JPH0755891A - Mehtod and device for testing integrated circuit - Google Patents

Mehtod and device for testing integrated circuit

Info

Publication number
JPH0755891A
JPH0755891A JP5197449A JP19744993A JPH0755891A JP H0755891 A JPH0755891 A JP H0755891A JP 5197449 A JP5197449 A JP 5197449A JP 19744993 A JP19744993 A JP 19744993A JP H0755891 A JPH0755891 A JP H0755891A
Authority
JP
Japan
Prior art keywords
integrated circuit
light
laser
laser beam
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5197449A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
亮 高橋
Mitsuru Shinagawa
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5197449A priority Critical patent/JPH0755891A/en
Publication of JPH0755891A publication Critical patent/JPH0755891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To improve sensitivity by suppressing beat noise generated when amplifying a laser beam emitted from a semiconductor laser by a light amplifier. CONSTITUTION:A semiconductor laser 11 for generating a laser beam, a light amplifier 12 for amplifying the power of the laser beam directed to an electrooptical material, a beam splitter 13 for branching the laser beam passed through the optoelectrical material into two portions, two wavelength plates 14 and 15 which have specific retardations which are equal in size and have different signs and give a specific polarization change to each of two laser beams branched by the beam splitter 13, two analyzers 16 and 17 for converting the polarization of the beam passed through the wavelength plates 14 and 15 to light intensity signals, tow light reception elements 48 which receive the light intensity signal output from the analyzers 16 and 17, and a differential detection means which performs differential detection of the electrical signal output from each light reception element 18 and the measures electric field generated by operating an integrated circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を用いて集積
回路の評価および動作試験を行う集積回路の試験方法お
よび試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit test method and test apparatus for evaluating and operating an integrated circuit using laser light.

【0002】[0002]

【従来の技術】集積回路の評価および動作試験を行う方
法として、電気光学サンプリングと呼ばれる超高速電気
信号の測定法がある。この電気光学サンプリングは、レ
ーザ光をプローブとして用いるので非破壊で試験が可能
であり、さらに光パルス幅で決まる時間分解能を有する
ので、超短光パルスを用いれば極めて高速な測定が可能
になっている。なお、電気光学サンプリングについて
は、文献(K.J.Weingarten,M.J.W.Rodwell and D.M.Bloo
m:IEEE J.Quantum Electronics QE-24,p.198,1988)に詳
しく述べられているが、ここでは必要な事項のみを説明
する。
2. Description of the Related Art As a method for evaluating an integrated circuit and performing an operation test, there is a measuring method of an ultrahigh-speed electric signal called electro-optical sampling. Since this electro-optical sampling uses laser light as a probe, it can be tested nondestructively, and has a time resolution determined by the optical pulse width, so extremely high-speed measurement becomes possible using ultrashort optical pulses. There is. For electro-optic sampling, refer to the literature (KJ Weingarten, MJW Rodwell and DMBloo.
m: IEEE J. Quantum Electronics QE-24, p.198, 1988), but only the necessary items are explained here.

【0003】図4は、従来の電気光学サンプリングシス
テムの構成を示す。図において、レーザ光源41から出
射されたレーザ光は、偏光子42を通って偏光方向が定
められ、λ/4板43を通って円偏光に変換されて測定
ヘッド44に入射される。測定ヘッド44は、電界によ
り複屈折率が変化する電気光学材料により形成される。
この測定ヘッド44を動作中の被試験集積回路45に近
づけると、その電気信号から生じる電界が測定ヘッド4
4内に侵入してポッケルス効果を誘起する。すなわち、
電界強度に応じて測定ヘッド44の複屈折率が変化し、
通過するレーザ光(円偏光)の偏光状態を変化させる。
このようにして被試験集積回路45の動作状態がレーザ
光の偏光状態の変化として記憶される。
FIG. 4 shows the configuration of a conventional electro-optic sampling system. In the figure, the laser light emitted from the laser light source 41 passes through the polarizer 42 to determine the polarization direction, passes through the λ / 4 plate 43, is converted into circularly polarized light, and is incident on the measurement head 44. The measuring head 44 is formed of an electro-optical material whose birefringence changes with an electric field.
When the measuring head 44 is brought close to the operating integrated circuit 45 under test, the electric field generated from the electric signal is measured.
It penetrates into 4 and induces the Pockels effect. That is,
The birefringence of the measuring head 44 changes according to the electric field strength,
The polarization state of the passing laser light (circularly polarized light) is changed.
In this way, the operating state of the integrated circuit under test 45 is stored as a change in the polarization state of the laser light.

【0004】このレーザ光の偏光状態の変化は、ある適
当な軸方向に設定された偏光板を通すことにより光の強
度変化に変換できる。ただし、測定ヘッド44内を通過
する際に受ける円偏光から楕円偏光への偏光状態の変化
はわずかであり、強度変化に換算して10-5のオーダーで
ある。したがって、図に示すように、測定ヘッド44を
通過した光をミラー46を介して偏光ビームスプリッタ
47に導き、P偏光とS偏光に分離してそれぞれ受光素
子48,49に受光させ、2つの電気信号を差動増幅器
50で処理する。この差動検波により、レーザ光の強度
雑音や振動に伴う雑音成分は同相で変化するので除去さ
れ、信号成分は逆相で変化するので2倍になり、感度を
上げることができる。
This change in the polarization state of the laser light can be converted into a change in light intensity by passing through a polarizing plate set in a certain suitable axial direction. However, the change in the polarization state from circularly polarized light to elliptically polarized light that is received when passing through the measuring head 44 is slight, and is on the order of 10 −5 in terms of intensity change. Therefore, as shown in the figure, the light passing through the measuring head 44 is guided to the polarization beam splitter 47 via the mirror 46, separated into P-polarized light and S-polarized light, and received by the light-receiving elements 48 and 49, respectively. The signal is processed by the differential amplifier 50. Due to this differential detection, the intensity noise of the laser light and the noise component associated with the vibration change in the same phase and are removed, and the signal component changes in the opposite phase, so the signal component doubles and the sensitivity can be increased.

【0005】また、差動増幅器50に信号平均化装置5
1を接続し、差動増幅器50の出力をサンプリング周波
数Δfでサンプリングして平均化することにより感度を
上げることができる(高速オフセット・平均化法)。こ
の場合のサンプリング周波数Δfは、レーザ光の繰り返
し周波数f1 と被試験集積回路45の動作周波数f2
差周波数であり、レーザ光の強度雑音や振動に伴う雑音
の周波数領域(数Hz〜数百kHz)よりも高くなるように
設定される。
In addition, the signal averaging device 5 is added to the differential amplifier 50.
The sensitivity can be increased by connecting 1 and sampling the output of the differential amplifier 50 at the sampling frequency Δf and averaging (high-speed offset / averaging method). The sampling frequency Δf in this case is the difference frequency between the repetition frequency f 1 of the laser light and the operating frequency f 2 of the integrated circuit under test 45, and is the frequency range of noise due to the intensity noise and vibration of the laser light (several Hz to several Hz). It is set to be higher than 100 kHz).

【0006】なお、GaAsやInP その他の電気光学材
料基板上に作られた集積回路を試験する場合には測定ヘ
ッド44は不要となる。すなわち、レーザ光をその基板
に直接照射することにより、基板上の集積回路の動作に
伴う電界強度を偏光状態の変化から検出することができ
る。一方、Si その他の電気光学効果のない基板上に作
られた集積回路を試験する場合には、上述したように電
気光学材料からなる測定ヘッド44を被試験集積回路4
5に近接して回路からの漏れ電界を検出する。
It should be noted that the measuring head 44 is not necessary when testing an integrated circuit formed on a substrate of GaAs, InP or other electro-optical material. That is, by directly irradiating the substrate with the laser light, the electric field strength associated with the operation of the integrated circuit on the substrate can be detected from the change in the polarization state. On the other hand, when testing an integrated circuit made on a substrate such as Si or the like which does not have an electro-optical effect, the measuring head 44 made of an electro-optical material is mounted on the tested integrated circuit 4 as described above.
The leakage electric field from the circuit is detected in the vicinity of 5.

【0007】[0007]

【発明が解決しようとする課題】ところで、半導体レー
ザは小型で安定動作するものの出力光強度が小さい。し
たがって、上記の電気光学サンプリングシステムのレー
ザ光源として、半導体レーザを用いた場合には感度が問
題となる。そこで、光増幅器を用いてレーザ光の強度を
増幅させる方法が考えられている。しかし、光増幅器を
用いると、増幅過程に伴う揺らぎ(ビート雑音)が付加
されるので、レーザ光の強度が増幅されたにもかかわわ
らず、感度が逆に劣化してしまうことがあった。
The semiconductor laser is small and operates stably, but the output light intensity is small. Therefore, when a semiconductor laser is used as the laser light source of the electro-optic sampling system, the sensitivity becomes a problem. Therefore, a method of amplifying the intensity of laser light using an optical amplifier has been considered. However, when an optical amplifier is used, fluctuations (beat noise) associated with the amplification process are added, so that the sensitivity may be adversely deteriorated despite the fact that the intensity of the laser light is amplified.

【0008】本発明は、半導体レーザを光源とするレー
ザ光を用いて集積回路の試験を行う電気光学サンプリン
グシステムにおいて、感度向上を図ることができる集積
回路の試験方法および試験装置を提供することを目的と
する。
The present invention provides an integrated circuit test method and a test apparatus capable of improving sensitivity in an electro-optical sampling system for testing an integrated circuit using laser light having a semiconductor laser as a light source. To aim.

【0009】[0009]

【課題を解決するための手段】本発明は、レーザ光を発
生する半導体レーザと、電気光学材料に照射するレーザ
光を増幅する光増幅器と、電気光学材料を通過したレー
ザ光を2つに分岐するビームスプリッタと、互いに大き
さが等しく符号が異なる所定のリターデーションを有
し、ビームスプリッタで2分岐された各レーザ光にそれ
ぞれ所定の偏光状態の変化を与える2つの波長板と、各
波長板を通過したレーザ光の偏光状態を光強度信号に変
換する2つの検光子と、各検光子から出力される光強度
信号を受光する2つの受光素子と、各受光素子から出力
される電気信号を差動検波し、集積回路の動作により生
じた電界を測定する差動検波手段とを備える。
According to the present invention, a semiconductor laser for generating a laser beam, an optical amplifier for amplifying a laser beam for irradiating an electro-optical material, and a laser beam passing through the electro-optical material are branched into two. Beam splitters, two wave plates having predetermined retardations of the same size and different signs, each of which gives a predetermined change in polarization state to each laser beam split by the beam splitter, and each wave plate The two analyzers that convert the polarization state of the laser light that has passed through to the light intensity signal, the two light receiving elements that receive the light intensity signal output from each analyzer, and the electrical signals output from each light receiving element Differential detection means for performing differential detection and measuring an electric field generated by the operation of the integrated circuit.

【0010】すなわち、回路試験に供するプローブ光の
光源として、半導体レーザと光増幅器を組み合わせるこ
とを特徴としている。さらに、電気光学材料を通過した
レーザ光を2分岐し、それぞれの経路のレーザ光に、大
きさが等しく符号が異なる所定のリターデーションを与
える波長板を介して所定の偏光状態の変化を与え、各経
路のレーザ光の偏光状態を光強度信号に変換して差動検
波することを特徴としている。
That is, it is characterized in that a semiconductor laser and an optical amplifier are combined as a light source of probe light used for a circuit test. Further, the laser light that has passed through the electro-optical material is branched into two, and a predetermined polarization state change is given to the laser light of each path through a wave plate that gives a predetermined retardation of the same magnitude but different sign. It is characterized in that the polarization state of the laser light on each path is converted into a light intensity signal for differential detection.

【0011】[0011]

【作用】本発明による集積回路の試験方法および試験装
置では、集積回路の動作による電界により偏光状態の変
化を受け、2分岐されたレーザ光に対して、リターデー
ションを自由に設定することが可能となる。これによ
り、最適なリターデーションの設定が可能となる。した
がって、光増幅器を用いることにより生じるビート雑音
を低減し、かつレーザ光の強度雑音や振動に伴う雑音を
除去できるので、極めて高感度な差動検波を行うことが
できる。
In the integrated circuit testing method and the testing apparatus according to the present invention, the retardation can be freely set for the laser beam which is bifurcated due to the change of the polarization state due to the electric field due to the operation of the integrated circuit. Becomes As a result, it becomes possible to set the optimum retardation. Therefore, the beat noise generated by using the optical amplifier can be reduced, and the intensity noise of the laser light and the noise associated with the vibration can be removed, so that extremely sensitive differential detection can be performed.

【0012】[0012]

【実施例】図1は、本発明の試験装置の実施例構成を示
す。図において、半導体レーザ11から出射されたレー
ザ光は、例えばエルビウムドープファイバ増幅器による
光増幅器12を介して増幅される。増幅されたレーザ光
は、偏光子42を通り直線偏光となって測定ヘッド44
に入射される。測定ヘッド44に入射されたレーザ光
は、動作中の被試験集積回路45からの電界により偏光
状態の変化を受ける。このレーザ光は、ミラー46を介
して偏光無依存のビームスプリッタ13に導かれて2分
岐される。各レーザ光は、互いに大きさが等しく符号の
異なるリターデーションを与える波長板14,15に入
射され、それぞれ所定の偏光状態の変化を受ける。各波
長板14,15を通過したレーザ光はそれぞれ検光子1
6,17を通り、各偏光状態に応じた光強度信号に変換
されてそれぞれ受光素子48,49に受光される。各受
光素子48,49から出力される電気信号は、差動増幅
器50に入力されて差動検波される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an embodiment of the test apparatus of the present invention. In the figure, laser light emitted from a semiconductor laser 11 is amplified via an optical amplifier 12 which is, for example, an erbium-doped fiber amplifier. The amplified laser light passes through the polarizer 42 to become linearly polarized light, and the measuring head 44
Is incident on. The laser light incident on the measuring head 44 undergoes a change in polarization state due to an electric field from the integrated circuit under test 45 in operation. This laser light is guided to the polarization-independent beam splitter 13 via the mirror 46 and is branched into two. The respective laser lights are incident on the wave plates 14 and 15 which give retardations having the same magnitude and different signs, and are respectively subjected to predetermined changes in polarization state. The laser light that has passed through the wave plates 14 and 15 is the analyzer 1 respectively.
After passing through 6 and 17, the light intensity signals corresponding to the respective polarization states are converted and received by the light receiving elements 48 and 49, respectively. The electric signals output from the light receiving elements 48 and 49 are input to the differential amplifier 50 and differentially detected.

【0013】なお、差動検波により、従来装置と同様
に、レーザ光の強度雑音や振動に伴う雑音成分は同相で
変化するので除去され、信号成分は逆相で変化するので
増幅される。
By the differential detection, as in the conventional device, the intensity noise of the laser light and the noise component associated with the vibration change in the same phase and are removed, and the signal component changes in the opposite phase and is amplified.

【0014】ここで、半導体レーザ11から出射される
レーザ光のパワーおよび周波数をPおよびν、光増幅器
12の増幅率および雑音指数をGおよびF、装置内の光
部品での損失をL、受光素子48,49の熱雑音とレー
ザ光のショット雑音の比をkとし、測定ヘッド44およ
び波長板14,15のリターデーションをそれぞれγ,
Γとすると、1Hz当たりの感度(S/N)は、
Here, the power and frequency of the laser light emitted from the semiconductor laser 11 are P and ν, the amplification factor and the noise figure of the optical amplifier 12 are G and F, the loss in the optical components in the device is L, and the received light is The ratio of the thermal noise of the elements 48 and 49 to the shot noise of the laser light is k, and the retardations of the measuring head 44 and the wave plates 14 and 15 are γ and
If Γ, the sensitivity (S / N) per Hz is

【0015】[0015]

【数1】 [Equation 1]

【0016】と表される。(1) 式から求まるリターデー
ションΓ(rad) に対する感度の変化を図2に示す。実線
は光増幅器を使用したときの感度であり、破線は光増幅
器を使用しないときの感度である。なお、光増幅器を使
用しないときの感度は、(1) 式において、G=1、F=
0として求めればよい。また、従来装置の偏光ビームス
プリッタ47、または本実施例装置の検光子16,17
において、リターデーションΓ(rad) に対する透過光パ
ワーの変化を図3に示す。
It is expressed as Figure 2 shows the change in sensitivity with respect to the retardation Γ (rad) obtained from Eq. (1). The solid line shows the sensitivity when the optical amplifier is used, and the broken line shows the sensitivity when the optical amplifier is not used. In addition, the sensitivity when the optical amplifier is not used is G = 1, F =
It can be obtained as 0. Further, the polarization beam splitter 47 of the conventional apparatus or the analyzers 16 and 17 of the apparatus of the present embodiment.
3 shows the change in transmitted light power with respect to the retardation Γ (rad).

【0017】図4に示した従来装置では、2つの受光素
子48,49における雑音レベルを揃えるためにλ/4
板43が使用され、リターデーションをΓ=±π/2の
位置に設定する必要があった。このために、光増幅器を
使用した場合には、ビート雑音の項FL(G/2)2sin4
/2) が支配的となり、光増幅器を使用しない場合に比べ
て逆に感度が低下していた。一方、図2に示すように、
Γをゼロに近づけると、信号成分の減少(sin2Γ)に比
べてビート雑音の減少(sin4(Γ/2))が著しく大きくな
り、急激に感度が向上する。なお、最大の感度が得られ
るリターデーションΓopt は、
In the conventional device shown in FIG. 4, in order to equalize the noise levels in the two light receiving elements 48 and 49, λ / 4
A plate 43 was used and it was necessary to set the retardation at the position of Γ = ± π / 2. Therefore, when an optical amplifier is used, the beat noise term FL (G / 2) 2 sin 4
/ 2) became dominant, and the sensitivity was decreased in comparison with the case where no optical amplifier was used. On the other hand, as shown in FIG.
When Γ is brought close to zero, the decrease in beat noise (sin 4 (Γ / 2)) becomes significantly larger than the decrease in signal component (sin 2 Γ), and the sensitivity is rapidly improved. The retardation Γopt that gives the maximum sensitivity is

【0018】[0018]

【数2】 [Equation 2]

【0019】となる。ところで、本発明によれば、ビー
ムスプリッタ13で2分岐したレーザ光の経路に、それ
ぞれ波長板14,15を挿入する構成になっている。し
たがって、互いに大きさが等しく符号の異なる任意のリ
ターデーションを各レーザ光に与えることが可能とな
り、そのリターデーションをΓopt の近傍に設定すれば
極めて高感度な差動検波を行うことができる。
It becomes By the way, according to the present invention, the wavelength plates 14 and 15 are respectively inserted in the paths of the laser light branched by the beam splitter 13. Therefore, it becomes possible to give arbitrary retardations of the same size and different signs to each laser beam, and if the retardations are set in the vicinity of Γopt, extremely sensitive differential detection can be performed.

【0020】[0020]

【発明の効果】以上説明したように、本発明による集積
回路の試験方法および試験装置では、光増幅器により増
幅されたレーザ光(プローブ光)の感度に対する能力を
そのビート雑音により劣化させることなく、極めて高感
度な差動検波が可能になっている。したがって、集積回
路の動作による電界の変化を確実に測定することがで
き、高精度の回路試験を実現することができる。
As described above, in the integrated circuit test method and test apparatus according to the present invention, the ability of the laser light (probe light) amplified by the optical amplifier to the sensitivity is not deteriorated by the beat noise, Extremely sensitive differential detection is possible. Therefore, the change in the electric field due to the operation of the integrated circuit can be reliably measured, and a highly accurate circuit test can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試験装置の実施例構成を示すブロック
図。
FIG. 1 is a block diagram showing the configuration of an embodiment of a test apparatus of the present invention.

【図2】リターデーションΓに対する感度の変化を示す
図。
FIG. 2 is a diagram showing a change in sensitivity with respect to retardation Γ.

【図3】リターデーションΓに対する偏光ビームスプリ
ッタまたは検光子の透過光パワーの変化を示す図。
FIG. 3 is a diagram showing a change in transmitted light power of a polarization beam splitter or an analyzer with respect to retardation Γ.

【図4】従来の電気光学サンプリングシステムの構成を
示すブロック図。
FIG. 4 is a block diagram showing a configuration of a conventional electro-optical sampling system.

【符号の説明】[Explanation of symbols]

11 半導体レーザ 12 光増幅器 13 ビームスプリッタ 14,15 波長板 16,17 検光子 41 レーザ光源 42 偏光子 43 λ/4板 44 測定ヘッド 45 被試験集積回路 46 ミラー 47 偏光ビームスプリッタ 48,49 受光器 50 差動増幅器 51 信号平均化装置 11 semiconductor laser 12 optical amplifier 13 beam splitter 14, 15 wavelength plate 16, 17 analyzer 41 laser light source 42 polarizer 43 λ / 4 plate 44 measuring head 45 integrated circuit under test 46 mirror 47 polarization beam splitter 48, 49 light receiver 50 Differential amplifier 51 Signal averaging device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 集積回路の動作により生じた電界により
複屈折率が変化する電気光学材料にレーザ光を照射し、
この電気光学材料を通過したレーザ光を受光し、その偏
光状態の変化から集積回路の動作により生じた電界を測
定する集積回路の試験方法において、 前記電気光学材料を通過したレーザ光を2つに分岐し、 それぞれの経路のレーザ光に、大きさが等しく符号が異
なる所定のリターデーションを与える波長板を介して所
定の偏光状態の変化を与え、 各経路のレーザ光の偏光状態を光強度信号に変換して受
光し、 各経路の電気信号を差動検波して前記集積回路の動作に
より生じた電界を測定することを特徴とする集積回路の
試験方法。
1. An electro-optical material whose birefringence index changes by an electric field generated by the operation of an integrated circuit is irradiated with laser light,
A method for testing an integrated circuit, which receives a laser beam that has passed through the electro-optical material and measures an electric field generated by an operation of the integrated circuit based on a change in a polarization state of the laser beam. The laser light of each path is branched and given a predetermined change of polarization state via a wave plate that gives a predetermined retardation of equal magnitude and different sign. A method for testing an integrated circuit, comprising: converting the light into a received light, differentially detecting an electric signal of each path, and measuring an electric field generated by the operation of the integrated circuit.
【請求項2】 集積回路の動作により生じた電界により
複屈折率が変化する電気光学材料にレーザ光を照射し、
この電気光学材料を通過したレーザ光を受光し、その偏
光状態の変化から集積回路の動作により生じた電界を測
定する集積回路の試験装置において、 前記レーザ光を発生する半導体レーザと、 前記電気光学材料に照射する前記レーザ光を増幅する光
増幅器と、 前記電気光学材料を通過したレーザ光を2つに分岐する
ビームスプリッタと、 互いに大きさが等しく符号が異なる所定のリターデーシ
ョンを有し、前記ビームスプリッタで2分岐された各レ
ーザ光にそれぞれ所定の偏光状態の変化を与える2つの
波長板と、 前記各波長板を通過したレーザ光の偏光状態を光強度信
号に変換する2つの検光子と、 前記各検光子から出力される光強度信号を受光する2つ
の受光素子と、 前記各受光素子から出力される電気信号を差動検波し、
前記集積回路の動作により生じた電界を測定する差動検
波手段とを備えたことを特徴とする集積回路の試験装
置。
2. An electro-optic material whose birefringence index changes by an electric field generated by the operation of an integrated circuit is irradiated with laser light,
In a testing device for an integrated circuit, which receives a laser beam that has passed through this electro-optical material and measures an electric field generated by the operation of the integrated circuit from a change in its polarization state, a semiconductor laser that generates the laser beam, and the electro-optical device. An optical amplifier that amplifies the laser light with which the material is irradiated, a beam splitter that splits the laser light that has passed through the electro-optic material into two, and predetermined retardations that are equal in size and different in sign, Two wavelength plates that give a predetermined change in polarization state to each laser beam split by the beam splitter, and two analyzers that convert the polarization state of the laser beam that has passed through each wavelength plate into a light intensity signal. , Two light receiving elements for receiving the light intensity signals output from each of the analyzers, and differential detection of electric signals output from each of the light receiving elements,
An integrated circuit test apparatus comprising: a differential detection unit that measures an electric field generated by the operation of the integrated circuit.
JP5197449A 1993-08-09 1993-08-09 Mehtod and device for testing integrated circuit Pending JPH0755891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197449A JPH0755891A (en) 1993-08-09 1993-08-09 Mehtod and device for testing integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197449A JPH0755891A (en) 1993-08-09 1993-08-09 Mehtod and device for testing integrated circuit

Publications (1)

Publication Number Publication Date
JPH0755891A true JPH0755891A (en) 1995-03-03

Family

ID=16374698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197449A Pending JPH0755891A (en) 1993-08-09 1993-08-09 Mehtod and device for testing integrated circuit

Country Status (1)

Country Link
JP (1) JPH0755891A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087838A (en) * 1997-11-10 2000-07-11 Ando Electric Co., Ltd. Signal processing circuit for electro-optic probe
US6166845A (en) * 1998-05-28 2000-12-26 Ando Electric Co., Ltd. Electro-optic probe
US6201235B1 (en) 1998-05-01 2001-03-13 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
US6232765B1 (en) 1998-03-19 2001-05-15 Ando Electric Co., Ltd Electro-optical oscilloscope with improved sampling
US6288529B1 (en) 1998-06-03 2001-09-11 Ando Electric Co., Ltd Timing generation circuit for an electro-optic oscilloscope
US6567760B1 (en) 1998-05-06 2003-05-20 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
WO2020153322A1 (en) * 2019-01-22 2020-07-30 横河電機株式会社 Electric field sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087838A (en) * 1997-11-10 2000-07-11 Ando Electric Co., Ltd. Signal processing circuit for electro-optic probe
US6232765B1 (en) 1998-03-19 2001-05-15 Ando Electric Co., Ltd Electro-optical oscilloscope with improved sampling
US6201235B1 (en) 1998-05-01 2001-03-13 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
US6567760B1 (en) 1998-05-06 2003-05-20 Ando Electric Co., Ltd. Electro-optic sampling oscilloscope
US6166845A (en) * 1998-05-28 2000-12-26 Ando Electric Co., Ltd. Electro-optic probe
US6288529B1 (en) 1998-06-03 2001-09-11 Ando Electric Co., Ltd Timing generation circuit for an electro-optic oscilloscope
WO2020153322A1 (en) * 2019-01-22 2020-07-30 横河電機株式会社 Electric field sensor
CN113330320A (en) * 2019-01-22 2021-08-31 横河电机株式会社 Electric field sensor

Similar Documents

Publication Publication Date Title
JP4853474B2 (en) Photosensor and photocurrent / voltage sensor
US7426021B2 (en) Interferometric optical analyzer and method for measuring the linear response of an optical component
US20100194379A1 (en) Optical fiber electric current measurement apparatus and electric current measurement method
EP0819924A2 (en) Apparatus and method for measuring characteristics of optical pulses
JP2001255354A (en) Inspection apparatus for semiconductor integrated circuit by pulse-shaped laser beam
JP2007057324A (en) Fiber optic measuring system
JPH0755891A (en) Mehtod and device for testing integrated circuit
JP2000147021A (en) Light-receiving circuit for electro-optical sampling oscilloscope
JP2810976B2 (en) Electrical signal measuring method and apparatus
US6011402A (en) Electro-optic apparatus and method for measuring electric-field vector
JPH0547883A (en) Method and apparatus for testing integrated circuit
WO1989009413A1 (en) Electro-optic probe
JP3334743B2 (en) Electric signal measuring device
Lin et al. The optical linear birefringence measurement using a Zeeman laser
Oakberg Measurement of waveplate retardation using a photoelastic modulator
JP3154531B2 (en) Signal measurement device
JP4077388B2 (en) Radio wave sensor
Lo et al. The new circular polariscope and the Senarmont setup with electro-optic modulation for measuring the optical linear birefringent media properties
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
JP3549813B2 (en) High frequency electromagnetic wave detection system and high frequency electromagnetic wave detection method
JPH07181211A (en) Surface potential measuring apparatus
JPH0540133A (en) Signal-waveform measuring apparatus
JP3872456B2 (en) Electric field sensor
JPH05119129A (en) Magnetic-field measuring apparatus
JP3063369B2 (en) Magnetic field detector