGAAC TTTTGTATAT GACTTTTAGT 3243 TTCTACTTTT TTTTTTATTT ATTGCTTAAT TTTCTTTATT TCAATCCCCC ATAGTTTGTG 3303 TAGAATATAT TTATTCATTC TGGTAACTCA AACACGTAGC AAGCTCGTTG CATCTCGCCT 3363 CGTCACGGGT ACAGCTCTGG AACCAAAGAC AAAAAAAAAA GTTGATCCGA ACCCTCTCGC 3423 TATTCCTTGC TATGCTATCC ACGAGATGGG GTTTATCAGC CCAGGCAAGT CACTAAAGAG 3483 ACAAAGACCC AGAAAGAATG GATCC 3508

【0032】配列番号:2 配列の長さ:1530 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 GGATCCGTCT GAAGAAATCA AGAACCAACA GTTGGATATC ATCAAGGGAA TATTAGGCGA 60 AGAGGCATCT AGTAGTAGTG GCAGTGGTGA GAACGTGGGC GCTGCTATAG TGAACAATCT 120 CCAGTCGATG GTTAAGAAGA AGAGTGACAA ACCAGCAGTG AATGACTTGT CTGGGTCCGT 180 GAGGAAAAGA AAGAAGCCCG ACACAAAGGA CAGTAACGTC AAGAAACCCA AGAAATAGGG 240 GGGACCTGTT TAGATGTATA GGAATAAAAA CTCCGAGATG ATCTCAATGT GTAATGGAGT 300 TGTAATATTG CAAAGGGGGA AAATCAAGAC TCAAACGTGT GTATGAGTGA GCGTACGTAT 360 ATCTCCGAGA GTAGTATGAC ATAATGATGA CTGTGAATCA TCGTAATCTC ACACAAAAAC 420 CCCATTGTCG GCCATATACC ACACCAAGCA ACACCACATA TCCCCCGGAA AAAAAAACGT 480 GAAAAAAAGA AACAATCAAA ACTACAACCT ACTCCTTGAT CACACAGTCA TTGATCAAGT 540 TACAGTTCCT GCTAGGGAAT GACCAAGGTA CAAATCAGCA CCTTAATGGT TAGCACGCTC 600 TCTTACTCTC TCTCACAGTC TTCCGGCCCC TATTCAAAAT TCTGCACTTC CATTTGACCC 660 CAGGGTTGGG AAACAGGGCC ACAAAAGAAA AACCCGACGT GAATGAAAAA ACTAAGAAAA 720 GAAAAAAAAT TATCACACCA GAAATTTACC TAATTGGGTA ATTCCCATCG GTGTTTTTCC 780 TGGATTGTCG CACGCACGCA TGCTGAAAAA AGTGTTCGAG TTTTGCTTTT GCCTCGGAGT 840 TTCACGCAAG TTTTTCGATC TCGGAACCGG AGGGCGGTCG CCTTGTTGTT TGTGATGTCG 900 TGCTTTGGGT GTTCTAATGT GCTGTTATTG TGCTCTTTTT TTTTCTTCTT TTTTTGGTGA 960 TCATATGATA TTGCTCGGTA GATTACTTTC GTGTGTAGGT ATTCTTTTAG ACGTTTGGTT 1020 ATTGGGTAGA TATGAGAGAG AGAGAGTGGG TGGGGGAGGA GTTGGTTGTA GGAGGGACCC 1080 CTGGGAGGAA GTGTAGTTGA GTTTTCCCTG ACGAATGAAA ATACGTTTTT GAGAAGATAA 1140 TACAGGAAAG GTGTGTCGGT GAATTTCCAT CTATCCGAGG ATATGAGTGG AGGAGAGTCG 1200 TGTGCGTGTG GTTAATTTAG GATCAGTGGA ACACACAAAG TAACTAAGAC AGAGAGACAG 1260 AGAGAAAAAT CTGGGGAAGA GACAAAGAGT CAGAGTGTGT GAGTTATTCT GTATTGTGAA 1320 ATTTTTTTGC CCAACTACAT AATATTGCTG AAACTAATTT TACTTAAAAA GAAAAGCCAA 1380 CAACGTCCCC AGTAAAACTT TTCTATAAAT ATCAGCAGTT TTCCCTTTCC TCCATTCCTC 1440 TTCTTGTCTT TTTTCTTACT TTCCCTTTTT TATACCTTTT CATTATCATC CTTTATAATT 1500 GTCTAACCAA CAACTATATA TCTATCAACC 1530
SEQ ID NO: 2 Sequence length: 1530 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin Biologic name: Candida tropicalis pK
233 sequence GGATCCGTCT GAAGAAATCA AGAACCAACA GTTGGATATC ATCAAGGGAA TATTAGGCGA 60 AGAGGCATCT AGTAGTAGTG GCAGTGGTGA GAACGTGGGC GCTGCTATAG TGAACAATCT 120 CCAGTCGATG GTTAAGAAGA AGAGTGACAA ACCAGCAGTG AATGACTTGT CTGGGTCCGT 180 GAGGAAAAGA AAGAAGCCCG ACACAAAGGA CAGTAACGTC AAGAAACCCA AGAAATAGGG 240 GGGACCTGTT TAGATGTATA GGAATAAAAA CTCCGAGATG ATCTCAATGT GTAATGGAGT 300 TGTAATATTG CAAAGGGGGA AAATCAAGAC TCAAACGTGT GTATGAGTGA GCGTACGTAT 360 ATCTCCGAGA GTAGTATGAC ATAATGATGA CTGTGAATCA TCGTAATCTC ACACAAAAAC 420 CCCATTGTCG GCCATATACC ACACCAAGCA ACACCACATA TCCCCCGGAA AAAAAAACGT 480 GAAAAAAAGA AACAATCAAA ACTACAACCT ACTCCTTGAT CACACAGTCA TTGATCAAGT 540 TACAGTTCCT GCTAGGGAAT GACCAAGGTA CAAATCAGCA CCTTAATGGT TAGCACGCTC 600 TCTTACTCTC TCTCACAGTC TTCCGGCCCC TATTCAAAAT TCTGCACTTC CATTTGACCC 660 CAGGGTTGGG AAACAGGGCC ACAAAAGAAA AACCCGACGT GAATGAAAAA ACTAAGAAAA 720 GAAAAAAAAT TATCACACCA GAAATTTACC TAATTGGGTA ATTCCCATCG GTGTTTTTCC 780 TGGATTGTCG CACGCACGCA TGCTGAAAAA AGTGTTCGAG TTTTGCTTTT GCCTCGGAGT 840 TTCA CGCAAG TTTTTCGATC TCGGAACCGG AGGGCGGTCG CCTTGTTGTT TGTGATGTCG 900 TGCTTTGGGT GTTCTAATGT GCTGTTATTG TGCTCTTTTT TTTTCTTCTT TTTTTGGTGA 960 TCATATGATA TTGCTCGGTA GATTACTTTC GTGTGTAGGT ATTCTTTTAG ACGTTTGGTT 1020 ATTGGGTAGA TATGAGAGAG AGAGAGTGGG TGGGGGAGGA GTTGGTTGTA GGAGGGACCC 1080 CTGGGAGGAA GTGTAGTTGA GTTTTCCCTG ACGAATGAAA ATACGTTTTT GAGAAGATAA 1140 TACAGGAAAG GTGTGTCGGT GAATTTCCAT CTATCCGAGG ATATGAGTGG AGGAGAGTCG 1200 TGTGCGTGTG GTTAATTTAG GATCAGTGGA ACACACAAAG TAACTAAGAC AGAGAGACAG 1260 AGAGAAAAAT CTGGGGAAGA GACAAAGAGT CAGAGTGTGT GAGTTATTCT GTATTGTGAA 1320 ATTTTTTTGC CCAACTACAT AATATTGCTG AAACTAATTT TACTTAAAAA GAAAAGCCAA 1380 CAACGTCCCC AGTAAAACTT TTCTATACTATTATTCATCTTCTTCTTTTCCTTTTTCTCTTCCTTTTTCTCTTCCCCTTCCTC 1440 TTTCCTTCCTC 1440 TCCATTCCTC 1440 TTT

【0033】配列番号:3 配列の長さ:728 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 CTGAAAAAAG TGTTCGAGTT TTGCTTTTGC CTCGGAGTTT CACGCAAGTT TTTCGATCTC 60 GGAACCGGAG GGCGGTCGCC TTGTTGTTTG TGATGTCGTG CTTTGGGTGT TCTAATGTGC 120 TGTTATTGTG CTCTTTTTTT TTCTTCTTTT TTTGGTGATC ATATGATATT GCTCGGTAGA 180 TTACTTTCGT GTGTAGGTAT TCTTTTAGAC GTTTGGTTAT TGGGTAGATA TGAGAGAGAG 240 AGAGTGGGTG GGGGAGGAGT TGGTTGTAGG AGGGACCCCT GGGAGGAAGT GTAGTTGAGT 300 TTTCCCTGAC GAATGAAAAT ACGTTTTTGA GAAGATAATA CAGGAAAGGT GTGTCGGTGA 360 ATTTCCATCT ATCCGAGGAT ATGAGTGGAG GAGAGTCGTG TGCGTGTGGT TAATTTAGGA 420 TCAGTGGAAC ACACAAAGTA ACTAAGACAG AGAGACAGAG AGAAAAATCT GGGGAAGAGA 480 CAAAGAGTCA GAGTGTGTGA GTTATTCTGT ATTGTGAAAT TTTTTTGCCC AACTACATAA 540 TATTGCTGAA ACTAATTTTA CTTAAAAAGA AAAGCCAACA ACGTCCCCAG TAAAACTTTT 600 CTATAAATAT CAGCAGTTTT CCCTTTCCTC CATTCCTCTT CTTGTCTTTT TTCTTACTTT 660 CCCTTTTTTA TACCTTTTCA TTATCATCCT TTATAATTGT CTAACCAACA ACTATATATC 720 TATCAACC 728
SEQ ID NO: 3 Sequence length: 728 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin Biologic name: Candida tropicalis pK
233 sequence CTGAAAAAAG TGTTCGAGTT TTGCTTTTGC CTCGGAGTTT CACGCAAGTT TTTCGATCTC 60 GGAACCGGAG GGCGGTCGCC TTGTTGTTTG TGATGTCGTG CTTTGGGTGT TCTAATGTGC 120 TGTTATTGTG CTCTTTTTTT TTCTTCTTTT TTTGGTGATC ATATGATATT GCTCGGTAGA 180 TTACTTTCGT GTGTAGGTAT TCTTTTAGAC GTTTGGTTAT TGGGTAGATA TGAGAGAGAG 240 AGAGTGGGTG GGGGAGGAGT TGGTTGTAGG AGGGACCCCT GGGAGGAAGT GTAGTTGAGT 300 TTTCCCTGAC GAATGAAAAT ACGTTTTTGA GAAGATAATA CAGGAAAGGT GTGTCGGTGA 360 ATTTCCATCT ATCCGAGGAT ATGAGTGGAG GAGAGTCGTG TGCGTGTGGT TAATTTAGGA 420 TCAGTGGAAC ACACAAAGTA ACTAAGACAG AGAGACAGAG AGAAAAATCT GGGGAAGAGA 480 CAAAGAGTCA GAGTGTGTGA GTTATTCTGT ATTGTGAAAT TTTTTTGCCC AACTACATAA 540 TATTGCTGAA ACTAATTTTA CTTAAAAAGA AAAGCCAACA ACGTCCCCAG TAAAACTTTT 600 CTATAAATAT CAGCAGTTTT CCCTTTCCTC CATTCCTCTT CTTGTCTTTT TTCTTACTTT 660 CCCTTTTTTA TACCTTTTCA TTATCATCCT TTATAATTGT CTAACCAACA ACTATATATC 720 TATCAACC 728

【0034】配列番号:4 配列の長さ:631 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 GTGCTTTGGG TGTTCTAATG TGCTGTTATT GTGCTCTTTT TTTTTCTTCT TTTTTTGGTG 60 ATCATATGAT ATTGCTCGGT AGATTACTTT CGTGTGTAGG TATTCTTTTA GACGTTTGGT 120 TATTGGGTAG ATATGAGAGA GAGAGAGTGG GTGGGGGAGG AGTTGGTTGT AGGAGGGACC 180 CCTGGGAGGA AGTGTAGTTG AGTTTTCCCT GACGAATGAA AATACGTTTT TGAGAAGATA 240 ATACAGGAAA GGTGTGTCGG TGAATTTCCA TCTATCCGAG GATATGAGTG GAGGAGAGTC 300 GTGTGCGTGT GGTTAATTTA GGATCAGTGG AACACACAAA GTAACTAAGA CAGAGAGACA 360 GAGAGAAAAA TCTGGGGAAG AGACAAAGAG TCAGAGTGTG TGAGTTATTC TGTATTGTGA 420 AATTTTTTTG CCCAACTACA TAATATTGCT GAAACTAATT TTACTTAAAA AGAAAAGCCA 480 ACAACGTCCC CAGTAAAACT TTTCTATAAA TATCAGCAGT TTTCCCTTTC CTCCATTCCT 540 CTTCTTGTCT TTTTTCTTAC TTTCCCTTTT TTATACCTTT TCATTATCAT CCTTTATAAT 600 TGTCTAACCA ACAACTATAT ATCTATCAAC C 631
SEQ ID NO: 4 Sequence length: 631 Sequence type: Nucleic acid Number of strands: Double-strand Topology: Linear Origin Origin organism name: Candida tropicalis pK
233 sequence GTGCTTTGGG TGTTCTAATG TGCTGTTATT GTGCTCTTTT TTTTTCTTCT TTTTTTGGTG 60 ATCATATGAT ATTGCTCGGT AGATTACTTT CGTGTGTAGG TATTCTTTTA GACGTTTGGT 120 TATTGGGTAG ATATGAGAGA GAGAGAGTGG GTGGGGGAGG AGTTGGTTGT AGGAGGGACC 180 CCTGGGAGGA AGTGTAGTTG AGTTTTCCCT GACGAATGAA AATACGTTTT TGAGAAGATA 240 ATACAGGAAA GGTGTGTCGG TGAATTTCCA TCTATCCGAG GATATGAGTG GAGGAGAGTC 300 GTGTGCGTGT GGTTAATTTA GGATCAGTGG AACACACAAA GTAACTAAGA CAGAGAGACA 360 GAGAGAAAAA TCTGGGGAAG AGACAAAGAG TCAGAGTGTG TGAGTTATTC TGTATTGTGA 420 AATTTTTTTG CCCAACTACA TAATATTGCT GAAACTAATT TTACTTAAAA AGAAAAGCCA 480 ACAACGTCCC CAGTAAAACT TTTCTATAAA TATCAGCAGT TTTCCCTTTC CTCCATTCCT 540 CTTCTTGTCT TTTTTCTTAC TTTCCCACCA TCATTCTATCATCAT CTCTTTAACC 600CTCTTTAACCA 600

【0035】配列番号:5 配列の長さ:546 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 ACTTTCGTGT GTAGGTATTC TTTTAGACGT TTGGTTATTG GGTAGATATG AGAGAGAGAG 60 AGTGGGTGGG GGAGGAGTTG GTTGTAGGAG GGACCCCTGG GAGGAAGTGT AGTTGAGTTT 120 TCCCTGACGA ATGAAAATAC GTTTTTGAGA AGATAATACA GGAAAGGTGT GTCGGTGAAT 180 TTCCATCTAT CCGAGGATAT GAGTGGAGGA GAGTCGTGTG CGTGTGGTTA ATTTAGGATC 240 AGTGGAACAC ACAAAGTAAC TAAGACAGAG AGACAGAGAG AAAAATCTGG GGAAGAGACA 300 AAGAGTCAGA GTGTGTGAGT TATTCTGTAT TGTGAAATTT TTTTGCCCAA CTACATAATA 360 TTGCTGAAAC TAATTTTACT TAAAAAGAAA AGCCAACAAC GTCCCCAGTA AAACTTTTCT 420 ATAAATATCA GCAGTTTTCC CTTTCCTCCA TTCCTCTTCT TGTCTTTTTT CTTACTTTCC 480 CTTTTTTATA CCTTTTCATT ATCATCCTTT ATAATTGTCT AACCAACAAC TATATATCTA 540 TCAACC 546
SEQ ID NO: 5 Sequence length: 546 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin Biologic name: Candida tropicalis pK
233 sequence ACTTTCGTGT GTAGGTATTC TTTTAGACGT TTGGTTATTG GGTAGATATG AGAGAGAGAG 60 AGTGGGTGGG GGAGGAGTTG GTTGTAGGAG GGACCCCTGG GAGGAAGTGT AGTTGAGTTT 120 TCCCTGACGA ATGAAAATAC GTTTTTGAGA AGATAATACA GGAAAGGTGT GTCGGTGAAT 180 TTCCATCTAT CCGAGGATAT GAGTGGAGGA GAGTCGTGTG CGTGTGGTTA ATTTAGGATC 240 AGTGGAACAC ACAAAGTAAC TAAGACAGAG AGACAGAGAG AAAAATCTGG GGAAGAGACA 300 AAGAGTCAGA GTGTGTGAGT TATTCTGTAT TGTGAAATTT TTTTGCCCAA CTACATAATA 360 TTGCTGAAAC TAATTTTACT TAAAAAGAAA AGCCAACAAC GTCCCCAGTA AAACTTTTCT 420 ATAAATATCA GCAGTTTTCC CTTTCCTCCA TTCCTCTTCT TGTCTTTTTT CTTACTTTCC 480 CTTTTTTATA CCTTTTCATT ATCATCCTTT ATAATTGTCT AACCAACAAC TATATATCTA 540 TCAACC 546

【0036】配列番号:6 配列の長さ:442 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 AAGTGTAGTT GAGTTTTCCC TGACGAATGA AAATACGTTT TTGAGAAGAT AATACAGGAA 60 AGGTGTGTCG GTGAATTTCC ATCTATCCGA GGATATGAGT GGAGGAGAGT CGTGTGCGTG 120 TGGTTAATTT AGGATCAGTG GAACACACAA AGTAACTAAG ACAGAGAGAC AGAGAGAAAA 180 ATCTGGGGAA GAGACAAAGA GTCAGAGTGT GTGAGTTATT CTGTATTGTG AAATTTTTTT 240 GCCCAACTAC ATAATATTGC TGAAACTAAT TTTACTTAAA AAGAAAAGCC AACAACGTCC 300 CCAGTAAAAC TTTTCTATAA ATATCAGCAG TTTTCCCTTT CCTCCATTCC TCTTCTTGTC 360 TTTTTTCTTA CTTTCCCTTT TTTATACCTT TTCATTATCA TCCTTTATAA TTGTCTAACC 420 AACAACTATA TATCTATCAA CC 442
SEQ ID NO: 6 Sequence length: 442 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin organism name: Candida tropicalis pK
233 sequence AAGTGTAGTT GAGTTTTCCC TGACGAATGA AAATACGTTT TTGAGAAGAT AATACAGGAA 60 AGGTGTGTCG GTGAATTTCC ATCTATCCGA GGATATGAGT GGAGGAGAGT CGTGTGCGTG 120 TGGTTAATTT AGGATCAGTG GAACACACAA AGTAACTAAG ACAGAGAGAC AGAGAGAAAA 180 ATCTGGGGAA GAGACAAAGA GTCAGAGTGT GTGAGTTATT CTGTATTGTG AAATTTTTTT 240 GCCCAACTAC ATAATATTGC TGAAACTAAT TTTACTTAAA AAGAAAAGCC AACAACGTCC 300 CCAGTAAAAC TTTTCTATAA ATATCAGCAG TTTTCCCTTT CCTCCATTCC TCTTCTTGTC 360 TTTTTTCTTA CTTTCCCTTT TTTATACCTT TTCATTATCA TCCTTTATAA TTGTCTAACC 420 AACAACTATA TATCTATCAA CC 442

【0037】配列番号:7 配列の長さ:422 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 TGACGAATGA AAATACGTTT TTGAGAAGAT AATACAGGAA AGGTGTGTCG GTGAATTTCC 60 ATCTATCCGA GGATATGAGT GGAGGAGAGT CGTGTGCGTG TGGTTAATTT AGGATCAGTG 120 GAACACACAA AGTAACTAAG ACAGAGAGAC AGAGAGAAAA ATCTGGGGAA GAGACAAAGA 180 GTCAGAGTGT GTGAGTTATT CTGTATTGTG AAATTTTTTT GCCCAACTAC ATAATATTGC 240 TGAAACTAAT TTTACTTAAA AAGAAAAGCC AACAACGTCC CCAGTAAAAC TTTTCTATAA 300 ATATCAGCAG TTTTCCCTTT CCTCCATTCC TCTTCTTGTC TTTTTTCTTA CTTTCCCTTT 360 TTTATACCTT TTCATTATCA TCCTTTATAA TTGTCTAACC AACAACTATA TATCTATCAA 420 CC 422
SEQ ID NO: 7 Sequence length: 422 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin Biologic name: Candida tropicalis pK
233 sequence TGACGAATGA AAATACGTTT TTGAGAAGAT AATACAGGAA AGGTGTGTCG GTGAATTTCC 60 ATCTATCCGA GGATATGAGT GGAGGAGAGT CGTGTGCGTG TGGTTAATTT AGGATCAGTG 120 GAACACACAA AGTAACTAAG ACAGAGAGAC AGAGAGAAAA ATCTGGGGAA GAGACAAAGA 180 GTCAGAGTGT GTGAGTTATT CTGTATTGTG AAATTTTTTT GCCCAACTAC ATAATATTGC 240 TGAAACTAAT TTTACTTAAA AAGAAAAGCC AACAACGTCC CCAGTAAAAC TTTTCTATAA 300 ATATCAGCAG TTTTCCCTTT CCTCCATTCC TCTTCTTGTC TTTTTTCTTA CTTTCCCTTT 360 TTTATACCTT TTCATTATCA TCCTTTATAA TTGTCTAACC AACAACTATA TATCTATCAA 420 CC 422

【0038】配列番号:8 配列の長さ:391 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 ATACAGGAAA GGTGTGTCGG TGAATTTCCA TCTATCCGAG GATATGAGTG GAGGAGAGTC 60 GTGTGCGTGT GGTTAATTTA GGATCAGTGG AACACACAAA GTAACTAAGA CAGAGAGACA 120 GAGAGAAAAA TCTGGGGAAG AGACAAAGAG TCAGAGTGTG TGAGTTATTC TGTATTGTGA 180 AATTTTTTTG CCCAACTACA TAATATTGCT GAAACTAATT TTACTTAAAA AGAAAAGCCA 240 ACAACGTCCC CAGTAAAACT TTTCTATAAA TATCAGCAGT TTTCCCTTTC CTCCATTCCT 300 CTTCTTGTCT TTTTTCTTAC TTTCCCTTTT TTATACCTTT TCATTATCAT CCTTTATAAT 360 TGTCTAACCA ACAACTATAT ATCTATCAAC C 391
SEQ ID NO: 8 Sequence length: 391 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Origin Origin organism name: Candida tropicalis pK
233 sequence ATACAGGAAA GGTGTGTCGG TGAATTTCCA TCTATCCGAG GATATGAGTG GAGGAGAGTC 60 GTGTGCGTGT GGTTAATTTA GGATCAGTGG AACACACAAA GTAACTAAGA CAGAGAGACA 120 GAGAGAAAAA TCTGGGGAAG AGACAAAGAG TCAGAGTGTG TGAGTTATTC TGTATTGTGA 180 AATTTTTTTG CCCAACTACA TAATATTGCT GAAACTAATT TTACTTAAAA AGAAAAGCCA 240 ACAACGTCCC CAGTAAAACT TTTCTATAAA TATCAGCAGT TTTCCCTTTC CTCCATTCCT 300 CTTCTTGTCT TTTTTCTTAC TTTCCCTTTT TTATACCTTT TCATTATCAT CCTTTATAAT 360 TGTCTAACCA ACAACTATAT ATCTATCAAC C 391

【0039】配列番号:9 配列の長さ:355 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 CGAGGATATG AGTGGAGGAG AGTCGTGTGC GTGTGGTTAA TTTAGGATCA GTGGAACACA 60 CAAAGTAACT AAGACAGAGA GACAGAGAGA AAAATCTGGG GAAGAGACAA AGAGTCAGAG 120 TGTGTGAGTT ATTCTGTATT GTGAAATTTT TTTGCCCAAC TACATAATAT TGCTGAAACT 180 AATTTTACTT AAAAAGAAAA GCCAACAACG TCCCCAGTAA AACTTTTCTA TAAATATCAG 240 CAGTTTTCCC TTTCCTCCAT TCCTCTTCTT GTCTTTTTTC TTACTTTCCC TTTTTTATAC 300 CTTTTCATTA TCATCCTTTA TAATTGTCTA ACCAACAACT ATATATCTAT CAACC 355
SEQ ID NO: 9 Sequence length: 355 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin Biologic name: Candida tropicalis pK
233 sequence CGAGGATATG AGTGGAGGAG AGTCGTGTGC GTGTGGTTAA TTTAGGATCA GTGGAACACA 60 CAAAGTAACT AAGACAGAGA GACAGAGAGA AAAATCTGGG GAAGAGACAA AGAGTCAGAG 120 TGTGTGAGTT ATTCTGTATT GTGAAATTTT TTTGCCCAAC TACATAATAT TGCTGAAACT 180 AATTTTACTT AAAAAGAAAA GCCAACAACG TCCCCAGTAA AACTTTTCTA TAAATATCAG 240 CAGTTTTCCC TTTCCTCCAT TCCTCTTCTT GTCTTTTTTC TTACTTTCCC TTTTTTATAC 300 CTTTTCATTA TCATCCTTTA TAATTGTCTA ACCAACAACT ATATATCTAT CAACC 355

【0040】配列番号:10 配列の長さ:327 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 GCGTGTGGTT AATTTAGGAT CAGTGGAACA CACAAAGTAA CTAAGACAGA GAGACAGAGA 60 GAAAAATCTG GGGAAGAGAC AAAGAGTCAG AGTGTGTGAG TTATTCTGTA TTGTGAAATT 120 TTTTTGCCCA ACTACATAAT ATTGCTGAAA CTAATTTTAC TTAAAAAGAA AAGCCAACAA 180 CGTCCCCAGT AAAACTTTTC TATAAATATC AGCAGTTTTC CCTTTCCTCC ATTCCTCTTC 240 TTGTCTTTTT TCTTACTTTC CCTTTTTTAT ACCTTTTCAT TATCATCCTT TATAATTGTC 300 TAACCAACAA CTATATATCT ATCAACC 327
SEQ ID NO: 10 Sequence length: 327 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Origin organism name: Candida tropicalis pK
233 sequence GCGTGTGGTT AATTTAGGAT CAGTGGAACA CACAAAGTAA CTAAGACAGA GAGACAGAGA 60 GAAAAATCTG GGGAAGAGAC AAAGAGTCAG AGTGTGTGAG TTATTCTGTA TTGTGAAATT 120 TTTTTGCCCA ACTACATAAT ATTGCTGAAA CTAATTTTAC TTAAAAAGAA AAGCCAACAA 180 CGTCCCCAGT AAAACTTTTC TATAAATATC AGCAGTTTTC CCTTTCCTCC ATTCCTCTTC 240 TTGTCTTTTT TCTTACTTTC CCTTTTTTAT ACCTTTTCAT TATCATCCTT TATAATTGTC 300 TAACCAACAA CTATATATCT ATCAACC 327

【0041】配列番号:11 配列の長さ:156 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 AGCCAACAAC GTCCCCAGTA AAACTTTTCT ATAAATATCA GCAGTTTTCC CTTTCCTCCA 60 TTCCTCTTCT TGTCTTTTTT CTTACTTTCC CTTTTTTATA CCTTTTCATT ATCATCCTTT 120 ATAATTGTCT AACCAACAAC TATATATCTA TCAACC 156
SEQ ID NO: 11 Sequence length: 156 Sequence type: Nucleic acid Number of strands: Duplex Topology: Linear Origin organism name: Candida tropicalis pK
233 sequence AGCCAACAAC GTCCCCAGTA AAACTTTTCT ATAAATATCA GCAGTTTTCC CTTTCCTCCA 60 TTCCTCTTCT TGTCTTTTTT CTTACTTTCC CTTTTTTATA CCTTTTCATT ATCATCCTTT 120 ATAATTGTCT AACCAACAAC TATATATCTA TCAACC 156

【0042】配列番号:12 配列の長さ:118 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 CAGCAGTTTT CCCTTTCCTC CATTCCTCTT CTTGTCTTTT TTCTTACTTT CCCTTTTTTA 60 TACCTTTTCA TTATCATCCT TTATAATTGT CTAACCAACA ACTATATATC TATCAACC 118
SEQ ID NO: 12 Sequence length: 118 Sequence type: Nucleic acid Number of strands: Double-strand Topology: Linear Origin Biological name: Candida tropicalis pK
233 sequence CAGCAGTTTT CCCTTTCCTC CATTCCTCTT CTTGTCTTTT TTCTTACTTT CCCTTTTTTA 60 TACCTTTTCA TTATCATCCT TTATAATTGT CTAACCAACA ACTATATATC TATCAACC 118

【0043】配列番号:13 配列の長さ:69 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:Candida tropicalis pK
233 配列 TCCCTTTTTT ATACCTTTTC ATTATCATCC TTTATAATTG TCTAACCAAC AACTATATAT 60 CTATCAACC 69
SEQ ID NO: 13 Sequence length: 69 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Origin organism name: Candida tropicalis pK
233 sequence TCCCTTTTTT ATACCTTTTC ATTATCATCC TTTATAATTG TCTAACCAAC AACTATATAT 60 CTATCAACC 69

【0044】配列番号:14 配列の長さ:31 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GTGTCGACGT GCTTTGGGTG TTCTAATGTG C 31SEQ ID NO: 14 Sequence length: 31 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence GTGTCGACGT GCTTTGGGTG TTCTAATGTG C 31

【0045】配列番号:15 配列の長さ:28 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGTCGACTAC TTTCGTGTGT AGGTATTC 28SEQ ID NO: 15 Sequence length: 28 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence GGTCGACTAC TTTCGTGTGT AGGTATTC 28

【0046】配列番号:16 配列の長さ:29 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCGTCGACGA AGTGTAGTTG ACTTTTCCC 29SEQ ID NO: 16 Sequence length: 29 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence CCGTCGACGA AGTGTAGTTG ACTTTTCCC 29

【0047】配列番号:17 配列の長さ:27 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GAGTCGACCC TGACGAATGA AAATACG 27SEQ ID NO: 17 Sequence length: 27 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence GAGTCGACCC TGACGAATGA AAATACG 27

【0048】配列番号:18 配列の長さ:29 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GAGTCGACAA TACAGGAAAG GTGTGTCGG 29SEQ ID NO: 18 Sequence length: 29 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence GAGTCGACAA TACAGGAAAG GTGTGTCGG 29

【0049】配列番号:19 配列の長さ:27 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCGTCGACCC GAGGATATGA GTGGAGG 27SEQ ID NO: 19 Sequence length: 27 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence CCGTCGACCC GAGGATATGA GTGGAGG 27

【0050】配列番号:20 配列の長さ:27 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GAGTCGACTG CGTGTGGTTA ATTTAGG 27SEQ ID NO: 20 Sequence length: 27 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence GAGTCGACTG CGTGTGGTTA ATTTAGG 27

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 1/21 7236−4B (C12N 15/09 ZNA C12R 1:74) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:865) (C12N 1/19 C12R 1:865) (C12N 1/21 C12R 1:19) C12R 1:74) Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C12N 1/21 7236-4B (C12N 15/09 ZNA C12R 1:74) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1: 865) (C12N 1/19 C12R 1: 865) (C12N 1/21 C12R 1:19) C12R 1:74)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記性質を有することを特徴とする発現
調節DNA。 (1) 原核細胞および真核細胞の両宿主においてプロ
モーター活性を有する。 (2) 原核細胞を宿主とした場合、酢酸またはグリセ
ロール並びに乳酸によりプロモーター活性が誘導され
る。 (3) 真核細胞を宿主とした場合、酢酸、グリセロー
ル並びに乳酸、エタノールまたはオレイン酸によりプロ
モーター活性が誘導される。
1. An expression control DNA having the following properties. (1) It has promoter activity in both prokaryotic and eukaryotic host cells. (2) When a prokaryotic cell is used as a host, the promoter activity is induced by acetic acid or glycerol and lactic acid. (3) When a eukaryotic cell is used as a host, promoter activity is induced by acetic acid, glycerol, lactic acid, ethanol or oleic acid.
【請求項2】 配列表の配列番号2〜13に記載の塩基
配列で表されることを特徴とする請求項1記載のDN
A。
2. The DN according to claim 1, which is represented by the nucleotide sequence set forth in SEQ ID NOS: 2 to 13 of the sequence listing.
A.
【請求項3】 配列表の配列番号2〜13に記載の塩基
配列で表されるDNAとlacプロモーターDNAとの
融合DNAであることを特徴とする請求項1記載のDN
A。
3. The DN according to claim 1, which is a fusion DNA of a DNA represented by the nucleotide sequences set forth in SEQ ID NOs: 2 to 13 of the sequence listing and a lac promoter DNA.
A.
【請求項4】 請求項1に記載のDNAの下流にタンパ
ク質をコードする構造遺伝子が導入されてなる発現ベク
ター。
4. An expression vector in which a structural gene encoding a protein is introduced downstream of the DNA according to claim 1.
【請求項5】 請求項4記載の発現ベクターで原核細胞
または真核細胞を形質転換し、得られる形質転換体を培
養してその培養物からタンパク質を取得することを特徴
とするタンパク質の産生方法。
5. A method for producing a protein, which comprises transforming a prokaryotic cell or a eukaryotic cell with the expression vector according to claim 4, culturing the resulting transformant, and obtaining the protein from the culture. .
JP5209705A 1993-08-24 1993-08-24 Expression regulating dna, expression vector containing the dna and production of protein using the vector Pending JPH0759576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5209705A JPH0759576A (en) 1993-08-24 1993-08-24 Expression regulating dna, expression vector containing the dna and production of protein using the vector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5209705A JPH0759576A (en) 1993-08-24 1993-08-24 Expression regulating dna, expression vector containing the dna and production of protein using the vector

Publications (1)

Publication Number Publication Date
JPH0759576A true JPH0759576A (en) 1995-03-07

Family

ID=16577278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5209705A Pending JPH0759576A (en) 1993-08-24 1993-08-24 Expression regulating dna, expression vector containing the dna and production of protein using the vector

Country Status (1)

Country Link
JP (1) JPH0759576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158391B2 (en) 2009-05-06 2012-04-17 Dna Twopointo, Inc. Production of an α-carboxyl-ω-hydroxy fatty acid using a genetically modified Candida strain
US8597923B2 (en) 2009-05-06 2013-12-03 SyntheZyme, LLC Oxidation of compounds using genetically modified Candida
JP2014530596A (en) * 2011-08-12 2014-11-20 メロ バイオテクノロジー インコーポレイテッドMello Biotechnology,Inc. Inducible expression from eukaryotic pol-2 promoter in prokaryotic cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158391B2 (en) 2009-05-06 2012-04-17 Dna Twopointo, Inc. Production of an α-carboxyl-ω-hydroxy fatty acid using a genetically modified Candida strain
US8597923B2 (en) 2009-05-06 2013-12-03 SyntheZyme, LLC Oxidation of compounds using genetically modified Candida
JP2014530596A (en) * 2011-08-12 2014-11-20 メロ バイオテクノロジー インコーポレイテッドMello Biotechnology,Inc. Inducible expression from eukaryotic pol-2 promoter in prokaryotic cells

Similar Documents

Publication Publication Date Title
Yang et al. Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP)
SK278336B6 (en) Dna sequences, recombinant dna molecules and processes for producing swing growth hormone-like polypeptides
Van Poelje et al. Cloning, sequencing, expression, and site-directed mutagenesis of the gene from Clostridium perfringens encoding pyruvoyl-dependent histidine decarboxylase
JPH0759576A (en) Expression regulating dna, expression vector containing the dna and production of protein using the vector
JPWO2020179714A1 (en) Practical enzyme synthesis method for 3', 3'-cGAMP
WO1990001542A1 (en) Luciferase, luciferase-coding gene, and process for preparing luciferase
JPH08196281A (en) Dna coding water-formation type nadh oxidase
JPH08507218A (en) Overexpression of single-chain molecules
AU603145B2 (en) Aminoglycoside phosphotransferase-proteinfusions
JPS6024187A (en) Modified plasmid vector and its use
JP2534968B2 (en) Flavin reductase gene
JPH07507439A (en) Artificial promoter for protein expression in yeast
JPH07112434B2 (en) Luciferase gene
JPH0568548A (en) Gene fragment encoding human alt
JPH08103278A (en) Production of active human alt
Jha et al. Overexpression and rapid purification of rabbit fast skeletal troponin I from Escherichia coli: effect of different promoters, host strains, and culture conditions
KR910000459B1 (en) Expression vector for human growth hormone
JP2995070B2 (en) Hydrogen bacterium-derived cytochrome C gene
JPH02219570A (en) Production of human 5-lipoxygenase
JPH02501260A (en) Method for producing porcine growth hormone in yeast cells using synthetic genes
JP3518501B2 (en) Oxidoreductase gene, cloning of the gene and method for producing the enzyme
KR20220034220A (en) E. coli-based recombinant strain and its construction method and application
JPH02182191A (en) Increase in yield of manifestation enhancer and manifestation of recombination gene
CN116003542A (en) Microorganism for producing citric acid, construction method and application thereof
JP4443822B2 (en) DNA chain linking method and cloning vector