JPH075490B2 - Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d - Google Patents

Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d

Info

Publication number
JPH075490B2
JPH075490B2 JP2063450A JP6345090A JPH075490B2 JP H075490 B2 JPH075490 B2 JP H075490B2 JP 2063450 A JP2063450 A JP 2063450A JP 6345090 A JP6345090 A JP 6345090A JP H075490 B2 JPH075490 B2 JP H075490B2
Authority
JP
Japan
Prior art keywords
deuterium
hfa
catalyst
reaction
hfip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2063450A
Other languages
Japanese (ja)
Other versions
JPH03264544A (en
Inventor
順道 丸田
勝義 村田
徹 中空
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2063450A priority Critical patent/JPH075490B2/en
Publication of JPH03264544A publication Critical patent/JPH03264544A/en
Publication of JPH075490B2 publication Critical patent/JPH075490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、樹脂に特異な溶解能力を有する1,1,1,3,3,3-
ヘキサフルオロ‐2-プロパノール(以下HFIPという)の
特性を利用したNMRによる樹脂分析において、重水素化
溶媒として用いられるフッ素化重水素化アルコールの製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention has 1,1,1,3,3,3- which has a specific dissolving ability for resins.
The present invention relates to a method for producing a fluorinated deuterated alcohol used as a deuterated solvent in resin analysis by NMR utilizing the characteristics of hexafluoro-2-propanol (hereinafter referred to as HFIP).

[従来の技術] J.Chem.Soc.Fraday Trans.2,68,1642(1972)によれば
1,1,1,3,3,3-ヘキサフルオロアセトン(以下HFAとい
う)をテトラヒドロフラン溶媒中においてリチウムアル
ミニウムジュウテライドを用いて還元し、一旦1,1,1,3,
3,3-ヘキサフルオロプロパン‐2-d-2-オールとした後、
これを重水中から4度蒸留することで純度95%の1,1,1,
3,3,3-ヘキサフルオロプロパン‐2-d-2-オール‐d(以
下HFIP-d2という)を得ているが、大量合成には不向き
であり、また高純度のものは得られ難い。
[Prior Art] According to J.Chem.Soc.Fraday Trans.2, 68 , 1642 (1972)
1,1,1,3,3,3-Hexafluoroacetone (hereinafter referred to as HFA) is reduced with lithium aluminum deuteride in a tetrahydrofuran solvent to give 1,1,1,3,
After using 3,3-hexafluoropropan-2-d-2-ol,
By distilling this 4 times from heavy water, 95% pure 1,1,1,
Although 3,3,3-hexafluoropropan-2-d-2-ol-d (hereinafter referred to as HFIP-d 2 ) has been obtained, it is not suitable for large-scale synthesis and it is difficult to obtain a high-purity product. .

[問題点を解決するための具体的手段] 本発明者らはかかる問題点に鑑み鋭意検討の結果本発明
に到達したものである。すなわち本発明は遷移金属触媒
の存在下に重水素を用いてヘキサフルオロアセトンを還
元することを特徴とするHFIP-d2の製造法および遷移金
属触媒の存在下に重水素を用いてヘキサフルオロアセト
ンを重水中において還元することを特徴とするHFIP-d2
の製造法である。
[Specific Means for Solving Problems] The present inventors have arrived at the present invention as a result of intensive studies in view of the above problems. That is, the present invention is a method for producing HFIP-d 2 characterized by reducing hexafluoroacetone with deuterium in the presence of a transition metal catalyst, and hexafluoroacetone with deuterium in the presence of a transition metal catalyst. HFIP-d 2 characterized by the reduction of water in heavy water
Is a manufacturing method of.

本発明において使用する遷移金属触媒としてはニッケ
ル、パラジウム、白金、ロジウム、ルテニウムより選ば
れる少なくとも1種であり、活性炭、アルミナ等の担体
への担持量は使用する金属により異なるが、0.1〜50重
量%の範囲で使用できる。反応は気相法、液相法等、特
に限定されるものではないが、比較的高価な重水素の転
化率を考慮すれば液相法が有利である。
The transition metal catalyst used in the present invention is at least one selected from nickel, palladium, platinum, rhodium and ruthenium, and the amount supported on the carrier such as activated carbon or alumina varies depending on the metal used, but is 0.1 to 50 wt. It can be used in the range of%. The reaction is not particularly limited, such as a gas phase method and a liquid phase method, but the liquid phase method is advantageous in consideration of the conversion rate of relatively expensive deuterium.

気相法で実施する場合、ニッケル触媒としては例えば日
揮化学(株)製N−111等を単独で、あるいは活性炭、
活性アルミナ等の混合物として使用することが可能であ
り、反応温度としては50℃〜150℃、接触時間としては
5〜10秒の範囲が好ましい。パラジウム触媒としては例
えば日本エンゲルハルト(株)製0.5%活性炭あるいは
活性アルミナ担持触媒をそのまま用いることが可能で反
応温度としては130〜200℃、接触時間としては5〜15秒
が好ましく、白金触媒としては例えば日本エンゼルハル
ト(株)製0.5%活性炭あるいは活性アルミナ担持触媒
をそのまま用いることが可能で、反応温度としては80〜
200℃、接触時間としては10〜40秒が好ましく、ロジウ
ム触媒としては例えば日本エンゲルハルト(株)製0.5
活性炭あるいは活性アルミナ担持触媒をそのまま用いる
ことが可能で、反応温度としては150〜200℃、接触時間
としては10〜30秒が好ましい。ルテニウム触媒としては
例えば日本エンゲルハルト(株)製0.5%活性炭あるい
は活性アルミナ担持触媒をそのまま用いることが可能で
ある。反応温度としては70〜150℃、接触時間としては
5〜15秒が好ましい。HFAは単独あるいは重水溶液とし
て反応管に供することが可能であり、重水溶液として供
する場合の発熱の制御が容易となる利点がある。重水溶
液として供する場合のHFA組成は特に限定されないが60
〜99重量%が好ましい。HFAと重水素との供給比は特に
限定されないが重水素/HFA比が0.5〜10が好ましく、さ
らに好ましくは1〜6である。0.5より小さい場合はHFA
の転化率が著しく低くかつ重水素の添加率も大きくな
い。また10より大きい場合はHFAの転化率は100%である
が重水素のロスが大きすぎる。
In the case of carrying out by the gas phase method, as the nickel catalyst, for example, N-111 manufactured by JGC Chemical Co.
It can be used as a mixture of activated alumina and the like, and the reaction temperature is preferably 50 ° C to 150 ° C, and the contact time is preferably 5 to 10 seconds. As the palladium catalyst, for example, 0.5% activated carbon or activated alumina-supported catalyst manufactured by Nippon Engelhard Co., Ltd. can be used as it is. The reaction temperature is 130 to 200 ° C., the contact time is preferably 5 to 15 seconds, and the platinum catalyst is used. For example, it is possible to use 0.5% activated carbon or activated alumina-supported catalyst manufactured by Nippon Angelhard Co., Ltd. as it is.
The contact time is preferably from 40 to 40 seconds at 200 ° C., and the rhodium catalyst is, for example, 0.5 from Nippon Engelhard Co., Ltd.
Activated carbon or activated alumina-supported catalyst can be used as it is, and the reaction temperature is preferably 150 to 200 ° C., and the contact time is preferably 10 to 30 seconds. As the ruthenium catalyst, for example, 0.5% activated carbon or activated alumina-supported catalyst manufactured by Nippon Engelhardt Co., Ltd. can be used as it is. The reaction temperature is preferably 70 to 150 ° C, and the contact time is preferably 5 to 15 seconds. HFA can be provided to the reaction tube alone or as a heavy aqueous solution, and there is an advantage that heat generation can be easily controlled when the HFA is provided as a heavy aqueous solution. The HFA composition when used as a heavy aqueous solution is not particularly limited, but 60
~ 99% by weight is preferred. The supply ratio of HFA and deuterium is not particularly limited, but the deuterium / HFA ratio is preferably 0.5 to 10, and more preferably 1 to 6. HFA if less than 0.5
The conversion rate is extremely low and the deuterium addition rate is not high. If it is more than 10, the conversion rate of HFA is 100%, but the deuterium loss is too large.

反応を開始するに際しては触媒および担体に吸着されて
いる水分を除去するために、窒素気流下200〜300℃で前
処理し、水分除去をなし終えた後、重水素に切り替えて
反応温度において触媒の活性化を図ることが純度向上の
ために好ましい。
When starting the reaction, in order to remove the water adsorbed on the catalyst and carrier, pretreat at 200-300 ℃ under nitrogen flow, after completing the water removal, switch to deuterium and catalyst at the reaction temperature. In order to improve the purity, it is preferable to activate

液相法で実施する場合は、HFAの重水溶液を用い、この
溶液のHFA組成としては特に限定されないが60〜90重量
%が好ましい。触媒としては活性炭、活性アルミナ、ゼ
オライト等に担持されたパラジウム、還元ニッケル、ル
テニウム、白金、ロジウムあるいはラネー・ニッケルを
用いることができる。ラネー・ニッケルを用いる場合は
通常展開した溶液を十分重水で置換したものを供する。
When carrying out by the liquid phase method, a heavy aqueous solution of HFA is used, and the HFA composition of this solution is not particularly limited, but is preferably 60 to 90% by weight. As the catalyst, activated carbon, activated alumina, palladium supported on zeolite, reduced nickel, ruthenium, platinum, rhodium or Raney nickel can be used. When Raney nickel is used, the developed solution is replaced with heavy water.

反応圧力としては大気圧以上であればよく10Kg/cm2以上
では反応終了時におけるロス分が大きくなるため、好ま
しくは6〜10Kg/cm2である。反応温度は50〜150℃の範
囲が好ましく、さらに好ましくは80〜110℃である。
Since loss in increases at the end of the reaction in the well 10 Kg / cm 2 or more equal to or greater than atmospheric pressure as a reaction pressure is preferably 6~10Kg / cm 2. The reaction temperature is preferably in the range of 50 to 150 ° C, more preferably 80 to 110 ° C.

実施例1 磁気攪拌子を入れた100mlガラス製耐圧容器に5%Pd/C
2.3g、重水15.0gを仕込み密閉後、HFA41.0gを圧入した
後、系内を重水素で置換した。油浴に浸し、内温が90℃
になるように加熱攪拌し、内圧6Kg/cm2になるように重
水素を連続添加した。4時間後には吸収が認められなく
なり、さらに1時間反応させた後分析したところHFAの
転化率は100%であり、選択率は99.9%であった。次に
反応液をそのまま窒素気流下に蒸留塔に仕込み蒸留して
沸点60〜61℃の留分37.7g(収率89.7mol%)を得た。GL
Cおよび1Hnmr分析によりHFIP-d2純度は99.8%であっ
た。
Example 1 5% Pd / C was added to a 100 ml glass pressure vessel containing a magnetic stirrer.
After charging 2.3 g and 15.0 g of heavy water and sealing the mixture, 41.0 g of HFA was press-fitted, and then the system was replaced with deuterium. Immerse in oil bath, the internal temperature is 90 ℃
The mixture was heated and stirred so that the internal pressure became 6 kg / cm 2 , and deuterium was continuously added so that the internal pressure became 6 Kg / cm 2 . Absorption was not observed after 4 hours, and after reacting for another 1 hour, analysis revealed that the conversion rate of HFA was 100% and the selectivity was 99.9%. Next, the reaction solution was charged into a distillation column as it was under a nitrogen stream and distilled to obtain 37.7 g (yield 89.7 mol%) of a fraction having a boiling point of 60 to 61 ° C. GL
The HFIP-d 2 purity was 99.8% by C and 1 H nmr analysis.

実施例2 内径12mmφ、長さ500mmのパイレックス製ガラス管に0.5
%Pd/Al2O3ペレット30mlを充填し、窒素を流しながら電
気炉により反応管内温度を250℃まで昇温した。触媒に
吸着された水分の発生が認められなくなった時点で反応
管の温度を170℃に下げ、重水素を流して(30cc/min)1
5分間活性化をおこなった。反応ガス回収系をパージラ
インから氷浴、ドライアイス−メタノール浴で冷却した
回収ラインへ切り替えHFAの供給を開始した。氷浴中に
補修された粗HFIP-d2を蒸留して純HFIP-d2を得た。
Example 2 0.5 in a Pyrex glass tube with an inner diameter of 12 mm and a length of 500 mm
% Pd / Al 2 O 3 pellets (30 ml) were charged, and the temperature inside the reaction tube was raised to 250 ° C. by an electric furnace while flowing nitrogen. When the generation of water adsorbed on the catalyst disappeared, the temperature of the reaction tube was lowered to 170 ° C, and deuterium was flowed (30cc / min) 1
Activation was carried out for 5 minutes. The reaction gas recovery system was switched from the purge line to an ice bath or a recovery line cooled with a dry ice-methanol bath, and the supply of HFA was started. The crude HFIP-d 2 repaired in an ice bath was distilled to obtain pure HFIP-d 2 .

重水素/HFAモル比3.3、接触時間13秒で5時間反応させ
たところHFAの消費量は0.352mol、重水素の消費量は1.1
6molであり、粗HFIP-d2の収量は59.0g、蒸留後の純HFIP
-d2は55.5gでその重水素基準収率は28.5%、HFA基準収
率は93.8%であった。同様にモル比1.0、接触時間8秒
で反応させたところ重水素基準収率43.5%、HFA基準収
率43.5%でHFIP-d2を得た。
When the reaction was carried out for 5 hours at a deuterium / HFA molar ratio of 3.3 and a contact time of 13 seconds, the HFA consumption was 0.352 mol and the deuterium consumption was 1.1.
6 mol, the yield of crude HFIP-d 2 was 59.0 g, pure HFIP after distillation
-d 2 was 55.5 g, and the deuterium-based yield was 28.5% and the HFA-based yield was 93.8%. Similarly, when the reaction was carried out at a molar ratio of 1.0 and a contact time of 8 seconds, HFIP-d 2 was obtained with a deuterium-based yield of 43.5% and an HFA-based yield of 43.5%.

[発明の効果] 本発明の方法によれば樹脂のNMR分析における重水素化
溶媒等として有用な1,1,1,3,3,3-ヘキサフルオロプロパ
ン‐2-d-2-オール‐dを容易かつ収率よく製造すること
ができるものである。
EFFECT OF THE INVENTION According to the method of the present invention, 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d useful as a deuterated solvent in NMR analysis of resins Can be produced easily and in good yield.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07B 61/00 300 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area C07B 61/00 300

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】遷移金属触媒の存在下に重水素を用いてヘ
キサフルオロアセトンを還元することを特徴とする1,1,
1,3,3,3-ヘキサフルオロプロパン‐2-d-2-オール‐dの
製造法。
1. A method of reducing hexafluoroacetone with deuterium in the presence of a transition metal catalyst, 1,1,
A method for producing 1,3,3,3-hexafluoropropan-2-d-2-ol-d.
【請求項2】遷移金属触媒の存在下に重水素を用いてヘ
キサフルオロアセトンを重水中において還元することを
特徴とする1,1,1,3,3,3-ヘキサフルオロプロパン‐2-d-
2-オール‐dの製造法。
2. 1,1,1,3,3,3-Hexafluoropropane-2-d, characterized in that hexafluoroacetone is reduced in deuterated water using deuterium in the presence of a transition metal catalyst. -
2-ol-d manufacturing method.
JP2063450A 1990-03-14 1990-03-14 Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d Expired - Fee Related JPH075490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063450A JPH075490B2 (en) 1990-03-14 1990-03-14 Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063450A JPH075490B2 (en) 1990-03-14 1990-03-14 Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d

Publications (2)

Publication Number Publication Date
JPH03264544A JPH03264544A (en) 1991-11-25
JPH075490B2 true JPH075490B2 (en) 1995-01-25

Family

ID=13229592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063450A Expired - Fee Related JPH075490B2 (en) 1990-03-14 1990-03-14 Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d

Country Status (1)

Country Link
JP (1) JPH075490B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2638727B2 (en) * 1992-12-21 1997-08-06 セントラル硝子株式会社 Method for producing 1,1,1,3,3,3-hexafluoropropan-2-ol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036411B2 (en) * 1980-04-03 1985-08-20 セントラル硝子株式会社 Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol
JPS60237034A (en) * 1984-05-08 1985-11-25 Nippon Sheet Glass Co Ltd Aromatic compound containing deuterium and its preparation
DE3701302A1 (en) * 1987-01-17 1988-07-28 Hoechst Ag METHOD FOR PRODUCING DEUTERED ORGANIC COMPOUNDS

Also Published As

Publication number Publication date
JPH03264544A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
CN111718252A (en) Synthesis method of 2,2,4,4-tetramethyl-1, 3-cyclobutanedione
JPH07106996B2 (en) Process for producing saturated, fluorine-free, but chlorine-free hydrocarbons
JPS6125694B2 (en)
JPH06256235A (en) Preparation of 1,1,1,3,3,-pentafluoropropane
US3109005A (en) Process for making 2-pyrrolidone from maleic anhydride
JP5076739B2 (en) Method for producing hexafluroisopropanol
JPH075490B2 (en) Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d
JPH01193246A (en) Production of 2,3-dichloropyridine
JPH0296540A (en) Production of 2,6-dimethylnaphthalene
EP1127865B1 (en) Process for producing 1,1,1-Trifluoroacetone
JPS6144834A (en) Synthesis of 2,2,2-trifloroethanol and 1,1,1,3,3,3-hexafloroisopropyl alcohol
JP3904854B2 (en) Method for producing fluorine-containing alicyclic dicarboxylic acid compound
JP4288451B2 (en) Process for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JP2002205980A (en) Method for producing aromatic cyanoaminomethyl
JPH0352828A (en) Production of 3,3-dichloro-1,1,1,2,2-pentafluoropropane
JP2982845B2 (en) Method for producing dimethylnaphthalene
JPS5885829A (en) Preparation of 2-trifluoromethylpropanol
JP3550927B2 (en) Method for producing 4-t-butylcyclohexyl acetate
JP3808119B2 (en) 1-Indanone production method
JPH02121946A (en) Continuous production of succinic acid
KR960001909B1 (en) Preparation of 2 methyl-6-acylnaphthalene
JP3937186B2 (en) Method for purifying cyclopropanecarbaldehyde
JP2003183228A (en) Method for producing flurorine-containing alicyclic diamine compound
CN112479879A (en) Method for synthesizing styracin acetate from acetophenone
JPH03181427A (en) Purifying dichloropentafluoropropane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees