JPH0755152B2 - 組換え遺伝子産物の製法及び培地 - Google Patents

組換え遺伝子産物の製法及び培地

Info

Publication number
JPH0755152B2
JPH0755152B2 JP61125899A JP12589986A JPH0755152B2 JP H0755152 B2 JPH0755152 B2 JP H0755152B2 JP 61125899 A JP61125899 A JP 61125899A JP 12589986 A JP12589986 A JP 12589986A JP H0755152 B2 JPH0755152 B2 JP H0755152B2
Authority
JP
Japan
Prior art keywords
medium
culture
gene product
coli
recombinant gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61125899A
Other languages
English (en)
Other versions
JPS62282586A (ja
Inventor
富夫 森野
義和 助永
勝久 富田
充之 西出
允一 西元
明教 内藤
恒郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP61125899A priority Critical patent/JPH0755152B2/ja
Publication of JPS62282586A publication Critical patent/JPS62282586A/ja
Publication of JPH0755152B2 publication Critical patent/JPH0755152B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0089Oxidoreductases (1.) acting on superoxide as acceptor (1.15)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は組換え遺伝子産物の製法及びその製造の際に使
用する新規培地に関する。
〔従来技術〕
組換えDNA産物の生産性を向上させるには、主として目
的遺伝子を組み込んだベクターの改良か、あるいは、培
地、培養法の改良による。前者の例としては強力なプロ
モーターの構築と利用(de Boer,H.etal.Proc.Natl.Aca
d.Sci.80,21(1983),SD配列一開始コドン周辺領域の改
変(N.Warburton etal.,Nacl.Acid.Res.11,5837(198
3))、ベクターコピー数の増大(Brigitte E.Schoner
etal.Proc.Natl.Acad.Sci.81,5403(1984))などが挙
げられる。
一方、後者の培地、培養法の改良に関する報告は少な
く、わずかに菌の高濃度培養を主眼におき、デービス培
地を改変させた培地を用いて、pHコントロールしながら
グルコースを分割して添加する培養法が報告されてい
る。(H.Meri etal.,Journal of Chemical Engineering
of Japan 12,313−319(1979),T.Kobayashi etal.Pro
c.−Pac.Chem.Eng.Congr.,3rd ,147−50(1983))し
かし、これらでは、菌の高濃度培養は達成されている
が、大腸菌全菌体蛋白に対する目的産物の割合が明記さ
れていない。
〔発明が解決すべき問題点〕
目的遺伝子産物の生産性を向上させるに際し発現ベクタ
ーを改良する事は時間と技術を要する。又、ベクターの
改良は目的遺伝子産物が異なるつどに行なわれる性質の
ものであり、あまり汎用的でない。又、前記培養法では
本発明者らの実験によると確かに菌濃度は上昇するが、
全大腸菌蛋白当りの目的産物の量は通常の培養法に比し
逆に著しく低下し、その生産性は何ら改善されないこと
をが判明した。
〔問題点を解決するための手段〕
そこで本発明者らは組換え遺伝子産物の生産性を向上さ
せる方法につき種々検討した結果、カゼイン加水分解酵
母エキス、無機塩及び大腸菌資化性炭素源を必須成分と
する培地中で組換え遺伝子をもつ大腸菌を培養すると遺
伝子産物の生産性が大巾に向上することを見い出した。
本発明は上記知見に基づいて完成されたものである。
即ち本発明は、カゼイン加水分解物、酵母エキス、無機
塩及び大腸菌資化性炭素源を必須成分とすると培地中で
組換え遺伝子を持つ大腸菌を培養し、その培養物より組
換え遺伝子産物を採取する事を特徴とする組換え遺伝子
産物の製法及びこの製法に使用する上記培地に関する。
本発明で使用するカゼイン加水分解物はカゼインを加水
分解したものなら特に制限ないが、カゼインをトリプシ
ン、ペプシン、パパイン等のプロテアーゼで加水分解し
たものが好ましく例えばバクトートリプトン(商標名、
ディフコ社製)等のペプトンが好ましい。この使用量は
培地1当り1〜100g好ましくは5〜50g、さらに好ま
しくは10〜30g程度である。
酵母エキスの使用量は培地1当り1〜100g、好ましく
は2〜30g、さらに好ましくは5〜15g程度である。
無機塩としては例えばNaCl,KCl,Na2SO4,CaCl2,CaCO3,Mg
SO4,CuSO4,FeSO4,ZnSO4,MnCl2,リン酸塩などが好ましく
はNaClがあげられ、それらの使用量は培地1当り0.1
〜50g、好ましくは1〜30g、さらに好ましくは2〜10g
程度である。
又、大腸菌資化性の炭素源としては例えば、グリセロー
ル、グルコース、アラビノース、マンニトール、マルト
ース、トレハロース、ソルビトールなどがあげられ、グ
リセロール、ソルビトール、トレハロースが好ましい。
その使用量は培地1当り5%以下、好ましくは0.001
〜3%、さらに好ましくは0.01〜2.5%程度である。
本発明で使用する培地には他の成分も添加することがで
きる。他の成分としては例えば炭酸カルシウムなどのpH
調節剤や産生される遺伝子産物に取り込まれる微量元素
の供給源例えば遺伝子産物がCu−Zn−スーパーオキシド
ディスムターゼ(SOD)の場合における硫酸銅や硫酸亜
鉛などがあげられる。
本発明で使用する培地は固体培地でもよいが上記培地成
分を蒸留水に溶解した液体培地の方が実用的で好まし
い。
本発明の製法を実施するには、上記培地中で組換え遺伝
子を持つ大腸菌を培養し、その培養物より組換え遺伝子
産物を採取すればよい。
組換え遺伝子としては大腸菌にその遺伝子産物を産生さ
せるものであれば特に制限なく、例えばSOD,TPA,TNFイ
ンターフェロン、成長ホルモン、インターロイキン2、
インシュリン、ソマトスタチン、エンドルフィン、カル
シトニンなどをコードする遺伝子やトリプトファン、フ
ェニルアラニンなどのアミノ酸合成酵素などをコードす
る遺伝子などがあげられる。
培養は常法によりおこなうことができ、例えば空気を吹
き込みながら20〜50℃好ましくは25〜40℃で3〜120時
間好ましくは10〜36時間程度振盪培養などの方法でおこ
なえばよい。
培養物よりの組換え遺伝子産物の採取は常法によりおこ
なうことができ、例えば培養物を遠心処理して集菌し、
遺伝子産物がその液中に存在する場合は、その液を
クロマトグラフィー処理などの処理によりおこなうこと
ができる。又、遺伝子産物が菌体中に存在する場合は、
集菌した菌体を緩衝液に懸濁した後例えば超音波処理な
どで破菌し、次いで遠心処理して得られる上清をクロマ
トグラフィーなどで処理することによりその遺伝子産物
を得ることができる。
〔効 果〕
次に本発明の効果を実験例により説明する。
実験例1. (1) 実験方法 下記表1の大腸菌資化性炭素源の1つを1g又は5g/含
む他は実施例1の培地と同じ組成の培地を用い、実施例
1又は2と同様に培養して培養物を得、集菌、破菌した
後遠心分離し、上清を得た。この上清につきSODの産生
量をFridoviclr法で測定し、又総蛋白量をLowry−Folin
e法(O.H.Lowry,etal.J.Biol.Chem.193,265(1951))
で測定し、全菌体蛋白に対するSOD蛋白の比を算出し
た。
(2) 結果 結果を表1に示す。
この表から明らかなように炭素源を添加するとSODの産
生量は増大し、又、全菌体蛋白あたりのSOD蛋白の割合
も増大する。
実験例2. (1) 実験方法 実施例1で使用した培地からグリセロール及び酵母エキ
ス及びバクトトリプトンを除いた液に表1で示す量のグ
リセロール及び酵母エキス及びバクトトリプトンあるい
はペプトンを加えた培地を用いた。組換遺伝子としてpR
TAc8を有する菌を用いたときは30ジャーファーメンタ
ーに1900ml宛仕込み120℃10分殺菌した。これにOD=1
に達した種培養液200mlを接種し、30℃で通気撹拌培養
を開始した。OD=0.15になったところで培養温度を37℃
に上昇し、更に24時間培養を続けた後集菌した。又、pT
Ac8を有する菌を用いたときは実施例3の方法により培
養した。一方、グルコースの流加培養は、既報告(H.Mo
ri etal,J.Chem.Eng.Japan 12,313(1979))に従い、
下記培地を用い終濃度が0.5%となる様に温度上昇後、
4時間おきに5回、グルコースを添加した(添加量総計
3%)、又pHは自動制御操作によりpH=6.0以下となら
ぬ様にアンモニア水で調節した。
得られた培養物を実験例1と同様に処理、測定をおこな
った。
流加培養培地の組成:KH2PO44g,K2HPO44g,Na2HPC4・12H2
O7g,(NH42SO41.2g,NH4Cl0.2g,酵母エキス9g,MgSO4
7H2O2.4g,FeSO4・7H2O40mg,CaCl2・2H2O40mg,MnSO4・10
mg,AlCl3・6H2O10mg,CoCl2・6H2O4mg,ZnSO4・7H2O30mg,
NaMoO4・2H2O2mg,CuSO4・5H2O25mg,H3BO30.5mg,グルコ
ース5g (2) 結果 結果を表2に示す。
この表から明らかなようにグリセロール添加量を増加さ
せると又酵母エキス、ペプトンの添加量を増加させると
SODの生産性は増大する。又、公知のグルコース流下培
養法に比し約2〜4倍もの生産性の向上がみられる。従
って、本発明は組換え遺伝子産物の生産性のよい製造法
としてすぐれたものである。
次に実施例により本発明を具体的に説明する。
実施例1. 後記参考例の7)で得られたpRTacSOD8〜13をHaniatis
らの方法(Holecular Cloning;cold spring harbor lab
oratory 254−255(1982))で形質転換した大腸菌W311
0株(ATCC27325)を20μg/mlのアンピシリンと0.1mM Cu
SO4及び0.1m MZnSO4、5g/のグリセロールを含むL培
地(他に培地1中バクトトリプトンR10g、酵母エキス
5g、食塩5g含有)に接種し、30℃で振盪培養し、550nm
における吸光度が0.2となったところで、培養温度を37
℃に上昇した。更に振盪培養を約24時間続けた。
3) 培養液19を6000rpm10分間の遠心沈降にかけ集
菌した。菌は培養液の1/10容の50mM Tris−HCl(7.5)
−1mM CuSO4−1mM ZnSO4緩衝液に懸濁した。これを氷冷
下で超音波処理し、菌を破砕した。処理液の550nmにお
ける吸光度が、処理前の1/10にまで減少したところで処
理を終了した。
最後に、この処理液を30000rpm30分間超遠心沈降し、上
清を得た。この上清には、SODが抽出されている。
4) 得られた溶菌上清液715ml(総括性:3077Ku、比活
性99.6u/mg・p)を用いてSODの精製を行った。
HP−20カラムクロマトグラフィー 予め50mMの食塩水で平衡化したダイアイオンHP−20を5.
8φ×39cmHのカラムに充填し、充分平衡化する。溶菌上
清液715mlに50mMの食塩水560mlを加えこの混合液をカラ
ムに吸着後、直ちに50mM酢酸ソーダ緩衝液、pH5でカラ
ム容量の約9倍洗滌する。ついで0.1Mグリシン−苛性ソ
ーダ緩衝液の60%メタノール溶液、pH10.0で溶出しSOD
活性を示す画分を集めた。(画分A、382ml) この画分を約0.5Nの塩酸でpH7.0に調節後40℃の水浴上
でエバポレートにより濃縮乾涸する。乾涸物を100mlの
水に溶解後、40mM食塩を含む5mMリン酸緩衝液、pH7.5に
対し透析チューブを用いて透析を行う。
DEAE−トヨパールカラムクロマトグラフィー 透析されたSODを含む溶液を予め40mM食塩を含む5mMリン
酸緩衝液pH7.5で平衡化されたDEAE−トヨパールの充填
されたカラム(3φ×28cmH)に通導する。ついで同じ
緩衝液で溶出させてSODを吸着させずに通過液として得
る。(画分B、176ml) セファデックスG−100ゲルクロマトグラフィー 画分B176mlを限外過膜(YM−5)を用いて8mlの濃縮
した液を予め1%食塩を含んだ5mMリン酸緩衝液、pH7.0
で平衡化したセファデックスG−100(2φ×159cmH
カラムに吸着させ、平衡化緩衝液で溶出しSOD活性を示
す画分を得た(画分C、80ml) これを、ミリフォアフィルターでろ過した後限外過で
濃縮し、次いで凍結乾燥した。この結果、比活性3810Un
it/mg・pのSOD粉末0.57g力価を得た。
実施例2. 実施例1で使用した培地に炭酸カルシウム3%を添加し
た培地を用い、他は同様にして培養した。培養終了後6N
塩酸を炭酸カルシムウムの沈澱がなくなるまで、加えた
後、実施例1と同様に抽出精製した。この結果、19の
培養液より比活性3800U/mg・pのSOD粉末を0.50g力価得
た。
実施例3. (1) 培地調製 大腸菌の培養に通常、用いられる下記組成の培地を基本
培地とした。
バクトトリプトン (Bacto tryptone) 10g 酵母エキス (Yest extract) 10g グリセロール 20g 食 塩 (NaCl) 5g 上記の成分を蒸留水で1とした後、2N NaOHでpHを7.0
に調整する。L培地は、調製後、500ml容三角コルベン
に200ml分注後120℃で10分間加圧殺菌した。冷却後、こ
れは殺菌したCuSO4及びZnSO4溶液を、終濃度0.1mMとな
る様に加えた。
(2) 使用菌株 SOD遺伝子発現プラスミドpTAc8を保有した大腸菌K12株
の変異株を用いた。
(3) 培養 (1)で調製した培地に終濃度が20μg/mlとなる様、ア
ンピシリンを加えた後、SOD生産大腸菌を接種した。37
℃で振盪培養し、600nmにおける吸光度が0.1〜0.3とな
ったところでイソプロピル−β−チオガラクトピラノシ
ド(シグマ社製)を終濃度1mMとなる様に加え、更に5
時間培養した。
(4) 抽出 培養液19を6000rpm、10分間の遠心沈降にかけ、集菌
した。菌は培養液の1/10溶の50mM Tris−HCl(7−5)
−1mM CuSO4−1mM ZnSO4−1mM PMSF(フエニルメタンス
ルフォニルフルオライド)緩衝液に懸濁した。これを氷
冷下で超音波処理し、菌を破砕する。超音波処理中適宜
処理液の吸光度を測定し、その吸光度が、処理前の1/10
にまで減少したところで超音波処理を終了した。
最後に、この処理液を30000rpm、30分間超遠心沈降し上
清を得た。
次いで実施例1と同様にして比活性3750Unit/mgpのSOD
粉末を0.1g得た。
参考例 (1) ヒト胎盤からのmRNAの分離とSODmRNAの同定: 新生児誕生より1時間以内の新鮮な胎盤約300gをリン酸
生理食塩水(PBS溶液)で洗い、グアニジン・チオシア
ネート法〔Chirgwins:Biochem,18,5294−5299(197
9)〕によって細胞質の全RNAを抽出した。この抽出した
全RNAを高塩濃度の緩衝液(Tris,0.5M NaClを含む、pH
7.4)に溶かし、これをオリゴ(dT)セルロース(ファ
ルマシア社製)カラムに通し、ポリA RNA(mRNA)を吸
着させた後、低塩濃度の緩衝液(Tris,NaClを含まず、p
H7.4)で溶出してエタノール沈澱させた。全RNA150mgよ
り1.7mgのmRNAを得た。沈澱を200μlの滅菌水に溶か
し、80℃2分間加温後急冷して、5〜20%ショ糖密度勾
配遠心法により分子量の大きさの順に分離した。
実際には日立RPS40Tローターを用い、35Krpm、17時間0
℃で遠心した。
次いで分離した各画分(0.5ml)の一部を、ウサギ網状
赤血球ライセート(アマシャム社製)の系で翻訳させ、
合成された蛋白質を免疫学的方法(エンザイム・イムノ
アッセリ法)(J.Pharm.Dyn.,5 394−402(1982))で
調べた。このようにして、mRNAの10〜12S画分にSODmRNA
の存在が認められた。
(2) mRNAのアニーリングとcDNAの合成: (1)で得られた分画を用い、岡山−Bergの方法〔Mol.
Cell.Biol.,2,161−170(1982)〕に従って以下のよう
に合成した。
あらかじめ50mM Tris(pH8.3),30mM KC,0.3mMジチオス
レイトール(DTT)、8mM MgCl240μg/mlアクチノマイシ
ンD、各2mMのdATP、dCTP、dGTP、TTP、30μCl〔α−32
P〕dCTP(600Ci/mmol)(NEN社製)、280単位のリボヌ
クレアーゼインヒビター(和光純薬社製)、および2.8
μgのプラスミドプライマー〔大腸菌プラスミドpSV718
6(ファルマシア社製)を用い、岡山−Berg法に順じて
合成したT−テーリング約60塩基のプライマー〕を含む
溶液10μlを調製し、37℃に保つ。次に10mM Tris(pH
8)、1mM EDTAと3μgのmRNAを含む溶液10μlを調製
し、65℃で5分間加熱後直ちに37℃に移した後、上記溶
液10μlと混合して、さらに5分間加温した。つづいて
5単位の逆転写酵素(ライフサイエンス社製)を加え、
37℃で20分間加温した。2μlの250mM EDTA(pH8.0)
と1μlの10%SDS溶液を加えて反応を停止させた後、
フェノール・クロロホルム抽出、エタノール沈澱をそれ
ぞれ2回経て次の段階へ進んだ。
(3) 式(1)の塩基配列を含有するプラスミドの合
成: (2)で得られた沈澱物を140mMカコジル酸ナトリウム
−30mM Tris(pH6.8)、1mM CoCl2、0.1mM DTT、1mM dC
TPおよび50μCi〔α−32P〕dCTPを含む溶液に溶かし、3
7℃で2〜3分間加温後、18単位のターミナルデオキシ
ヌクレオチジルトランスフェラーゼ(ファルマシア社
製)を加え、全体を15μlとした。37℃で3分間加温し
た後、逆転写反応と同様な後処理を行ってエタノール沈
澱物を得た。
次に該沈澱物を50mM NaCl、50mM Tris(pH8.0)、1.0mM
MgCl2、100μgウシ血清アルブミン(BSA)、および12
単位のHind III(ニッポンジーン社製)を含む溶液に溶
かして37℃、2〜4時間加温した。フェノール・クロロ
ホルム抽出、エタノール沈澱後、これを10μlの10mM T
ris(pH7.3)、1mM EDTAを含む溶液に溶かし、さらに3
μlのエタノールを加えて全体を13μlとした。この溶
液1μlに0.04pmolのオリゴ(dG)リンカー〔大腸菌ブ
ラスミドpSV1932(ファルマシア社製)を用い、岡山−B
erg法に順じて合成したdG−テーリング約12塩基のリン
カー〕、10mM Tris(pH7.5)、0.1M NaCl、1mM EDTAの1
0倍濃縮液1μlと蒸留水8μlを加えて全体を10μl
とし、該溶液を65℃5分間、42℃30分間と経時加温後0
℃に保った。これに20mM Tris(pH7.5)、4mM MgCl2、1
0mM硫酸アンモニウム、0.1M KCl、50μg/mlBSA、0.1mM
β−ニコチンアミドアデノシンジヌクレオチド(NAD)
および0.6μgの大腸菌DNAリガーゼ(ファルマシア社)
を含む濃縮液を加えて最終的に該濃度溶液100μlと
し、12℃で一夜加温した。次いで、各20mMを含んだdAT
P、dCTP、dGTPおよびTTPを0.4μl、1.5mMβ−NADを1
μl、大腸菌DNAリガーゼを0.4μg、大腸菌DNAポリメ
ラーゼ1を0.3μg、そして大腸菌リポヌクレアーゼH
を1単位それぞれ添加して(全体として104μl)、さ
らに12℃で1時間、25℃で1時間加温した。
(4) 大腸菌への形質転換: 大腸菌としてχ1776(ATCC31244)を使用した。コンピ
テントセルはManiatisら〔Molecular Cloning、cold sp
ring harbor harbor laboratory、254−255(1982)〕
と全く同様の方法で調製し、0.2mlづつ分注した。該DNA
溶液を20μlづつ5本形質転換し、バクトトリプトン10
g/1、イーストエケクトラクト5g/1、ジアミノピメリン
酸0.01%、チミジン0.004%およびアンピシリン(Ap)5
0μg/mlを含む1.5%寒天培地上にコロニー約3万個を得
た。
(5) コロニーハイブリダイゼーション: 得られたコロニーのうち約1万個を同組成の寒天培地上
に移し換え(512個/14×10cmプレート;2枚1組とし、1
枚をマスタープレートとして保持した。)、直径約3mm
に成長するまで培養した。これにワットマン541ロ紙を
ゆっくりとのせ、コロニーを完全にロ紙に移行さてか
ら、クロラムフエニコール250μg/mlを含む同組成寒天
培地上に該ロ紙を密着させ一昼夜培養した。ロ紙へのDN
A固定は次のように行った。
培養後のロ紙を0.5M NaOHで5分間、2回処理し、0.5M
Tris(pH7.4)で中性にもどし、2×SSC(pH7)(1×S
SC:0.15M NaCl、0.015Mクエン酸ナトリウム)処理を
経、95%エタノール水溶液で軽く洗浄した後風乾した。
プローブとして(A)17ヌクレオチド:AA(TorC)TT(T
orC)GA(AorG)CA(AorG)AA(AorG)GAの32種類
(B)14ヌクレオチド:GA(TorC)CA(TorC)TG(Tor
C)AT(T,CorA)ATの24種類をそれぞれトリエステル法
で化学合成し、以下に述べるハイブリダイゼーションに
使用した。
(イ) プレハイブリダイゼーション ロ紙を6×SET(1×SET:0.15M NaCl、0.015M Tris(pH
7.5)、1mM EDTA)、0.5%ソニデットP40(半井化学社
製)および100μg/mlの変性大腸菌DNA(ファルマシア社
製の大腸菌DNAを5分間煮沸後急冷したもの)を含む溶
液で55℃、2時間加温した。
(ロ) ハイブリダイゼーション 次に変性大腸菌DNAの代りに100μg/mlの酵母tRNA(BRL
社製)と、〔γ−32P〕ATP(5000Ci/mmolNEN社製)とポ
リヌクレオチドキナーゼ(NEB社製)を用いて5′位を
32P〕標識したプローブ0.2ng/mlとを用いて29℃、2
時間ハイブリダイゼーションを行った。
(ハ) 式(1)の塩基配列を含むプラスミドの単離洗
浄は各々(A)39℃で5分間(B)29℃で20分間、続い
て室温で10分間の処理を6×SSC溶液を用いて各段階3
回づつ繰返した。ロ紙を風乾後、X線フイルム(コダッ
クXAR5)を用いてオートラジオグラフィーを行ない、
(A)、(B)両方にポジティブなコロニーを1個選別
し、その菌体よりプラスミドを取り出し、そのプラスミ
ドをpH S3237と命名した。
(6) 発現ベクターの構築 大腸菌プラスミドpUC13(ファルマシア社製)上のラク
トース・プロモーターに最近接したHae II部位を切断
後、エキソヌクレアーゼBal31(NEB社製)で両端を約10
0bp削除し、T4DNAリガーゼ(宝酒造社製)で再閉環させ
たプラスミドpΔUC13を調製した(このプラスミドはラ
クトース・プロモーターとしての機能を失っている)。
次いでこのプラスミドのHinc II切断部位にTrpAターミ
ネーター(ファルマシア社製)を挿入し、プラスミドp
ΔUCT13を得た。
(A) SODをコードするDNAの調製 前記(5)の(ハ)で得られたpH S3237をPvu IIで消化
し、Xba Iリンカー(NEB社製)をT4DNAリーガーゼで連
結してXba I部位を設けこのプラスミドをpH SX3237と命
名した。
pHSX3237をPst Iで消化し、エキソヌクレアーゼBal31で
遂次消化した。さらにT4DNAポリメラーゼで末端を平滑
にそろえ、BamH Iリンカー(宝酒造社製)を連結してBa
nH IとXba I(いずれもニッポン・ジーン社製)で消化
後約630〜700bpのDNAを2−16%グラジエントポリアク
リルアミドゲル回収した。
(B) TacプロモーターおよびSOD DNAを挿入したプラ
スミドの調製 プラスミドpD R540(ファルマシア社製)をEcoR I(ニ
ッポン・ジーン社製)とBamHIで消化しTacプローモータ
ーを含む121bpをポリアクリルアミドゲルで回収し、p
ΔUCT13のEcoRI−BamH I間に挿入して得られた約3Kbの
プラスミドをpTac Iと命名した(第3図)。pTac IのBa
mH I−Xba I間に(7)(A)で得られた約630−700bp
のDNAを挿入して得られたプラスミドを大腸菌DH1(ATCC
33849)に形質転換した。得られた種々のプラスミドの
塩基配列を決定し、SD配列(AGGA)から開始コドンATG
までの距離が8〜13ヌクレオチド長のプラスミドをpTac
SOD8〜13と命名した。
(7) ランナウェイ型SOD発現ベクターの構築 ATCCより購入したランナウェイプラスミドpMOB45(ATCC
37106)(M.Bitter and D.Vapnek,Gene 15,319−329,
(1981))をEcoR IとHind III(宝酒造、以下すべて同
社製品)で切断し、ランナウェイ複製起点を含む6.7Kb
のDNA断片を切り出した。このDNAを精製し、Bal31酵素
で処理し、両端各々0.3Kbぐらい消化後、DNAポリメラー
ゼで処理しDNA末端を平滑にした。一方、ATCCより購入
したpBR322をTth111 IIで切断しアンピシリン耐性遺伝
子を含む1.3KbのDNAを切り出した。このDNAも精製後、
上記方法と同様にBal31酵素、DNAポリメラーゼで順次処
理した。こうして得られた2本のDNA断片を等モルで混
合し、更にHind IIIリンカー及びEccR Iリンカー(宝酒
造)を10倍モル量加えてから、T4DNAリガーゼで処理
し、DNAを連結した。
次に、このDNA試料を大腸菌W3110(ATCC27325)株へMan
iatisらの方法で(Molecular Cloning;cold spring har
bor laboratory254−255(1982)、形質転換し、アンピ
シリン耐性株を選別した。任意に選んだ12株について、
その保有するプラスミドの制限酵素解析を行った。この
結果、上記2本のDAN断片が連結し、かつひとつの連結
部にのみ2種のリンカー(Hind IIIとEcoR I)が挿入さ
れたプラスミドpR4が得られた。次にpR4をEcoR IとHind
IIIで切断して開裂し、この部位間にpΔUCT13(前記
(6)(A)参照)に由来し、マルチクローニング部位
と転写終結因子を含む0.4KbのEcoR I−Hind III断片を
挿入してpR3を構築した。更に、このpR3をEcoR IとXba
Iで切断開裂し、この部位間にpTacSOD8〜13(前記
(6)(B)参照)に由来し、tacプロモーターとヒトS
OD遺伝子を含む約0.7KbのEcoR I−Xba I DNA断片を挿入
し、pR TacSO4 8〜13を構築した。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 明教 埼玉県桶川市坂田1417−26 (72)発明者 中村 恒郎 埼玉県大宮市吉野町2−18−1,2−205 (56)参考文献 特開 昭61−111690(JP,A) 日本生化学会編「生化学データブック▲ II▼縮刷版」(1982年10月1日)東京化 学同人 P.881

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】カゼイン加水分解物、酵母エキス、無機塩
    及び培地1当り0.5〜5%の大腸菌資化性炭素源から
    なる、培地において、(イ)大腸菌資化性炭素源として
    グリセロール、ソルビトール、トレハロースより選択さ
    れる少なくとも1種を必須成分として含有するか又は
    (ロ)無機塩として炭酸カルシウムを必須成分として含
    有する培地中で組換え遺伝子を持つ大腸菌を培養し、そ
    の培養物より、組換え遺伝子産物を採取する事を特徴と
    する組換え遺伝子産物の製法 (2)カゼイン加水分解物、酵母エキス、無機塩及び培
    地1当り0.5〜5%の大腸菌資化性炭素源からなる培
    地において、(イ)大腸菌資化性炭素源としてグリセロ
    ール、ソルビトール、トレハロースより選択される少な
    くとも1種を必須成分として含有するか又は(ロ)無機
    塩として炭酸カルシウムを必須成分として含有する組換
    え遺伝子をもつ大腸菌用の新規改良培地
JP61125899A 1986-06-02 1986-06-02 組換え遺伝子産物の製法及び培地 Expired - Lifetime JPH0755152B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125899A JPH0755152B2 (ja) 1986-06-02 1986-06-02 組換え遺伝子産物の製法及び培地

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125899A JPH0755152B2 (ja) 1986-06-02 1986-06-02 組換え遺伝子産物の製法及び培地

Publications (2)

Publication Number Publication Date
JPS62282586A JPS62282586A (ja) 1987-12-08
JPH0755152B2 true JPH0755152B2 (ja) 1995-06-14

Family

ID=14921661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125899A Expired - Lifetime JPH0755152B2 (ja) 1986-06-02 1986-06-02 組換え遺伝子産物の製法及び培地

Country Status (1)

Country Link
JP (1) JPH0755152B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814485A (en) * 1995-06-06 1998-09-29 Chiron Corporation Production of interferon-β (IFN-β) in E. coli
AU6399996A (en) * 1996-06-19 1998-01-07 Chiron Corporation Bacterial production of interferon-beta using low levels of sodium and potassium ions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181786A (ja) * 1984-08-30 1986-04-25 Marukin Shoyu Kk N―アシルノイラミン酸アルドラーゼ遺伝子を含む組換えプラスミド及び形質転換微生物
JPS61111690A (ja) * 1984-11-06 1986-05-29 Ube Ind Ltd 組換えdnaおよびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本生化学会編「生化学データブック▲II▼縮刷版」(1982年10月1日)東京化学同人P.881

Also Published As

Publication number Publication date
JPS62282586A (ja) 1987-12-08

Similar Documents

Publication Publication Date Title
JP3950196B2 (ja) アルコールデヒドロゲナーゼ及びキラルヒドロキシ化合物の酵素的生産へのその使用
JP3162091B2 (ja) ニトリルヒドラターゼ活性を有するポリペプチドをコードする遺伝子dna、これを含有する形質転換体
JPS6240999B2 (ja)
EP0281418B1 (en) Process for production of physiologically active peptide containing cysteine residue
US4828988A (en) Hybrid polypeptides comprising somatocrinine and alpha1 -antitrypsin, method for their production from bacterial clones and use thereof for the production of somatocrinine
US6472196B1 (en) Amino acid sequence of L-phenylalanine ammonia-lyase
JPH1175876A (ja) 新規な微生物トランスグルタミナーゼの製造法
US5863788A (en) Recombinant L-methionine Y-lyase
JPH0755152B2 (ja) 組換え遺伝子産物の製法及び培地
JP2890168B2 (ja) 新規アミノペプチダーゼ
JP4287144B2 (ja) 新規ギ酸脱水素酵素及びその製造方法
US5187078A (en) Plasma-type glutathione peroxidase gene and application of the same
WO2000078926A1 (fr) Micro-organisme transforme et procede de production de d-aminoacylase
JPH0644875B2 (ja) 組換え遺伝子産物の製造方法
JPH0249590A (ja) 耐熱性トリプトファンシンターゼをコードする遺伝子とその利用
JPH0349559B2 (ja)
JP3508871B2 (ja) クレアチニンデイミナーゼ活性を有する蛋白質の遺伝情報を有するdna並びにクレアチニンデイミナーゼの製造法
JPH06303981A (ja) ホルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情報を有するdna並びにホルムアルデヒド脱水素酵素の製造法
JP3091202B2 (ja) アセチルポリアミンアミドヒドロラーゼの製造法
JP3358686B2 (ja) 新規なグルタミン酸デヒドロゲナーゼをコードする遺伝子及び該遺伝子を用いたグルタミン酸デヒドロゲナーゼの製造法
JPH02117383A (ja) ヒトアルギナーゼの製造方法
JP2829368B2 (ja) ジヒドロ葉酸還元酵素―抗アレルギー性ペンタペプチド融合タンパク質
JPS63283590A (ja) 組換え細菌を利用するl‐フェニルアラニンの製造法
JPH04117284A (ja) ジヒドロ葉酸還元酵素―抗アレルギー性ペンタペプチド融合タンパク質
JP4066203B2 (ja) 新規なクレアチニンアミドヒドロラーゼ