JPH0758221A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPH0758221A
JPH0758221A JP20243893A JP20243893A JPH0758221A JP H0758221 A JPH0758221 A JP H0758221A JP 20243893 A JP20243893 A JP 20243893A JP 20243893 A JP20243893 A JP 20243893A JP H0758221 A JPH0758221 A JP H0758221A
Authority
JP
Japan
Prior art keywords
floating gate
oxide film
window
semiconductor memory
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20243893A
Other languages
Japanese (ja)
Inventor
Toshitaka Meguro
寿孝 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20243893A priority Critical patent/JPH0758221A/en
Publication of JPH0758221A publication Critical patent/JPH0758221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To suppress concentration of the electric field, to improve the breakdown voltage leakage characteristic of a second oxide film, and also to improve the intrinsic breakdown life. CONSTITUTION:After a resist 14, opposing the floating gate 13 corresponding to an element isolation region 11, is patterned by a lithography method, the upper edge of a floating gate 13 is rounded by isotropic chemical etching. Then, a window 15 is formed on the floating gate 13 by anisotropic etching, and the element isolation region 11 is exposed. As a result, the upper edge of the window 15 on the floating gate 13 forms an edge angle of 90 deg. or more, forming a rounded shape without appearance of an accute-angled shape. As a result, the upper edge and its vicinity of the window 15 has an edge angle of 90 deg. or more, suppressing concentration of the electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不揮発性半導体記憶素子
のゲ−ト構造の改良に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of the gate structure of a non-volatile semiconductor memory device.

【0002】[0002]

【従来の技術】現在多くの分野で利用されている不揮発
性半導体記憶素子を図1乃至図7に示す製造工程により
説明する。先ず公知の選択酸化法によりシリコン基板1
の表面付近に複数のフィ−ルド酸化膜を形成して(図1
参照)素子分離領域2として機能させる。次に図2に明
らかにするように第1ゲ−ト酸化膜3を露出するシリコ
ン基板1の表面に形成後(図2参照)、図3に示すよう
に浮遊ゲ−ト4を構成する多結晶珪素を堆積する。
2. Description of the Related Art A non-volatile semiconductor memory element currently used in many fields will be described with reference to manufacturing steps shown in FIGS. First, the silicon substrate 1 is formed by a known selective oxidation method.
Forming a plurality of field oxide films near the surface of the
(See reference) Function as the element isolation region 2. Next, as shown in FIG. 2, after the first gate oxide film 3 is formed on the surface of the silicon substrate 1 (see FIG. 2), the floating gate 4 is formed as shown in FIG. Deposit crystalline silicon.

【0003】レジスト5を利用するフォトリソグラフィ
工程(図3参照)により素子分離領域2に対応する浮遊
ゲ−ト4をパタ−ニングして(図4参照)窓6を設置し
て素子分離領域2部分を露出後、レジスト5を除去して
多結晶珪素4ならびに露出するフィ−ルド酸化膜部分に
連続する第2ゲ−ト酸化膜7を形成する。最終には制御
電極8として動作する多結晶珪素を堆積して不揮発性半
導体記憶素子ゲ−トを完成する。
The floating gate 4 corresponding to the element isolation region 2 is patterned by the photolithography process using the resist 5 (see FIG. 3) (see FIG. 4) and the window 6 is installed to provide the element isolation region 2 After exposing the portion, the resist 5 is removed to form the polycrystalline silicon 4 and the second gate oxide film 7 continuous with the exposed field oxide film portion. Finally, polycrystalline silicon that operates as the control electrode 8 is deposited to complete the gate of the nonvolatile semiconductor memory element.

【0004】[0004]

【発明が解決しようとする課題】素子分離領域2に重ね
て形成する浮遊ゲ−ト4に窓6を形成するには、ドライ
エッチング即ち異方性エッチングにより加工するが、素
子分離領域2の膜厚の段差により鋭角状になることが断
面TEM観察により明らかになった。鋭角状の端部を備
える浮遊ゲ−トに第2ゲ−ト酸化膜7を形成すると、電
界集中が鋭角状の端部に発生して耐圧リ−ク特性が劣化
する。
In order to form the window 6 in the floating gate 4 formed overlying the element isolation region 2, the window 6 is processed by dry etching, that is, anisotropic etching. It was revealed by the cross-sectional TEM observation that the thickness was changed to an acute angle. When the second gate oxide film 7 is formed on the floating gate having the acute-angled end portion, electric field concentration occurs at the acute-angled end portion, and the breakdown voltage leak characteristic deteriorates.

【0005】一方浮遊ゲ−トを構成する多結晶珪素から
形成する酸化膜耐圧は単結晶シリコン酸化膜に比べると
表面の凹凸の影響から低下し、酸化膜の形成温度の低温
化によりこの凹凸が加速される。この結果TDDB特性
における真性破壊寿命の著しい低下を発生させている。
On the other hand, the withstand voltage of the oxide film formed from the polycrystalline silicon forming the floating gate is lower than that of the single crystal silicon oxide film due to the effect of surface irregularities, and the irregularities are formed by lowering the oxide film formation temperature. Be accelerated. As a result, the intrinsic breakdown life of the TDDB characteristic is significantly reduced.

【0006】従ってプロセス温度の低温化ならびに浮遊
ゲ−トの薄膜化により鋭角状の浮遊ゲ−トが特に問題に
なっている。更に第2ゲ−ト酸化膜をCVD法により堆
積することも可能であるが、凸部に堆積する膜程薄膜化
してしまい浮遊ゲ−ト端部での電界集中による耐圧リ−
ク特性の劣化や絶縁破壊が発生する。
Therefore, due to the lowering of the process temperature and the thinning of the floating gate, the acute-angled floating gate becomes a particular problem. It is also possible to deposit the second gate oxide film by the CVD method, but the film deposited on the convex portion becomes thinner and the breakdown voltage is increased by the electric field concentration at the end portion of the floating gate.
Deterioration of the characteristics and insulation breakdown.

【0007】以上のように浮遊ゲ−ト端部が鋭角状の部
分に電界集中が発生することにより耐圧リ−ク特性が劣
化すると、不揮発性記憶素子の特性にとって重要な電荷
保持特性が低下するなどの難点がある。
As described above, when the breakdown voltage leak characteristic is deteriorated by the concentration of an electric field in the portion where the floating gate end has an acute angle, the charge retention characteristic, which is important for the characteristic of the non-volatile memory element, deteriorates. There are some difficulties.

【0008】本発明はこのような事情により成されたも
ので、新規な不揮発性半導体記憶素子を提供する。
The present invention has been made under these circumstances, and provides a novel nonvolatile semiconductor memory device.

【0009】[0009]

【課題を解決するための手段】半導体基板表面付近に位
置する複数の素子分離領域と,この半導体基板の露出表
面を覆う第1ゲ−ト酸化膜と,この第1ゲ−ト酸化膜か
ら前記素子分離領域にかけて重ねる浮遊ゲ−トと,この
浮遊ゲ−ト及び前記素子分離領域部分を被覆する第2ゲ
−ト酸化膜と,この第2ゲ−ト酸化膜に積層する制御ゲ
−トと,前記素子分離領域に連続する前記第2ゲ−ト酸
化膜部分に隣接する前記浮遊ゲ−トの窓と,この窓の上
端付近を構成する稜角が90度以上の面とに本発明に係
わる不揮発性半導体記憶素子の特徴がある。
A plurality of element isolation regions located near the surface of a semiconductor substrate, a first gate oxide film covering the exposed surface of the semiconductor substrate, and the first gate oxide film from the first gate oxide film A floating gate overlaid over the element isolation region, a second gate oxide film covering the floating gate and the element isolation region portion, and a control gate overlaid on the second gate oxide film. According to the present invention, a window of the floating gate adjacent to the second gate oxide film portion continuous to the element isolation region, and a surface having an edge angle of 90 degrees or more which constitutes the vicinity of the upper end of the window. There is a feature of the nonvolatile semiconductor memory element.

【0010】[0010]

【作用】浮遊ゲ−トに形成する窓の上端に生じる鋭角状
の形状が不揮発性半導体記憶素子の特性に影響するとの
知見を基に本発明は完成しており、この窓の上端付近を
構成する稜角を90度以上の面を形成することにより解
決できることを確認した。
The present invention has been completed based on the finding that the acute-angled shape formed at the upper end of the window formed in the floating gate affects the characteristics of the nonvolatile semiconductor memory element, and the vicinity of the upper end of the window is constructed. It was confirmed that the problem can be solved by forming a surface having a ridge angle of 90 degrees or more.

【0011】即ち丸みを帯びた浮遊ゲ−トの窓の端部の
形成に伴って電界集中による絶縁膜の耐圧リ−ク特性低
下が防止できる。
That is, it is possible to prevent the breakdown voltage of the insulating film from being deteriorated due to the electric field concentration due to the formation of the rounded floating gate window end portion.

【0012】[0012]

【実施例】本発明に係わる実施例を図8乃至図16を参
照して説明する。
Embodiments of the present invention will be described with reference to FIGS.

【0013】実施例1 公知の選択酸化法によりシリコ
ン基板10の表面付近に複数のフィ−ルド酸化膜を形成
して(図8参照)素子分離領域11として機能させる。
次に図9に明らかにするように第1ゲ−ト酸化膜12を
露出するシリコン基板10の表面に形成後、図10に示
すように浮遊ゲ−ト13を構成する多結晶珪素を堆積す
る。
Example 1 A plurality of field oxide films are formed in the vicinity of the surface of a silicon substrate 10 by a known selective oxidation method (see FIG. 8) to function as element isolation regions 11.
Next, as shown in FIG. 9, after the first gate oxide film 12 is formed on the surface of the silicon substrate 10 exposed, the polycrystalline silicon forming the floating gate 13 is deposited as shown in FIG. .

【0014】引続いてレジスト14を利用するフォトリ
ソグラフィ工程(図11参照)により素子分離領域11
に対応する浮遊ゲ−ト13上端を露出し(図12参
照)、浮遊ゲ−ト13をエッチングして窓15を設置し
て素子分離領域11部分を露出(図13参照)後、レジ
スト14を除去して多結晶珪素ならびに露出するフィ−
ルド酸化膜部分に連続する第2ゲ−ト酸化膜16を形成
する(図14参照)。最終には制御電極17として動作
する多結晶珪素を堆積して(図15参照)不揮発性半導
体記憶素子ゲ−トを完成する。
Subsequently, a device isolation region 11 is formed by a photolithography process using the resist 14 (see FIG. 11).
After exposing the upper end of the floating gate 13 (see FIG. 12), etching the floating gate 13 and installing a window 15 to expose the element isolation region 11 portion (see FIG. 13), the resist 14 is removed. Polysilicon that is removed and exposed
A second gate oxide film 16 continuous with the field oxide film portion is formed (see FIG. 14). Finally, polycrystalline silicon that operates as the control electrode 17 is deposited (see FIG. 15) to complete the gate of the nonvolatile semiconductor memory element.

【0015】図11、図12ならびに図13に示す工程
について詳述すると、レジスト14を利用するフォトリ
ソグラフィ工程により素子分離領域11に対応する浮遊
ゲ−ト13部分に対向するレジスト14をパタ−ニング
後(図11参照)、レジスト14をマスクとして浮遊ゲ
−ト13部分に等方性エッチングができるケミカルドラ
イエッチング法により浮遊ゲ−ト13の上端を丸める。
上端とはレジスト14に隣接する浮遊ゲ−ト13部分で
ある。
The steps shown in FIGS. 11, 12 and 13 will be described in detail. The resist 14 facing the floating gate 13 corresponding to the element isolation region 11 is patterned by a photolithography process using the resist 14. After that (see FIG. 11), the upper end of the floating gate 13 is rounded by a chemical dry etching method capable of performing isotropic etching on the floating gate 13 portion using the resist 14 as a mask.
The upper end is a portion of the floating gate 13 adjacent to the resist 14.

【0016】次に異方性エッチングにより浮遊ゲ−ト1
3部分に窓15を形成して、素子分離領域11部分を露
出する。この結果浮遊ゲ−ト13に形成する窓13の上
端は稜角が90度以上の面で構成され、鋭角状の尖った
形状がなくなって丸みを帯びた形となる。この結果窓1
5上端付近は90度以上の稜角を備えた面により構成す
ることになる。
Next, the floating gate 1 is formed by anisotropic etching.
Windows 15 are formed in the three portions to expose the element isolation region 11 portion. As a result, the upper end of the window 13 formed in the floating gate 13 is formed by a surface having a ridge angle of 90 degrees or more, and the sharp shape of the acute angle disappears to form a rounded shape. This result window 1
5 The vicinity of the upper end is constituted by a surface having a ridge angle of 90 degrees or more.

【0017】続いて形成する第2ゲ−ト酸化膜16に積
層する制御電極17には、不純物としてリンを含有する
多結晶珪素を堆積して構成する。
The control electrode 17 laminated on the second gate oxide film 16 to be subsequently formed is formed by depositing polycrystalline silicon containing phosphorus as an impurity.

【0018】不揮発性半導体記憶素子として完成するに
はワ−ド線が不可欠であるために、セルフアライン法に
より制御電極17、第2ゲ−ト酸化膜16ならびに浮遊
ゲ−ト13の順に夫々を部分的にドライエッチングによ
る等方性エッチングを行う。また浮遊ゲ−ト13上端の
整形に際してはケミカルドライエッチング法に代えウエ
ットエッチング法により処理することも可能である。
Since the word line is indispensable for completing the nonvolatile semiconductor memory device, the control electrode 17, the second gate oxide film 16 and the floating gate 13 are sequentially formed by the self-align method. Isotropic etching is partially performed by dry etching. Further, when shaping the upper end of the floating gate 13, it is possible to use a wet etching method instead of the chemical dry etching method.

【0019】実施例2 浮遊ゲ−ト13に形成する窓1
3の上端に丸みを持たせるには、表面研磨即ちポリッシ
ング法を用いて窓15の上端を後退させることができ、
図16がこの工程を表している。
Example 2 Window 1 formed in floating gate 13
In order to make the upper end of 3 round, the upper end of the window 15 can be retracted by using a surface polishing or polishing method.
FIG. 16 shows this step.

【0020】なお実施例1の図8乃至図12までと、図
14及び図15に示す工程は実施例1と同じであり、第
1実施例の図12に示すようにレジスト14をパタ−ニ
ングする際にケミカルドライエッチング法中の等方性エ
ッチングで加工するのに対して、本実施例においてはレ
ジスト14をパタ−ニング後除去してからポリッシング
法を用いて先端部分をほぼ平坦にする。引続いて異方性
エッチングにより浮遊ゲ−ト13部分に窓15を形成す
るのは実施例1と同じである。
8 to 12 of the first embodiment and the steps shown in FIGS. 14 and 15 are the same as those of the first embodiment, and the resist 14 is patterned as shown in FIG. 12 of the first embodiment. In contrast to the isotropic etching in the chemical dry etching method, the resist 14 is removed after patterning in this embodiment, and then the tip portion is made substantially flat by the polishing method. Subsequently, the window 15 is formed in the floating gate 13 portion by anisotropic etching as in the first embodiment.

【0021】この工程により窓15上端付近は90度以
上の稜角を備えた面により構成することになる。
By this step, the vicinity of the upper end of the window 15 is constituted by a surface having a ridge angle of 90 degrees or more.

【0022】[0022]

【発明の効果】以上のように浮遊ゲ−ト13に形成する
窓15上端の鋭角状の形状を改善することにより電界集
中を抑制でき、第2酸化膜の耐圧リ−ク特性が向上する
と共にTDDB特性中の真性破壊寿命が改善される。更
に第2酸化膜の信頼性の向上により浮遊ゲ−トに貯えら
れた電荷の抜け量も低下させることができるために、高
品質の不揮発性半導体記憶装置が得られる。
As described above, the electric field concentration can be suppressed by improving the acute-angled shape of the upper end of the window 15 formed in the floating gate 13, and the withstand voltage leak characteristic of the second oxide film is improved. The intrinsic breakdown life in the TDDB characteristic is improved. Furthermore, since the reliability of the second oxide film can be improved, the amount of charges stored in the floating gate can be reduced, so that a high-quality nonvolatile semiconductor memory device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の不揮発性半導体記憶装置の製造工程を示
す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a conventional nonvolatile semiconductor memory device.

【図2】図1に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
FIG. 2 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG.

【図3】図2に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
FIG. 3 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 2;

【図4】図3に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
FIG. 4 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, which is subsequent to FIG. 3;

【図5】図4に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
FIG. 5 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 4;

【図6】図5に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
FIG. 6 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 5;

【図7】図6に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
FIG. 7 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, which is subsequent to FIG. 6;

【図8】本発明の不揮発性半導体記憶装置の製造工程を
示す断面図である。
FIG. 8 is a cross-sectional view showing a manufacturing process of the nonvolatile semiconductor memory device of the present invention.

【図9】図8に続く不揮発性半導体記憶装置の製造工程
を示す断面図である。
9 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 8;

【図10】図9に続く不揮発性半導体記憶装置の製造工
程を示す断面図である。
FIG. 10 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 9;

【図11】図10に続く不揮発性半導体記憶装置の製造
工程を示す断面図である。
FIG. 11 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, which is subsequent to FIG. 10;

【図12】図11に続く不揮発性半導体記憶装置の製造
工程を示す断面図である。
FIG. 12 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, which is subsequent to FIG. 11;

【図13】図12に続く不揮発性半導体記憶装置の製造
工程を示す断面図である。
FIG. 13 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 12;

【図14】図13に続く不揮発性半導体記憶装置の製造
工程を示す断面図である。
FIG. 14 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 13;

【図15】図14に続く不揮発性半導体記憶装置の製造
工程を示す断面図である。
FIG. 15 is a cross-sectional view showing the manufacturing process of the nonvolatile semiconductor memory device, following FIG. 14;

【図16】本発明の不揮発性半導体記憶装置の他の実施
例の特徴的な製造工程を示す断面図である。
FIG. 16 is a cross-sectional view showing a characteristic manufacturing process of another embodiment of the nonvolatile semiconductor memory device of the present invention.

【符号の説明】[Explanation of symbols]

1、10:半導体基板、 2、11:素子分離領域、 3、12:第1酸化膜、 4、13:浮遊ゲ−ト、 5、14:レジスト、 6、15:窓、 7、16:第2酸化膜、 8、17:制御電極、 1, 10: semiconductor substrate, 2, 11: element isolation region, 3, 12: first oxide film, 4, 13: floating gate, 5, 14: resist, 6, 15: window, 7, 16: first 2 oxide film, 8, 17: control electrode,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面付近に位置する複数の素
子分離領域と,この半導体基板の露出表面を覆う第1ゲ
−ト酸化膜と,この第1ゲ−ト酸化膜から前記素子分離
領域にかけて重ねる浮遊ゲ−トと,この浮遊ゲ−ト及び
前記素子分離領域部分を被覆する第2ゲ−ト酸化膜と,
この第2ゲ−ト酸化膜に積層する制御ゲ−トと,前記素
子分離領域に連続する前記第2ゲ−ト酸化膜部分に隣接
する前記浮遊ゲ−トの窓と,この窓の上端付近を構成す
る稜角が90度以上の面とを具備することを特徴とする
不揮発性半導体記憶素子
1. A plurality of element isolation regions located near the surface of a semiconductor substrate, a first gate oxide film covering an exposed surface of the semiconductor substrate, and a region extending from the first gate oxide film to the element isolation region. An overlapping floating gate, and a second gate oxide film covering the floating gate and the element isolation region portion,
A control gate laminated on the second gate oxide film, a window of the floating gate adjacent to the second gate oxide film portion continuous to the element isolation region, and the vicinity of the upper end of this window A non-volatile semiconductor memory device having a ridge angle of 90 degrees or more
JP20243893A 1993-08-17 1993-08-17 Nonvolatile semiconductor memory device Pending JPH0758221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20243893A JPH0758221A (en) 1993-08-17 1993-08-17 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20243893A JPH0758221A (en) 1993-08-17 1993-08-17 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH0758221A true JPH0758221A (en) 1995-03-03

Family

ID=16457530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20243893A Pending JPH0758221A (en) 1993-08-17 1993-08-17 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0758221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235589B1 (en) 2000-01-07 2001-05-22 Kabushiki Kaisha Toshiba Method of making non-volatile memory with polysilicon spacers
KR100339420B1 (en) * 1999-11-03 2002-05-31 박종섭 Method for fabricating semiconductor memory device
US6689659B2 (en) 2001-05-29 2004-02-10 Samsung Electronics Co., Ltd. Method of making semiconductor memory device having a floating gate with a rounded edge
KR100466192B1 (en) * 2002-07-18 2005-01-13 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
US7348267B2 (en) * 2005-01-13 2008-03-25 Samsung Electronics Co., Ltd. Flash memory and method of fabricating the same
US7445997B2 (en) 2004-05-11 2008-11-04 Samsung Electronics Co., Ltd. Methods of forming non-volatile memory devices having floating gate electrodes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339420B1 (en) * 1999-11-03 2002-05-31 박종섭 Method for fabricating semiconductor memory device
US6235589B1 (en) 2000-01-07 2001-05-22 Kabushiki Kaisha Toshiba Method of making non-volatile memory with polysilicon spacers
US6689659B2 (en) 2001-05-29 2004-02-10 Samsung Electronics Co., Ltd. Method of making semiconductor memory device having a floating gate with a rounded edge
KR100466192B1 (en) * 2002-07-18 2005-01-13 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
US7445997B2 (en) 2004-05-11 2008-11-04 Samsung Electronics Co., Ltd. Methods of forming non-volatile memory devices having floating gate electrodes
US7348267B2 (en) * 2005-01-13 2008-03-25 Samsung Electronics Co., Ltd. Flash memory and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5439838A (en) Method of thinning for EEPROM tunneling oxide device
US8445953B2 (en) Structure for flash memory cells
US5473179A (en) Method for improving erase characteristics and coupling ratios of buried bit line flash EPROM devices
US6171906B1 (en) Method of forming sharp beak of poly to improve erase speed in split gate flash
JP5178979B2 (en) Method for providing polysilicon dopant levels for flash memory devices
JPH1056161A (en) Non-volatile memory device and its manufacturing method
JP4606580B2 (en) Formation of control gate and floating gate of semiconductor non-volatile memory
US6235585B1 (en) Method for fabricating flash memory device and peripheral area
JPH0758221A (en) Nonvolatile semiconductor memory device
JP2000031305A (en) And type nonvolatile semiconductor storage device and its manufacture
KR20030065702A (en) Method of fabricating Floating gate type Non-volatile memory device
JPH0770629B2 (en) Method of manufacturing nonvolatile semiconductor memory device
US6362047B1 (en) Method of manufacturing EEPROM memory points
JP4313956B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JP3256375B2 (en) Method for manufacturing nonvolatile memory cell
JP2000299395A (en) Nonvolatile semiconductor storage device and manufacture thereof
JP2003347436A (en) Method for manufacturing semiconductor device
JP3378776B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2727136B2 (en) Electrically erasable and electrically programmable memory device having self-aligned tunnel dielectric region and method of making same
JP2970984B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPH11284084A (en) Nonvolatile semiconductor storage device and its manufacture
JPH04356969A (en) Nonvolatile semiconductor device
JP3139275B2 (en) Semiconductor memory device and method of manufacturing the same
KR0142602B1 (en) Method for manufacturing a flash Y pyrom device
KR100533964B1 (en) Method for fabricating semiconductor devcie having tungsten poly metal gate-electrode