JPH075468A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH075468A
JPH075468A JP5146651A JP14665193A JPH075468A JP H075468 A JPH075468 A JP H075468A JP 5146651 A JP5146651 A JP 5146651A JP 14665193 A JP14665193 A JP 14665193A JP H075468 A JPH075468 A JP H075468A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal molecule
twist
molecule alignment
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5146651A
Other languages
Japanese (ja)
Inventor
Yuzo Hisatake
雄三 久武
Junko Hirata
純子 平田
Masumi Okamoto
ますみ 岡本
Takahiro Yamamoto
恭弘 山本
Tomiaki Yamamoto
富章 山本
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5146651A priority Critical patent/JPH075468A/en
Publication of JPH075468A publication Critical patent/JPH075468A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide the liquid crystal display element which is symmetrical in dependency of left and right visual angles and has a wide visual angle with substantially no generation of inversion phenomenon, etc. CONSTITUTION:This liquid crystal display element consists of a liquid crystal cell 4 formed by clamping a liquid crystal layer 18 consisting of a nematic liquid crystal having positive dielectric anisotropy oriented to twist in liquid crystal molecule arrangement by the liquid crystal molecule orientation directions of substrates between two sheets of the substrates 13 and 16 with electrodes 11, 14 forming plural pixels, a negative optically anisotropic element 3 and two sheets of polarizing plates 1, 2 clamping the liquid crystal cell and the optically anisotropic element. The liquid crystal molecule orientation directions by two sheets of the substrates are combined of two kinds. The liquid crystal layer forms the liquid crystal molecule arrangement regions A, B having two kinds of the twist directions. The twist angles of two kinds of the liquid crystal molecule arrangement regions are set at <90 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子に係わる。FIELD OF THE INVENTION The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】一般に液晶表示素子(以下LCDと略
称)の殆どは、ネマティック液晶を用いており、表示方
式としては、複屈折モードと旋光モードの2つの方式に
大別できる。
2. Description of the Related Art Generally, most liquid crystal display elements (hereinafter abbreviated as LCD) use nematic liquid crystal, and the display system can be roughly classified into a birefringence mode and an optical rotation mode.

【0003】ねじれネマティック液晶を用いた複屈折モ
ードの表示方式のLCDは、例えば、90°以上ねじれ
た分子配列を持ち(ST方式と呼ばれる)、急峻な電気
光学特性を持つため、各画素ごとにスイッチング素子
(薄膜トランジスタやダイオード)が無くても時分割駆
動により容易に大容量表示が得られる。
A birefringence mode display LCD using a twisted nematic liquid crystal has, for example, a molecular arrangement twisted by 90 ° or more (called ST method) and has steep electro-optical characteristics. Even if there is no switching element (thin film transistor or diode), a large capacity display can be easily obtained by time division driving.

【0004】一方、旋光モードのLCDは90°ねじれ
た分子配列をもち(TN方式と呼ばれる)、応答速度が
速く(数十ミリ秒)高いコントラスト比を示すことか
ら、時計や電卓、さらにはスイッチング素子を各画素ご
とに設けることにより大表示容量で高コントラストな高
い表示性能を持ったLCD(例えばTFT−LCD)を
実現することができる。
On the other hand, the LCD of the optical rotation mode has a molecular arrangement twisted by 90 ° (called the TN method) and has a high response speed (tens of milliseconds) and a high contrast ratio. By providing an element for each pixel, an LCD (for example, TFT-LCD) having a large display capacity and high contrast and high display performance can be realized.

【0005】近年、このTFT−LCDは階調表示を行
い、また、3色のカラーフィルターと組み合わせて多色
表示(例えば8階調なら512色)を実現している。こ
れらの階調表示は印加電圧を変化させることによって行
っている。図8は、図6に示す視角の定義により表示面
Sの法線zに対する観測点Pの視角をθ、表示面水平方
向を基準(0°)にした観測点の方位をφとしたときの
印加電圧−透過率特性の一例で、θ=60°における各
方位角の特性であり、各方位の曲線T1 (実線)が、上
記従来構成に対応する。この場合、正面(θ=0°)で
は曲線は単調な減少曲線となっているが、斜めから観察
した場合(θ=60°)の曲線は極値を持っている。こ
のため、TN方式においては正面における印加電圧−透
過率特性に基づいて階調表示を行う駆動電圧を決める
と、斜めから観察した場合には表示の反転や黒つぶれ、
白抜けといった現象が生じる。
In recent years, this TFT-LCD performs gradation display, and in combination with three color filters, multi-color display (for example, 512 colors for 8 gradations) is realized. These gradations are displayed by changing the applied voltage. FIG. 8 shows a case where the viewing angle of the observation point P with respect to the normal line z of the display surface S is θ, and the azimuth of the observation point with reference to the horizontal direction of the display surface is φ, according to the definition of the viewing angle shown in FIG. An example of the applied voltage-transmittance characteristic, which is the characteristic of each azimuth angle at θ = 60 °, and the curve T1 (solid line) of each azimuth corresponds to the above conventional configuration. In this case, the curve is a monotonous decreasing curve in the front (θ = 0 °), but the curve when observed obliquely (θ = 60 °) has an extreme value. Therefore, in the TN method, when the drive voltage for performing gradation display is determined based on the applied voltage-transmittance characteristic on the front surface, when observed obliquely, display inversion or blackout occurs,
A phenomenon such as white spots occurs.

【0006】これらの問題を解決する手段として、一画
素内に液晶分子の起き上がる方向が180°異なる二領
域を設けた液晶表示素子を用いて視角依存性を改善する
方法TDTN(Two Domain TN:例えば、特開昭64
−88520号公報)や、スプレイ配列を用い、TDT
Nと同様の効果を得るDDTN(Domain Divided TN
( Y. Koike, et.al., 1992, SID, p798))などが提案
されている。これらは、前述した印加電圧−透過率特性
の視角依存性が異なる二領域を一画素として、前述した
極値を事実上なくすことを目的としている。
As a means for solving these problems, a method TDTN (Two Domain TN: for example) of improving the viewing angle dependency by using a liquid crystal display element in which two regions in which the rising directions of liquid crystal molecules are different by 180 ° are provided in one pixel. , JP-A-64
-88520) and a spray array, and
DDTN (Domain Divided TN) that achieves the same effect as N
(Y. Koike, et.al., 1992, SID, p798)) has been proposed. The purpose of these is to effectively eliminate the above-mentioned extreme value by defining two regions having different viewing angle dependences of the applied voltage-transmittance characteristic as one pixel.

【0007】しかしながら、TDTN、DDTNとも
に、いわゆるコントラストの視角方向とその逆方向の視
角依存性を相殺されるように2種の配向領域を設ける
が、これらと直交する方位では、視角依存性が対称であ
るため、これらの方位における視角依存性は改善されな
い。
However, both TDTN and DDTN are provided with two kinds of alignment regions so as to cancel out the viewing angle dependence of the so-called contrast in the viewing angle direction and the opposite direction thereof, but the viewing angle dependence is symmetrical in the direction orthogonal to these. Therefore, the viewing angle dependence in these directions is not improved.

【0008】この問題を解決する手段として、前記DD
TNにおいて液晶セルと偏光板の間に2枚のリタデーシ
ョンフィルム(負の光学異方素子として作用する)を挿
入し、前記コントラストの視角方向と直交する方位にお
ける視角依存性を改善する手法が92年ジャパン・ディ
スプレイ(JAPAN DISPLAY DIGES
T, p886)で提案されている。この手法の原理は
例えば先出願の特願平3−38044号に示されている
ように前記方位において電圧印加時に生じる液晶セルの
リタデーション(およそ光学的に正)を光学的に負のリ
タデーションとして作用する光学異方素子によって相殺
するといったものである。
As a means for solving this problem, the DD
In TN, a method of inserting two retardation films (acting as negative optical anisotropic elements) between a liquid crystal cell and a polarizing plate in TN to improve the viewing angle dependence of the contrast in the direction orthogonal to the viewing angle direction is 1992 Japan. Display (JAPAN DISPLAY DIGES
T, p. 886). The principle of this method is, for example, as shown in Japanese Patent Application No. 3-38044 of the prior application, in which the retardation (approximately optically positive) of the liquid crystal cell generated when a voltage is applied in the above-described direction acts as an optically negative retardation. This is offset by the optical anisotropic element.

【0009】しかしながら、TN−LCDには旋光性が
あるため、こうした光学補償効果は前記方位において左
右が非対称となる。したがって、視角依存性は改善され
るものの、見栄えが左右で異なってしまうといった問題
が生じていた。
However, since the TN-LCD has optical rotatory power, such an optical compensation effect is asymmetrical in the left and right directions. Therefore, although the viewing angle dependency is improved, there is a problem in that the appearance is different between left and right.

【0010】図8における各方位の曲線T2 (一点鎖
線)は、リタデーションフィルムを挿入した場合の特性
である。
A curve T2 (one-dot chain line) in each direction in FIG. 8 is a characteristic when a retardation film is inserted.

【0011】前述したTDTN、DDTNは図8の特性
T1 のφ=0°とφ=180°を軸として上下の各特性
が平坦化するよう配向分割を行う。その結果、φ=90
°とφ=270°、φ=0°とφ=180°では、双方
の曲線を平均化した曲線を得る。その結果、φ=90
°、φ=270°では、電気光学特性を単調減少とする
ことができる。しかしながら、φ=0°とφ=180°
方位では、その電気光学特性がほぼ同形であるため、合
成された曲線も同形となり、電気光学特性の視角依存性
は改善されない。
The above-mentioned TDTN and DDTN perform alignment division about the characteristic T1 shown in FIG. 8 so that the upper and lower characteristics are flattened around φ = 0 ° and φ = 180 °. As a result, φ = 90
At ° and φ = 270 °, and at φ = 0 ° and φ = 180 °, the curves obtained by averaging both curves are obtained. As a result, φ = 90
When ° and φ = 270 °, the electro-optical characteristics can be monotonically decreased. However, φ = 0 ° and φ = 180 °
In the azimuth, since the electro-optical characteristics are almost the same, the combined curve also has the same shape, and the viewing angle dependence of the electro-optical characteristics is not improved.

【0012】そこで、これらの液晶セルと偏光板の間に
負の光学異方素子を挿入した場合の電気光学特性が特性
T2 である。この曲線から前記4方位についてその補償
効果を見ると、φ=270°やφ=0°、180°では
視角が改善され、逆にφ=90°では悪くなっている
(極値が極端に現れる)ことがわかる。。このため、合
成された電気光学特性はφ=90°、270°はその効
果が相殺され、良くも悪くもならず、φ=0°、180
°では効果が生ずる。また、φ=150°及びφ=33
0°での補償効果はそれぞれφ=30°およびφ=21
0°での補償効果よりも優れている。これはTNセルの
旋光性に起因するのだが、いずれにせよ前述したTDT
N、DDTNにおいては、2種の配向領域が示す電気光
学特性が合成された結果、実質的に見た目に作用する電
気光学特性はφ=30°では、前記、φ=30°とφ=
210°、φ=150°とφ=330°の組み合わせと
なるので、その合成された電気光学特性はφ=30°と
φ=150°では著しく異なり、左右非対称な視角依存
性となるわけである。
Therefore, the electro-optical characteristic when a negative optical anisotropic element is inserted between the liquid crystal cell and the polarizing plate is characteristic T2. Looking at the compensating effect for the above four azimuths from this curve, the viewing angle is improved at φ = 270 °, φ = 0 °, 180 °, and conversely at φ = 90 ° (extremum appears extremely. ) Understand. . For this reason, the combined electro-optical characteristics of φ = 90 ° and 270 ° cancel out the effects, and neither good nor bad occurs.
At ° there is an effect. Also, φ = 150 ° and φ = 33
The compensation effects at 0 ° are φ = 30 ° and φ = 21, respectively.
Better than the compensation effect at 0 °. This is due to the optical activity of the TN cell, but in any case, the TDT described above
In N and DDTN, as a result of the combination of the electro-optical characteristics of the two kinds of alignment regions, the electro-optical characteristics that substantially affect the appearance are φ = 30 °, φ = 30 ° and φ =
Since 210 °, φ = 150 ° and φ = 330 ° are combined, the combined electro-optical characteristics are remarkably different between φ = 30 ° and φ = 150 °, resulting in asymmetric viewing angle dependency. .

【0013】[0013]

【発明が解決しようとする課題】前述したように、従来
のLCDには、階調表示を行う際、印加電圧−透過率特
性に極値が存在することによる表示の反転現象等の視角
依存性が生じていた。また、これらを解決する手段とし
ては、液晶分子の起き上がる方向を一画素内に2方向以
上設けて事実上の極値をなくすことが提案されており、
さらに、コントラストの視角方向とその逆方向と直交す
る方位においての視角依存性を改善するために液晶セル
と偏光板の間に2枚のリタデーションフィルム(負の光
学異方素子として作用する)を挿入し、前記コントラス
トの視角方向と直交する方位における視角依存性を改善
する手法が提案されているが、光学補償効果は前記方位
において左右が非対称となり、視角依存性は改善される
ものの、見ばえが左右で異なってしまうという問題が生
じていた。
As described above, in the conventional LCD, when performing gradation display, viewing angle dependence such as display reversal phenomenon due to the extreme value of applied voltage-transmittance characteristic. Was occurring. Further, as a means for solving these problems, it has been proposed that the rising direction of liquid crystal molecules is provided in two or more directions in one pixel to eliminate a virtual extreme value.
Furthermore, two retardation films (acting as negative optical anisotropic elements) are inserted between the liquid crystal cell and the polarizing plate in order to improve the viewing angle dependence in the viewing angle direction of the contrast and the direction orthogonal to the opposite direction, Although a method for improving the viewing angle dependency in the azimuth orthogonal to the viewing angle direction of the contrast has been proposed, the optical compensation effect is asymmetric in the left and right in the azimuth, and the viewing angle dependency is improved, but the appearance is left and right. There was a problem that it would be different.

【0014】本発明はこれら不都合を解決するものであ
り、前述した光学補償効果が前記方位において従来技術
よりも左右対称となる新規なセル構成を有する液晶表示
素子を提供するものである。
The present invention solves these inconveniences and provides a liquid crystal display device having a novel cell structure in which the above-mentioned optical compensation effect is more symmetrical in the above-mentioned direction than in the prior art.

【0015】[0015]

【課題を解決するための手段】本発明は、前述した問題
点を解決する手段として、2枚の複数の画素を形成する
電極付き基板間に前記基板の液晶分子配向方向によって
液晶分子配列がねじれるようにされた誘電異方性が正の
ネマティック液晶からなる液晶層を挟持してなる液晶セ
ルと、少なくとも1枚の負の光学異方素子と、前記液晶
セルおよび前記光学異方素子を挟持する2枚の偏光板と
からなる液晶表示素子において、2枚の基板による液晶
分子配向方向を少なくとも2種の組み合わせとし、液晶
層が2種のねじれ方向を有する液晶分子配列領域を形成
せしめる手段と、これら2種の液晶分子配列領域のねじ
れ角を45°以上乃至90°未満に設定する手段とを具
備する液晶表示素子を提供する。
According to the present invention, as means for solving the above-mentioned problems, liquid crystal molecule alignment is twisted between substrates with electrodes forming two or more pixels depending on the alignment direction of the liquid crystal molecules of the substrate. A liquid crystal cell having a liquid crystal layer made of nematic liquid crystal having positive dielectric anisotropy sandwiched therein, at least one negative optical anisotropic element, and the liquid crystal cell and the optical anisotropic element sandwiched therebetween. In a liquid crystal display device including two polarizing plates, a means for forming at least two kinds of liquid crystal molecule alignment directions by the two substrates, and forming a liquid crystal molecule alignment region in which the liquid crystal layer has two kinds of twist directions, Provided is a liquid crystal display device comprising means for setting the twist angles of these two types of liquid crystal molecule alignment regions to 45 ° or more and less than 90 °.

【0016】また、前記2種の液晶分子配列領域を一画
素内に有することを素子を提供する。
Further, the present invention provides an element having the two kinds of liquid crystal molecule alignment regions in one pixel.

【0017】[0017]

【作用】本発明は2種のねじれ方向を有する液晶分子配
列領域を例えば画素単位で形成することにより、各画素
に左ねじれと右ねじれのTN領域を形成することにな
り、これらがそれぞれ左ねじれと右ねじれの旋光性を持
つことから、合成された印加電圧−透過率特性が極値を
もたず反転現象がなくなる。
According to the present invention, by forming the liquid crystal molecule alignment regions having two kinds of twist directions on a pixel-by-pixel basis, for example, a left-twisted and right-twisted TN region is formed in each pixel. And the right-handed optical rotation, the combined applied voltage-transmittance characteristic does not have an extreme value and the inversion phenomenon disappears.

【0018】なお実用的に本発明の2種の液晶分子配列
(左ねじれと右ねじれ)構成を得る配向処理方法、液晶
分子配列はそれぞれ3通りの液晶分子配列構成が考えら
れ、都合9通りの組み合わせにて実現可能である。
It is to be noted that three types of liquid crystal molecule alignment configurations are conceivable for the alignment treatment method and the liquid crystal molecule alignment for obtaining two types of liquid crystal molecule alignment (left twist and right twist) configurations of the present invention, and there are nine different configurations for convenience. It can be realized in combination.

【0019】なお、本発明のように1つの液晶セルの中
に障壁を設けずに、2種のねじれ方向を意図的に設ける
ためには、2種の配向処理方向を設け、かつ、それぞれ
の配向領域において、安定して意図した方向にねじれさ
せるために、ねじれ角を90°未満にする必要がある。
これは、配向処理方向を規定してやることによって、基
板表面の液晶分子配列方向を決め、上下基板間で液晶分
子が前記上下の基板表面の液晶分子配列方向のなす角の
狭角の方向にねじれやすくする(角度が小さいほうが液
晶分子配列は安定となるため)ためである。また、旋光
モードであり、色付きの少ない優れたコントラスト比を
得るため、前記ねじれ角は45°以上にする必要があ
る。さらに光学異方性素子の使用は光学補償効果を高め
視角依存性を改善する。
Incidentally, in order to intentionally provide two kinds of twist directions without providing a barrier in one liquid crystal cell as in the present invention, two kinds of alignment treatment directions are provided and each of them is provided. In the alignment region, the twist angle needs to be less than 90 ° in order to stably twist in the intended direction.
This is because by defining the alignment treatment direction, the alignment direction of liquid crystal molecules on the substrate surface is determined, and the liquid crystal molecules between the upper and lower substrates are likely to be twisted in the narrow direction of the angle formed by the liquid crystal molecule alignment directions on the upper and lower substrate surfaces. This is because the smaller the angle, the more stable the alignment of liquid crystal molecules. Further, in the optical rotation mode, in order to obtain an excellent contrast ratio with less coloring, the twist angle needs to be 45 ° or more. Further, the use of the optically anisotropic element enhances the optical compensation effect and improves the viewing angle dependency.

【0020】[0020]

【実施例】以下本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0021】(実施例1)図1および図2は本発明の一
実施例を示している。図1(a)に示すように液晶表示
素子は吸収軸を90°交差で配置した2枚の偏光板1、
2でリタデーションフィルムからなる1枚の光学異方素
子3と液晶セル4を挟んだ構成である。
(Embodiment 1) FIGS. 1 and 2 show an embodiment of the present invention. As shown in FIG. 1A, the liquid crystal display device includes two polarizing plates 1 each having absorption axes intersecting at 90 °,
In FIG. 2, one optical anisotropic element 3 made of a retardation film and a liquid crystal cell 4 are sandwiched.

【0022】液晶セル4は図2に示すように、透明共通
電極11およびポリイミド(AL−1051、(株)日
本合成ゴム製)の配向膜12を有する上側基板13と、
各々TFTスイッチング素子をもつ複数の画素電極14
とその上に積層されたポリイミド(AL−1051、
(株)日本合成ゴム製)の配向膜15を有する下側基板
16を5μmの間隙をあけて配置し、シール剤17で封
止し、この間隙内に誘電異方性が正のネマティック液晶
(ZLI−2293、メルクジャパン(株)製)からな
る液晶層18を充填し挟持させた構造でなる。
As shown in FIG. 2, the liquid crystal cell 4 includes an upper substrate 13 having a transparent common electrode 11 and an alignment film 12 of polyimide (AL-1051, manufactured by Nippon Synthetic Rubber Co., Ltd.),
A plurality of pixel electrodes 14 each having a TFT switching element
And polyimide laminated on it (AL-1051,
A lower substrate 16 having an alignment film 15 (made by Japan Synthetic Rubber Co., Ltd.) is placed with a gap of 5 μm and sealed with a sealant 17, and a nematic liquid crystal having a positive dielectric anisotropy ( It has a structure in which a liquid crystal layer 18 made of ZLI-2293, manufactured by Merck Japan Ltd. is filled and sandwiched.

【0023】下側基板16の各画素電極14の上面は、
図2(a)に示すように互いにねじれ方向を反対にした
液晶分子配向領域A、Bに形成され、図1(b)に示す
ように他の電極の領域間でも隣接するように相互に異な
る領域が来るように配置される。
The upper surface of each pixel electrode 14 of the lower substrate 16 is
As shown in FIG. 2A, they are formed in liquid crystal molecule alignment regions A and B whose twist directions are opposite to each other, and as shown in FIG. 1B, they are different from each other so that they are adjacent to each other in other electrode regions. Arranged so that the area comes.

【0024】図2(b)に示すように、液晶分子配列領
域Aは上側基板13の配向膜12部分を表示面水平方向
xに対して+50°(左方向)傾けた方向に配向方向A
1 を形成し、下側基板16の配向膜15を水平方向xに
対して−50°(右方向)傾けた方向に配向方向A2 を
形成する。したがって両基板を対向させると、各方向A
1 とA2 とはA1 の矢印基部からA2 の矢印先端まで8
0°の交差角となり,ユニフォーム配列の液晶層に左回
転の80°のねじれ角を与える(前記矢印方向に液晶分
子のプレチルト角が立つ方向とする)。
As shown in FIG. 2 (b), the liquid crystal molecule alignment region A has an alignment direction A in which the alignment film 12 portion of the upper substrate 13 is tilted by + 50 ° (left direction) with respect to the horizontal direction x of the display surface.
1 is formed, and the alignment direction A2 is formed in the direction in which the alignment film 15 of the lower substrate 16 is tilted by −50 ° (right direction) with respect to the horizontal direction x. Therefore, if both substrates are opposed, each direction A
1 and A2 are 8 from the base of A1 arrow to the tip of A2 arrow.
The crossing angle becomes 0 °, and a twist angle of 80 ° counterclockwise is given to the liquid crystal layer of uniform alignment (the pretilt angle of the liquid crystal molecules stands in the direction of the arrow).

【0025】一方、他の液晶分子配列領域Bは液晶分子
配列領域Aと対称的な配向領域を形成する。すなわち、
上側基板13の配向膜12部分を表示面水平方向xに対
して−50°(右方向)傾けた方向に配向方向B1 を形
成し、下側基板16の配向膜15を水平方向xに対して
+50°(左方向)傾けた方向に配向方向B2 を形成す
る。したがって両基板を対向させると、各方向B1 とB
2 とはB1 の矢印基部からB2 の矢印先端まで80°の
交差角となり,ユニフォーム配列の液晶層に右回転の8
0°のねじれ角を与える。
On the other hand, the other liquid crystal molecule alignment region B forms an alignment region symmetrical to the liquid crystal molecule alignment region A. That is,
An alignment direction B1 is formed in the direction in which the alignment film 12 portion of the upper substrate 13 is tilted by -50 ° (right direction) with respect to the horizontal direction x of the display surface, and the alignment film 15 of the lower substrate 16 is formed with respect to the horizontal direction x. The alignment direction B2 is formed in the direction tilted by + 50 ° (to the left). Therefore, if both substrates are made to face each other, each direction B1 and B
2 means a crossing angle of 80 ° from the base of the arrow B1 to the tip of the arrow B2, and the liquid crystal layer of uniform alignment is rotated clockwise by 8 °.
It gives a twist angle of 0 °.

【0026】図1(b)はこのように異なるねじれ角を
もつ領域A、Bが表示面に配列されていることを示して
いる。すなわち領域A、Bが左ねじれと右ねじれのTN
からなり、それぞれ左ねじれと右ねじれの旋光性を持
つ。
FIG. 1B shows that areas A and B having different twist angles are arranged on the display surface. That is, the regions A and B are left-handed and right-handed TN.
Each of them has a left-handed twist and a right-handed twist.

【0027】この実施例において、その電気光学特性を
視角を振って測定したところ、図7の特性に示すように
なった。すなわち、電気光学特性の視角依存性を負の光
学異方素子3を用いて改善し、さらに、2種の配向領域
の電気光学特性の合成で、φ=30°とφ=330°、
φ=150°とφ=210°といった組み合わせで合成
されるため、補償効果は優劣が相殺され、φ=30°と
φ=150°でほぼ等しい効果となり、その結果、左右
の視角依存性は対称なものとなる。
In this example, the electro-optical characteristics were measured by changing the viewing angle, and the characteristics shown in FIG. 7 were obtained. That is, the viewing angle dependence of the electro-optical characteristics is improved by using the negative optical anisotropic element 3, and further, by combining the electro-optical characteristics of the two kinds of alignment regions, φ = 30 ° and φ = 330 °,
Since they are combined in a combination of φ = 150 ° and φ = 210 °, the compensating effect cancels out the superiority and inferiority, and φ = 30 ° and φ = 150 ° have almost the same effect, and as a result, the left and right viewing angle dependencies are symmetrical. It will be

【0028】このため、ほぼ、どの視角においても反転
現象の生じない良好な特性を示し(TNの場合、実用的
に用いる印加電圧は0〜5Vであるのでこの範囲におい
て)、また、φ=30°とφ=150°の結果が示すよ
うに、左右の視角依存性が極めて対称形である特性を得
ることができた。
Therefore, it exhibits good characteristics in which the inversion phenomenon does not occur at almost any viewing angle (in the case of TN, since the applied voltage used practically is 0 to 5 V, within this range), and φ = 30. As shown by the results of ° and φ = 150 °, it was possible to obtain a characteristic in which the left and right viewing angle dependencies were extremely symmetrical.

【0029】(実施例2)図3は本実施例を示す。実施
例1同様の方法を用いて、図3に示すような配向方向の
組み合わせでラビング処理を行い本発明の液晶表示素子
を作成した。本実施例では一画素単位に液晶分子配列を
異ならせて、二画素141 、142 単位で前述した電気
光学特性が見かけ上合成されるようにしたものである。
すなわち一方の画素電極に液晶分子配列領域Aを形成
し、他方の画素電極に液晶分子配列領域Bを形成する。
配向方向は実施例1と同じである。本実施例の液晶表示
素子を用いて、階調表示を行ったところ、実施例1同
様、左右の視角依存性はほぼ対称なものとなり、どの視
角においても反転現象の生じない良好な白黒の表示が得
られた。また、等コントラスト特性を測定したところ、
図7とほぼ同様の結果が得られ、極めて広い視角依存性
があることがわかった。
(Embodiment 2) FIG. 3 shows this embodiment. Using the same method as in Example 1, a rubbing treatment was performed with a combination of alignment directions as shown in FIG. 3 to prepare a liquid crystal display element of the present invention. In the present embodiment, the liquid crystal molecule arrangement is made different for each pixel so that the above-mentioned electro-optical characteristics are apparently combined in the unit of two pixels 14 1 and 14 2 .
That is, the liquid crystal molecule alignment region A is formed on one pixel electrode, and the liquid crystal molecule alignment region B is formed on the other pixel electrode.
The orientation direction is the same as in Example 1. When gradation display is performed using the liquid crystal display element of the present embodiment, the left and right viewing angle dependences are substantially symmetrical as in the first embodiment, and good black and white display in which no reversal phenomenon occurs at any viewing angle. was gotten. Moreover, when the equal contrast characteristics were measured,
Results similar to those in FIG. 7 were obtained, and it was found that there is an extremely wide viewing angle dependency.

【0030】(実施例3)図4は本実施例を示す。液晶
分子配列領域C、Dを除いては実施例1と同構成であ
る。図に示すように、液晶分子配列領域Cは上側基板1
3側に、表示面水平方向xに対して+47°(左方向)
傾けた方向に配向方向C1 を形成し、下側基板16に水
平方向xに対して−47°(右方向)傾けた方向に配向
方向C2 を形成する。したがって両基板を対向させる
と、各方向C1 とC2 とはC1 の矢印基部からC2 の矢
印先端まで86°の交差角となり,ユニフォーム配列の
液晶層に左回転の86°のねじれ角を与える(前記矢印
方向に液晶分子のプレチルト角が立つ方向とする)。
(Embodiment 3) FIG. 4 shows the present embodiment. Except for the liquid crystal molecule alignment regions C and D, the configuration is the same as that of the first embodiment. As shown in the figure, the liquid crystal molecule alignment region C is located on the upper substrate 1.
On the 3 side, + 47 ° with respect to the horizontal direction x of the display surface (left direction)
The orientation direction C1 is formed in the inclined direction, and the orientation direction C2 is formed in the lower substrate 16 in the direction inclined -47 ° (to the right) with respect to the horizontal direction x. Therefore, when the two substrates are opposed to each other, the directions C1 and C2 have a crossing angle of 86 ° from the base of the arrow C1 to the tip of the arrow C2, and the liquid crystal layer of the uniform arrangement has a twist angle of 86 ° counterclockwise. The direction in which the pretilt angle of liquid crystal molecules stands in the direction of the arrow).

【0031】一方、他の液晶分子配列領域Dは液晶分子
配列領域Cと対称的な配向領域を形成する。すなわち、
上側基板13に表示面水平方向xに対して−47°(右
方向)傾けた方向に配向方向D1 を形成し、下側基板1
6に水平方向xに対して+47°(左方向)傾けた方向
に配向方向D2 を形成する。したがって両基板を対向さ
せると、各方向D1 とD2 とはD1 の矢印基部からD2
の矢印先端まで86°の交差角となり,ユニフォーム配
列の液晶層に左回転の86°のねじれ角を与える。 こ
の構成において60°にわたるどの視角においても反転
現象の生じない良好な白黒の表示が得られた。図5は本
実施例3の変形例で、配向方向[C1 ],[C2 ]、
[D1 ],[D2 ]を上記実施例とは逆方向に変更させ
て実施例3と同じねじれ角を得たものである。
On the other hand, the other liquid crystal molecule alignment region D forms an alignment region symmetrical to the liquid crystal molecule alignment region C. That is,
An alignment direction D1 is formed on the upper substrate 13 in a direction inclined by -47 ° (to the right) with respect to the horizontal direction x of the display surface.
Orientation direction D2 is formed at 6 in a direction inclined + 47 ° (leftward) with respect to the horizontal direction x. Therefore, when the two substrates are opposed to each other, the directions D1 and D2 are D2 from the arrow base of D1.
A crossing angle of 86 ° is reached up to the tip of the arrow, and a twist angle of 86 ° of counterclockwise rotation is given to the liquid crystal layer of uniform alignment. With this configuration, a good black and white display in which the reversal phenomenon does not occur at any viewing angle of 60 ° was obtained. FIG. 5 shows a modification of the third embodiment, in which the orientation directions [C1], [C2],
[D1] and [D2] are changed in the opposite direction to the above-described embodiment, and the same twist angle as in the third embodiment is obtained.

【0032】また、本発明は以上実施例で述べたものの
他、光学異方性素子の枚数は複数枚にしてもよく、さら
にTFT以外にMIMなどのスイッチング素子を用いて
も同様の効果を得ることは言うまでもなく、また、3原
色のカラーフィルターを用いての表示のカラー化をして
も同様の効果を得ることは言うまでもない。
In addition to the above-described embodiments of the present invention, the number of optically anisotropic elements may be plural, and the same effect can be obtained by using a switching element such as MIM in addition to the TFT. Needless to say, it goes without saying that the same effect can be obtained even if the display is colorized by using the color filters of the three primary colors.

【0033】[0033]

【発明の効果】本発明によれば、左右の視角依存性が対
称である反転現象等がほぼ生じない極めて広視角のLC
Dを実現できる。
According to the present invention, an LC having an extremely wide viewing angle in which an inversion phenomenon or the like in which the left and right viewing angle dependencies are symmetrical is hardly generated.
D can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示し、(a)は構成を分解
して示す斜視図、(b)は液晶分子配列領域を説明する
斜視図。
1A and 1B show an embodiment of the present invention, in which FIG. 1A is an exploded perspective view of a configuration, and FIG. 1B is a perspective view illustrating a liquid crystal molecule alignment region.

【図2】本発明の一実施例を示し、(a)は図1(b)
をI−I線にそって切断し矢印方向に見た断面図、
(b)は液晶分子配列領域の構成を拡大して示す平面
図。
FIG. 2 shows an embodiment of the present invention, in which FIG.
Is a cross-sectional view taken along the line I-I of FIG.
FIG. 6B is an enlarged plan view showing the configuration of the liquid crystal molecule alignment region.

【図3】本発明の他の実施例の構成を説明する液晶分子
配列領域の構成を拡大して示す平面図。
FIG. 3 is an enlarged plan view showing the configuration of a liquid crystal molecule alignment region for explaining the configuration of another embodiment of the present invention.

【図4】本発明の他の実施例の構成を説明する液晶分子
配列領域の構成を拡大して示す平面図。
FIG. 4 is an enlarged plan view showing the configuration of a liquid crystal molecule alignment region for explaining the configuration of another embodiment of the present invention.

【図5】本発明の変形例の構成を説明する液晶分子配列
領域の構成を拡大して示す平面図。
FIG. 5 is a plan view showing an enlarged configuration of a liquid crystal molecule alignment region for explaining a configuration of a modified example of the present invention.

【図6】視角の定義を説明する図。FIG. 6 is a diagram illustrating the definition of a viewing angle.

【図7】本発明の液晶表示素子の印加電圧−透過率特性
の視角依存性を説明する図。
FIG. 7 is a diagram illustrating viewing angle dependence of applied voltage-transmittance characteristics of the liquid crystal display element of the present invention.

【図8】従来のTN型素子の印加電圧−透過率特性の視
角依存性を説明する図。
FIG. 8 is a diagram illustrating the viewing angle dependence of applied voltage-transmittance characteristics of a conventional TN type element.

【符号の説明】[Explanation of symbols]

1、2…偏光板 3…光学異方性素子 4…液晶セル 11、14…電極 13、16…基板 18…液晶層 A,B,C,D…液晶分子配列領域 1, 2 ... Polarizing plate 3 ... Optically anisotropic element 4 ... Liquid crystal cell 11, 14 ... Electrode 13, 16 ... Substrate 18 ... Liquid crystal layer A, B, C, D ... Liquid crystal molecule alignment region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 恭弘 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 山本 富章 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Yamamoto 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company, Toshiba Yokohama Works (72) Inventor Tomiaki Yamamoto 8 Shinsita-cho, Isogo-ku, Yokohama, Kanagawa (72) Inventor Hitoshi Hato, Shinagawa, Yokohama, Kanagawa Prefecture, 8 Shinsugita-cho, Isogo-ku, Yokohama Kanagawa, Japan

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2枚の複数の画素を形成する電極付き基
板間に前記基板の液晶分子配向方向によって液晶分子配
列がねじれるようにされた誘電異方性が正のネマティッ
ク液晶からなる液晶層を挟持してなる液晶セルと、少な
くとも1枚の負の光学異方素子と、前記液晶セルおよび
前記光学異方素子を挟持する2枚の偏光板とからなる液
晶表示素子において、 前記2枚の基板による液晶分子配向方向を少なくとも2
種の組み合わせとし、前記液晶層が2種のねじれ方向を
有する液晶分子配列領域を形成せしめる手段と、前記2
種の液晶分子配列領域のねじれ角を45°以上90°未
満に設定する手段とを具備することを特徴とする液晶表
示素子。
1. A liquid crystal layer made of nematic liquid crystal having a positive dielectric anisotropy, in which liquid crystal molecule alignment is twisted according to the liquid crystal molecule alignment direction of the substrate, between the substrates with electrodes forming two or more pixels. A liquid crystal display device comprising a sandwiched liquid crystal cell, at least one negative optical anisotropic element, and two polarizing plates sandwiching the liquid crystal cell and the optical anisotropic element, wherein the two substrates The liquid crystal molecule alignment direction by at least 2
And a means for forming a liquid crystal molecule alignment region in which the liquid crystal layer has two kinds of twist directions, and
And a means for setting the twist angle of the liquid crystal molecule alignment region of the seed to 45 ° or more and less than 90 °.
【請求項2】 2種の液晶分子配列領域を一画素内に形
成することを特徴とする請求項1に記載の液晶表示素
子。
2. The liquid crystal display element according to claim 1, wherein two kinds of liquid crystal molecule alignment regions are formed in one pixel.
JP5146651A 1993-04-20 1993-06-18 Liquid crystal display element Pending JPH075468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146651A JPH075468A (en) 1993-04-20 1993-06-18 Liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-91719 1993-04-20
JP9171993 1993-04-20
JP5146651A JPH075468A (en) 1993-04-20 1993-06-18 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH075468A true JPH075468A (en) 1995-01-10

Family

ID=26433166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146651A Pending JPH075468A (en) 1993-04-20 1993-06-18 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH075468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741016B1 (en) * 2004-07-02 2007-07-19 삼성에스디아이 주식회사 Liquid crystal device and manufacturing method thereof
CN103412441A (en) * 2013-08-07 2013-11-27 京东方科技集团股份有限公司 Array substrate, color-filter substrate, display device and manufacturing method of orientation layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741016B1 (en) * 2004-07-02 2007-07-19 삼성에스디아이 주식회사 Liquid crystal device and manufacturing method thereof
CN103412441A (en) * 2013-08-07 2013-11-27 京东方科技集团股份有限公司 Array substrate, color-filter substrate, display device and manufacturing method of orientation layers

Similar Documents

Publication Publication Date Title
US5946067A (en) Liquid crystal display
US6466290B2 (en) Fringe field switching mode LCD
US6950169B2 (en) Vertical alignment mode liquid crystal display device having pixel electrode partially covering holes of the insulating film
KR100233187B1 (en) Liquid crystal display with an improved optical compensation layer
JPH11133408A (en) Horizontal electric field type liquid crystal display device
JPH1124068A (en) Method for forming dual domain inside liquid crystal layer, manufacture of liquid crystal display device using the method and liquid crystal display device
KR100326826B1 (en) Liquid crystal display device with wide viewing angle
KR100319467B1 (en) Liquid Crystal Display device
JP3156467B2 (en) Liquid crystal display
JPH0736044A (en) Pixel orientation dividing type liquid crystal display element
JPH0713166A (en) Liquid crystal display element
US6922223B2 (en) Vertical alignment mode liquid crystal display device having pixel electrode on protrusion on resin layer
US7663721B2 (en) Multi-domain vertical alignment liquid crystal display panel
JP3175972B2 (en) Liquid crystal display
JPH06130394A (en) Liquid crystal display element
US6195144B1 (en) Multiple domain-divided twisted nematic liquid crystal display with compensation film
JPH07270822A (en) Liquid crystal display element
JP2856942B2 (en) Liquid crystal display element and optically anisotropic element
JPH075468A (en) Liquid crystal display element
KR20030061584A (en) 2-domain ffs-va mode liquid crystal display device
JPH0519249A (en) Liquid crystal display device
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JPH06342154A (en) Liquid crystal display device
JP3231910B2 (en) Liquid crystal display device
KR100566811B1 (en) In Plane Switching mode Liquid crystal display device