JPH0756803B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH0756803B2
JPH0756803B2 JP59213509A JP21350984A JPH0756803B2 JP H0756803 B2 JPH0756803 B2 JP H0756803B2 JP 59213509 A JP59213509 A JP 59213509A JP 21350984 A JP21350984 A JP 21350984A JP H0756803 B2 JPH0756803 B2 JP H0756803B2
Authority
JP
Japan
Prior art keywords
battery
storage battery
alkaline storage
sealed alkaline
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59213509A
Other languages
Japanese (ja)
Other versions
JPS6191863A (en
Inventor
宗久 生駒
博志 川野
良夫 森脇
孝治 蒲生
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59213509A priority Critical patent/JPH0756803B2/en
Publication of JPS6191863A publication Critical patent/JPS6191863A/en
Publication of JPH0756803B2 publication Critical patent/JPH0756803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気化学的に水素の吸蔵・放出が可能な水素
吸蔵合金を負極に用いた密閉形アルカリ蓄電池に関す
る。
TECHNICAL FIELD The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as a negative electrode.

従来例の構成とその問題点 水素吸蔵合金を負極とし、正極にニッケル酸化物を用い
たニッケル−水素蓄電池が提案されている。負極にはLa
Ni系やCaNi系などの水素吸蔵合金が用いられている。こ
の電池系は、ニッケル−カドミウム蓄電池より高容量化
が可能で低公害の二次電池として期待されている。
Configuration of Conventional Example and Problems Thereof A nickel-hydrogen storage battery has been proposed in which a hydrogen storage alloy is used as a negative electrode and nickel oxide is used as a positive electrode. La for the negative electrode
Ni-based and CaNi-based hydrogen storage alloys are used. This battery system is expected to be a low-pollution secondary battery capable of higher capacity than nickel-cadmium storage batteries.

CaNi系合金の代表的なものであるCaNi5を電極として用
いた場合、安価で初期容量が大きいが、サイクル寿命は
短いという欠点を持っている。また、CaNi5合金を負極
として用いた場合、放電電位が低いという欠点がある。
一方、LaNi系合金の代表的なものであるLaNi5合金を負
極として用いた場合、サイクル寿命は良好であるが、高
価で、常温付近における放電容量が小さいという問題が
ある。
When CaNi 5 , which is a typical CaNi-based alloy, is used as an electrode, it has the drawback of being inexpensive and having a large initial capacity, but having a short cycle life. Further, when CaNi 5 alloy is used as the negative electrode, there is a drawback that the discharge potential is low.
On the other hand, when a LaNi 5 alloy, which is a typical LaNi-based alloy, is used as the negative electrode, the cycle life is good, but it is expensive and there is a problem that the discharge capacity near room temperature is small.

また、これに近い例として、La1−xNi5−y
合金が提案されている(特開昭51−15234)。ここで、
Rは希土類金属、MはCo,CuまたはFeで、0<x<1、
0≦y≦1である。即ち、La1−xと合金化するNi
は少なくとも4原子、Mは最大1原子である。Rとして
希土類単体金属を添加しているが、Laより高価な金属が
多い。この範囲内では、密閉形電池を構成した場合、過
充電時に電池内圧の上昇が見られ、放電容量も小さくな
り、サイクル寿命も短くなるなどの問題があった。特
に、高容量(94wh/以上)密閉形アルカリ蓄電池を構
成した場合に顕著であった。
In addition, as an example close to this, La 1-x R x Ni 5- y My
Alloys have been proposed (JP-A-51-15234). here,
R is a rare earth metal, M is Co, Cu or Fe, 0 <x <1,
0 ≦ y ≦ 1. That is, Ni that alloys with La 1-x R x
Is at least 4 atoms and M is at most 1 atom. A rare earth element metal is added as R, but many metals are more expensive than La. Within this range, when a sealed battery is constructed, there is a problem that the internal pressure of the battery rises during overcharging, the discharge capacity becomes small, and the cycle life becomes short. Especially, it was remarkable when a high capacity (94wh / more) sealed alkaline storage battery was constructed.

発明の目的 本発明はMm中のランタン含有量と過充電時に発生する酸
素ガスイオン化能に着目し、比較的安価な材料を用いて
負極を構成し、充放電サイクル寿命が長く、過充電時の
発生ガスによる内圧上昇が少ない密閉形アルカリ蓄電
池、特に高容量(94wh/以上)タイプの密閉形アルカ
リ蓄電池を得ることを目的とする。
Aim of the invention The present invention focuses on the lanthanum content in Mm and the oxygen gas ionization capacity generated during overcharge, constitutes the negative electrode using a relatively inexpensive material, has a long charge / discharge cycle life, and during overcharge. An object of the present invention is to obtain a sealed alkaline storage battery with a small increase in internal pressure due to generated gas, particularly a high capacity (94 wh / more) sealed alkaline storage battery.

発明の構成 本発明の密閉形アルカリ蓄電池は、一般式 MmNiCo(式中、1.5<x<5.0、0≦Z≦1.5、
2.5<x+y<5.5、4<x+y+z<5.5MはAl、Mn、C
r、Fe、Cu、Sn、Sb、Mo、V、Nb、Ta、Zn、Mg、Zr、Ti
の少なくとも1種)で表わせる合金でおいて、Mmは希土
類金属に3種以上の混合物であり、Mm中のランタン含有
量が50〜70重量%である水素吸蔵合金を負極に備えたも
のである。本発明による容易に、充放電サイクル寿命が
良好で、過充電時の発生ガスによる内圧上昇が少ない密
閉形アルカリ蓄電池が得られる。
Structure of the Invention The sealed alkaline storage battery of the present invention has a general formula MmNi x Co y M z (wherein 1.5 <x <5.0, 0 ≦ Z ≦ 1.5,
2.5 <x + y <5.5, 4 <x + y + z <5.5 M is Al, Mn, C
r, Fe, Cu, Sn, Sb, Mo, V, Nb, Ta, Zn, Mg, Zr, Ti
At least one of Mm is a mixture of three or more kinds of rare earth metals, and the hydrogen storage alloy having a lanthanum content of Mm of 50 to 70% by weight is provided in the negative electrode. is there. According to the present invention, it is possible to easily obtain a sealed alkaline storage battery having a good charge / discharge cycle life and a small increase in internal pressure due to the generated gas during overcharge.

実施例の説明 以下本発明をその実施例により説明する。Description of Examples Hereinafter, the present invention will be described with reference to Examples.

実施例 市販のミッシュメタルMm(La:24.87重量%、Ce:51.75重
量%、Nd:10.84重量%、Pr:5.49重量%、他)について
そのLa含有量が25,48,50,55,62,65,70重量%となるよう
に調整し、これに、ニッケル(純度99%以上)、コバル
ト(純度99%以上)と、Mとして、アルミニウム、マン
ガン、クロム、鉄、銅、錫、アンチモン、モリブデン、
バナジウム、ニオブ、タンタル、亜鉛、マグネシウム、
ジルコニウム、チタンなどから1種以上を選択し、各試
料を一定の組成比に秤量、混合し、アーク溶解炉に入れ
て、10-4〜10-5Torrまで真空状態にした後、アルゴンガ
ス雰囲気中(減圧状態)でアーク放電し、加熱溶解させ
た試料の均質化を図るために数回反転させて合金試料と
した。比較のために、LaNi5,La0.5Ce0.5Ni4.0Co合金を
用いた。
Example Commercially available misch metal Mm (La: 24.87% by weight, Ce: 51.75% by weight, Nd: 10.84% by weight, Pr: 5.49% by weight, etc.) has a La content of 25, 48, 50, 55, 62, Adjusted to 65,70 wt%, nickel (purity 99% or higher), cobalt (purity 99% or higher), and M as aluminum, manganese, chromium, iron, copper, tin, antimony, molybdenum ,
Vanadium, niobium, tantalum, zinc, magnesium,
Select one or more of zirconium, titanium, etc., weigh and mix each sample to a certain composition ratio, put it in an arc melting furnace, and evacuate it to 10 -4 to 10 -5 Torr, and then in an argon gas atmosphere. Arc discharge was performed in the middle (reduced pressure state), and the sample melted by heating was inverted several times to obtain an alloy sample. For comparison, a LaNi 5 , La 0.5 Ce 0.5 Ni 4.0 Co alloy was used.

これらの合金を粗粉砕後、ボールミルで38μm以下の微
粉末にした後、ポリビニルアルコールの5重量%水溶液
と混合しペースト状にした。このペースト状混合粉末を
発泡メタルに充填し、乾燥、加圧(1.8トン/cm2)した
後、真空中120℃で熱処理を行い、リードを取り付け負
極とした。用いた負極の合金組成を表に示した。C〜X
の負極については、Mm中のランタン含有量がそれぞれ2
5、48、50、55、62、65、70重量%である。
These alloys were coarsely crushed and then finely pulverized with a ball mill to 38 μm or less, and then mixed with a 5 wt% aqueous solution of polyvinyl alcohol to form a paste. This paste-like mixed powder was filled in a foam metal, dried and pressurized (1.8 ton / cm 2 ), and then heat-treated at 120 ° C. in vacuum to attach a lead to obtain a negative electrode. The alloy composition of the negative electrode used is shown in the table. C ~ X
For the negative electrode, the lanthanum content in Mm was 2
5, 48, 50, 55, 62, 65, 70% by weight.

これらの負極と公知のニッケル極を正極として単2形の
密閉形ニッケル−水素蓄電池(公称容量3.5Ah、160wh/
)を構成した。充放電サイクルと充電末期の電池内圧
力の関係を調べた結果を第1図に示した。充放電条件
は、充電が0.5Aで6時間7分、放電が0.5Aで4時間22分
であり、I.E.C.規格に準じる条件である。
Using these negative electrodes and the known nickel electrodes as positive electrodes, a single type 2 sealed nickel-metal hydride storage battery (nominal capacity: 3.5 Ah, 160 wh /
) Was configured. The results of examining the relationship between the charge / discharge cycle and the internal pressure of the battery at the end of charging are shown in FIG. The charging and discharging conditions are 0.5 A for 6 hours and 7 minutes and 0.5 A for 4 hours and 22 minutes, which are in accordance with the IEC standard.

第1図から明らかなように、LaNi5合金からなる負極A
を用いた電池は、充放電サイクルの繰り返しにより急激
に電池内圧力は増加し、40サイクルの繰り返しにより、
電池内圧力は20kg/cm2となり、放電容量は初期容量の半
分以下となる。
As is clear from FIG. 1, negative electrode A made of LaNi 5 alloy
In the battery using, the pressure inside the battery increases rapidly with repeated charge and discharge cycles, and with repeated 40 cycles,
The battery internal pressure is 20 kg / cm 2 , and the discharge capacity is less than half the initial capacity.

また、従来型の負極Bを用いた電池は充放電40サイクル
までは10kg/cm2以下の電池内圧力であるが、70サイクル
に達すると電池内圧力は20kg/cm2にも上昇する。したが
って、LaNi5合金と同様に放電容量の低下が認められ
た。LaNi5あるいはLa0.5Ce0.5Ni4.0Coを用いた場合の電
池内圧力上昇や放電容量低下の原因は、過充電時に正極
から発生する酸素ガスにより酸化されることによる。
The battery using the conventional negative electrode B has a battery internal pressure of 10 kg / cm 2 or less up to 40 cycles of charging / discharging, but when it reaches 70 cycles, the battery internal pressure rises to 20 kg / cm 2 . Therefore, it was confirmed that the discharge capacity was reduced as in the case of the LaNi 5 alloy. The cause of the increase in the battery pressure and the decrease in the discharge capacity when using LaNi 5 or La 0.5 Ce 0.5 Ni 4.0 Co is that they are oxidized by the oxygen gas generated from the positive electrode during overcharge.

さらに負極C〜Xを用いた電池でもMm中のランタン含有
量が25重量%、48重量%では、負極A,Bと同様に数十サ
イクルの繰り返しにより電池内圧力は10kg/cm2以上にな
る。しかし、3種以上の希土類金属の混合物であるMm中
のランタン含有量が50〜70重量%である負極C〜Xを用
いた電池では、充放電を200サイクル以上繰り返して
も、充電末期の電池内圧力は10kg/cm2以下である。ま
た、第2図に示したように、特にMm中のランタン含有量
が55〜65重量%の時、電池内圧力は6kg/cm2以下であ
り、非常に優れた密閉形アルカリ蓄電池が得られる。
Further, even in the battery using the negative electrodes C to X, when the lanthanum content in Mm is 25% by weight and 48% by weight, the internal pressure of the battery becomes 10 kg / cm 2 or more by repeating several tens of cycles like the negative electrodes A and B. . However, in the battery using the negative electrodes C to X whose lanthanum content in Mm, which is a mixture of three or more kinds of rare earth metals, is 50 to 70% by weight, even when charging and discharging are repeated for 200 cycles or more, the battery at the end of charging is The internal pressure is 10 kg / cm 2 or less. Moreover, as shown in FIG. 2, when the lanthanum content in Mm is 55 to 65% by weight, the internal pressure of the battery is 6 kg / cm 2 or less, and a very excellent sealed alkaline storage battery can be obtained. .

以上のように、Mm中のランタン含有量が50〜70重量%で
電池内圧力は低くなり、充放電サイクル寿命特性も良好
となる。これは、過充電時に正極から発生する酸素ガス
を水に戻す能力が優れていることと、3種以上の希土類
金属の混合物を用いているので、耐食性も良好となるた
めである。Mm中のランタン含有量が25重量%、48重量%
では酸素ガスを水に戻す能力が小さいため、電池内圧力
は高くなる、また、引用例のLa0.5Ce0.5Ni4.0Co合金を
負極に用いた電池の場合は、希土類中のランタン含有量
は49重量%であるが、2種の混合物を用いているため、
耐食性、耐酸化性に劣り、酸素を水に戻す能力が充放電
サイクルとともに低下し、電池内圧力が上昇する結果と
なる。
As described above, when the lanthanum content in Mm is 50 to 70% by weight, the internal pressure of the battery becomes low and the charge / discharge cycle life characteristics become good. This is because the oxygen gas generated from the positive electrode at the time of overcharge is excellent in the ability to return to water, and since a mixture of three or more rare earth metals is used, the corrosion resistance is also good. Lanthanum content in Mm is 25% by weight, 48% by weight
However, since the ability to return oxygen gas to water is small, the internal pressure of the battery is high, and in the case of the battery using the La 0.5 Ce 0.5 Ni 4.0 Co alloy of the cited example for the negative electrode, the lanthanum content in the rare earth is 49%. Although it is a weight%, since a mixture of two kinds is used,
As a result, the corrosion resistance and the oxidation resistance are poor, the ability to return oxygen to water decreases with a charge / discharge cycle, and the pressure inside the battery rises.

発明の効果 以上のように、本発明によれば電池内圧力が上昇せず、
サイクル寿命が良好で信頼性の高い密閉形アルカリ蓄電
池が得られる。
Effects of the Invention As described above, according to the present invention, the battery internal pressure does not rise,
A sealed alkaline storage battery with good cycle life and high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は各種合金を負極に用いた密閉電池の充電末期の
電池内圧力の経時変化を示す図、第2図はMm中のランタ
ン含有量と充電末期の電池内圧力の関係を示す図であ
る。
FIG. 1 is a diagram showing the time-dependent change in the battery internal pressure at the end of charging of a sealed battery using various alloys for the negative electrode, and FIG. 2 is a diagram showing the relationship between the lanthanum content in Mm and the battery internal pressure at the end of charging. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 良夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 柳原 伸行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−89066(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Moriwaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Nobuyuki Yanagihara 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-60-89066 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式MmNiCoMz(式中、1.5<x<5.
0、0≦Z≦1.5、2.5<X+Y<5.5、4<X+Y+Z<
5.5でありMはAl、Mn、Cr、Fe、Cu、Sn、Sb、Mo、V、N
b、Ta、Zn、Mg、Zr、Tiの少なくとも1種である。)で
表される合金であって、Mmが少なくともLa、Ce、Nd、Pr
の混合物であり、この混合物中のランタン含有量が55〜
70重量%である水素吸蔵合金を負極とした密閉形アルカ
リ蓄電池。
1. A general formula MmNi x Co y Mz (wherein 1.5 <x <5.
0, 0 ≦ Z ≦ 1.5, 2.5 <X + Y <5.5, 4 <X + Y + Z <
5.5 and M is Al, Mn, Cr, Fe, Cu, Sn, Sb, Mo, V, N
It is at least one of b, Ta, Zn, Mg, Zr, and Ti. ), Mm is at least La, Ce, Nd, Pr.
And the lanthanum content in this mixture is 55-
A sealed alkaline storage battery with a 70% by weight hydrogen storage alloy as the negative electrode.
【請求項2】前記Mm中のランタン含有量が55〜65重量%
である特許請求の範囲第1項記載の密閉形アルカリ蓄電
池。
2. The lanthanum content in the Mm is 55 to 65% by weight.
The sealed alkaline storage battery according to claim 1, wherein
JP59213509A 1984-10-11 1984-10-11 Sealed alkaline storage battery Expired - Lifetime JPH0756803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213509A JPH0756803B2 (en) 1984-10-11 1984-10-11 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213509A JPH0756803B2 (en) 1984-10-11 1984-10-11 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6191863A JPS6191863A (en) 1986-05-09
JPH0756803B2 true JPH0756803B2 (en) 1995-06-14

Family

ID=16640368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213509A Expired - Lifetime JPH0756803B2 (en) 1984-10-11 1984-10-11 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0756803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733724B1 (en) 1999-08-05 2004-05-11 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168871A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Hydrogen occlusion electrode
US4696873A (en) * 1985-06-21 1987-09-29 Kabushiki Kaisha Toshiba Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component
JP2745501B2 (en) * 1985-11-20 1998-04-28 松下電器産業株式会社 Sealed alkaline storage battery
JPH0690924B2 (en) * 1985-12-12 1994-11-14 松下電器産業株式会社 Storage battery electrode
JPS62294145A (en) * 1986-06-13 1987-12-21 Santoku Kinzoku Kogyo Kk Metallic alloy for hydrogen storage containing rare earth element and nickel
US4983474A (en) * 1988-05-17 1991-01-08 Mitsubishi Metal Corporation Hydroen absorbing Ni-based alloy and rechargeable alkaline battery
JP2926734B2 (en) * 1989-02-23 1999-07-28 松下電器産業株式会社 Alkaline storage battery using hydrogen storage alloy
JP2771592B2 (en) * 1989-04-18 1998-07-02 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage batteries
JPH04202730A (en) * 1990-11-30 1992-07-23 Furukawa Battery Co Ltd:The Hydrogen storage electrode
DE19639440C2 (en) * 1995-09-29 2001-05-10 Toshiba Kawasaki Kk Hydrogen absorbing alloy for a battery and use of the alloy in secondary nickel metal hydride batteries
WO2000051195A1 (en) 1999-02-24 2000-08-31 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8303630A (en) * 1983-10-21 1985-05-17 Philips Nv ELECTROCHEMICAL CELL WITH STABLE HYDRIDE-FORMING MATERIALS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733724B1 (en) 1999-08-05 2004-05-11 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery

Also Published As

Publication number Publication date
JPS6191863A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
EP0293660B1 (en) Hydrogen storage electrodes
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0586029B2 (en)
JPH0756803B2 (en) Sealed alkaline storage battery
EP0554617B1 (en) Active material of hydrogen storage alloy electrode
JPH0719599B2 (en) Storage battery electrode
JPS60250557A (en) Enclosed type alkaline storage battery
JPH0821379B2 (en) Hydrogen storage electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH06187983A (en) Hydrogen storage alloy electrode
JPS62271349A (en) Hydrogen occlusion electrode
JPS63164161A (en) Enclosed-type alkaline storage battery
JP2962814B2 (en) Hydrogen storage alloy electrode
US5552246A (en) Materials for hydrogen storage, hydride electrodes and hydride batteries
JP2962813B2 (en) Hydrogen storage alloy electrode
JPS62249358A (en) Hydrogen storage electrode
JPH04319256A (en) Metal-hydrogen alkali secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPS61176067A (en) Hydrogen occlusion electrode
US5902545A (en) Hydrogen occlusion alloys for electrical cells
JPH0675398B2 (en) Sealed alkaline storage battery
JPH0794176A (en) Hydrogen storage electrode
JPH04187733A (en) Hydrogen storage alloy electrode
JPH0815079B2 (en) Hydrogen storage electrode
JPS63166147A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term