JPH075413A - Projection type display device - Google Patents

Projection type display device

Info

Publication number
JPH075413A
JPH075413A JP14215493A JP14215493A JPH075413A JP H075413 A JPH075413 A JP H075413A JP 14215493 A JP14215493 A JP 14215493A JP 14215493 A JP14215493 A JP 14215493A JP H075413 A JPH075413 A JP H075413A
Authority
JP
Japan
Prior art keywords
lclv
crt
liquid crystal
liquid
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14215493A
Other languages
Japanese (ja)
Inventor
Isamu Oshita
勇 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP14215493A priority Critical patent/JPH075413A/en
Publication of JPH075413A publication Critical patent/JPH075413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To eliminate the need for a liquidtight sealing member and to obtain the space resolution performance equiv. to that of a glycerol matching liquid by providing the display device with a joining layer which consists of a silicone gel and is packed between the front face of a cathode ray tube and a photoconduction type liquid crystal light valve to join both. CONSTITUTION:The joining layer 30 consisting of the silicone gel is arranged between the photoconduction type liquid crystal light valve(LCLV) 1 and the fiber optic plate(FOP) of the cathode ray tube(CRT) 2. Namely, the matching liquid of glycerol is usually used to pack the gap between the LCLV 1 and the FOP of the CRT 2 but the silicone gel is used as the coupling liquid which has the performance equiv. to the performance of the glycerol matching liquid, does not require sealing of liquid and is stable in its characteristics at an actual service temp. in such a case. The joining layer 30 consisting of the silicone gel has the refractive index higher than the refractive index of air and, therefore, the gap quantity is apparently decreased and the reflection loss is lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陰極線管(CRTとい
う)及び光導電型液晶ライトバルブ(LCLVという)
からなる投影光出力手段を有する投射型表示装置に関
し、特にLCLVへの入射光線束に投影画像を付与しつ
つその反射光を投影レンズ系により投射する投射型表示
装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a cathode ray tube (referred to as CRT) and a photoconductive liquid crystal light valve (referred to as LCLV).
The present invention relates to a projection display device having a projection light output means, and more particularly to a projection display device that projects a reflected image by a projection lens system while giving a projection image to a bundle of rays incident on an LCLV.

【0002】[0002]

【従来の技術】図1は、CRT2及びLCLV1からな
る投影光出力手段を有する投射型表示装置の一例を示
す。CRT2及びLCLV1間において、ファイバーオ
プティックプレート(FOPという)4が配置されてい
る。FOP4は、複数の光ファイバを板の主面に垂直に
伸長させ最密に並設されたもので、CRT2がそのフロ
ントフェイスに表示された像をLCLV1の光導電層に
効率良く書き込むように配置されている。
2. Description of the Related Art FIG. 1 shows an example of a projection type display device having a projection light output means composed of a CRT 2 and an LCLV 1. A fiber optic plate (referred to as FOP) 4 is arranged between the CRT 2 and the LCLV 1. FOP4 is made up of a plurality of optical fibers extending vertically to the main surface of the plate and arranged in close proximity to each other. CRT2 is arranged so that the image displayed on its front face can be efficiently written on the photoconductive layer of LCLV1. Has been done.

【0003】LCLV1は、図2に示すような構造を有
する。LCLVの液晶層11は、スペーサ12、配向層
13、14によって画定される。像が描かれる光導電層
15は、反射層16及び光遮断層17を介して配向層1
4側に積層されている。読み出し側ガラス基板20には
透明電極18が配され、光導電層15の書き込み側ガラ
ス基板21には電極19が配されている。
The LCLV1 has a structure as shown in FIG. The LCLV liquid crystal layer 11 is defined by spacers 12 and alignment layers 13, 14. The photoconductive layer 15 on which an image is drawn is formed on the alignment layer 1 via the reflective layer 16 and the light blocking layer 17.
It is stacked on the 4 side. A transparent electrode 18 is arranged on the reading side glass substrate 20, and an electrode 19 is arranged on the writing side glass substrate 21 of the photoconductive layer 15.

【0004】LCLVの動作は、透明電極18、19間
に交流電圧が印加されているとき、ガラス基板21(書
き込み側)から入射した書き込み光によって光導電層1
5上に像を描くと、光導電層15の内部抵抗が像の明暗
(受光量の変化)に従って局部的に変化をする。光導電
層の抵抗変化部分に対応する隣接する液晶層11の内部
部分には透明電極18、19間の交流電圧が印加され、
像の明暗に従って、液晶分子が空間変調され複屈折率が
生じる。
The operation of the LCLV is such that, when an AC voltage is applied between the transparent electrodes 18 and 19, the photoconductive layer 1 is generated by the writing light incident from the glass substrate 21 (writing side).
When an image is drawn on 5, the internal resistance of the photoconductive layer 15 locally changes according to the brightness of the image (change in the amount of received light). An alternating voltage between the transparent electrodes 18 and 19 is applied to the inner portion of the adjacent liquid crystal layer 11 corresponding to the variable resistance portion of the photoconductive layer,
The liquid crystal molecules are spatially modulated according to the brightness of the image, and a birefringence is generated.

【0005】投射型表示装置の動作は、LCLV1の液
晶層11の投影画像の複屈折率変化が形成されていると
き、図1に示すように、メタルハライドランプ等の光源
3からの略平行光線束を、偏光ビームスプリッタ6に入
射し、この入射光のうちS偏光成分をLCLV1の読み
出し側ガラス基板20に入射することによって、行われ
る。ここで、LCLV1の液晶層にCRTの画像に対応
した複屈折率変化が生じていると、LCLVにおいて反
射された反射光中では液晶層の複屈折率に応じてS偏光
成分がP偏光成分に変換される。そして、このP偏光成
分が偏光ビームスプリッタ6をそのまま通過することに
より、このP偏光成分すなわち投影光が投影レンズ8を
介してスクリーン9上に像が投射される。
The operation of the projection type display device is such that, when the birefringence change of the projected image of the liquid crystal layer 11 of the LCLV 1 is formed, as shown in FIG. 1, a substantially parallel light flux from the light source 3 such as a metal halide lamp. Is incident on the polarization beam splitter 6, and the S-polarized component of the incident light is incident on the reading-side glass substrate 20 of the LCLV 1. Here, when the birefringence change corresponding to the image of the CRT occurs in the liquid crystal layer of the LCLV1, in the reflected light reflected by the LCLV, the S polarization component becomes the P polarization component according to the birefringence of the liquid crystal layer. To be converted. Then, the P-polarized component passes through the polarization beam splitter 6 as it is, so that the P-polarized component, that is, the projection light is projected on the screen 9 through the projection lens 8.

【0006】[0006]

【発明が解決しようとする課題】さらに、例えばLCL
V1及びFOP4間の間隙(以下、ギャップという)が
零のときMTF(Modulation Transfer Function)が1
00%達成されるとして、MTFがそれに満たない85
%、90%及び95%の場合におけるギャップ及び空間
分解能との関係を調べると、図3のごとき結果が得られ
る。図3から明らかなように、いずれのMTFの条件に
おいても、高い分解能でCRT画像光を通過させるには
ギャップを限りなく小さくする必要がある。よって、ギ
ャップを限りなく零に近くしないと、光が拡散し、像の
忠実な伝達をし得ず、スクリーン投影像の解像度及びコ
ントラストの低下を招来する。
Further, for example, LCL
MTF (Modulation Transfer Function) is 1 when the gap between V1 and FOP4 (hereinafter referred to as gap) is zero.
MTF is less than 85% if it is achieved by 85%
Examining the relationship between the gap and the spatial resolution in the cases of%, 90% and 95%, the results shown in FIG. 3 are obtained. As is clear from FIG. 3, under any MTF condition, it is necessary to make the gap as small as possible in order to pass the CRT image light with high resolution. Therefore, if the gap is not extremely close to zero, the light is diffused, the image cannot be faithfully transmitted, and the resolution and the contrast of the screen projection image are deteriorated.

【0007】CRT2からの光をLCLV1の光導電層
15に効率良く伝達するためには、LCLV1及びCR
T2間の間隙をグリセリンなどのマッチング液で充填す
る封止構造が必要である。しかしながら、マッチング液
は流動性が高いので、液密的に封止をしなければなら
ず、そのため液密封止部材の点数が多くなる。よって、
本発明の目的は、ギャップを限りなく零に近くし封止部
品点数の削減を可能とするCRT及びLCLVからなる
投影光出力手段の構造を提供することにある。
In order to efficiently transmit the light from the CRT2 to the photoconductive layer 15 of the LCLV1, LCLV1 and CR are used.
A sealing structure that fills the gap between T2 with a matching liquid such as glycerin is required. However, since the matching liquid has high fluidity, it must be sealed in a liquid-tight manner, which increases the number of liquid-tight sealing members. Therefore,
An object of the present invention is to provide a structure of a projection light output means composed of a CRT and an LCLV, which makes the gap as close to zero as possible to reduce the number of sealing components.

【0008】[0008]

【課題を解決するための手段】本発明の投射型表示装置
は、陰極線管及び光導電型液晶ライトバルブからなる投
影光出力手段を有する投射型表示装置であって、前記陰
極線管のフロントフェイス及び前記光導電型液晶ライト
バルブ間に充填されこれらを接合したシリコンゲルから
なる接合層を有することを特徴とする。
The projection type display device of the present invention is a projection type display device having a projection light output means consisting of a cathode ray tube and a photoconductive type liquid crystal light valve. It is characterized by having a bonding layer made of silicon gel, which is filled between the photoconductive liquid crystal light valves and bonded to each other.

【0009】[0009]

【作用】本発明によれば、封止構造を簡素になした陰極
線管及び光導電型液晶ライトバルブからなる投影光出力
手段を有する投射型表示装置が得られる。
According to the present invention, it is possible to obtain a projection type display device having a projection light output means composed of a cathode ray tube and a photoconductive type liquid crystal light valve whose sealing structure is simplified.

【0010】[0010]

【実施例】以下に本発明による実施例を図面を参照しつ
つ説明する。図4に本実施例を示す。LCLV1は、そ
の書き込み側ガラス基板21をFOPからなる基板21
aとした以外は図2に示すLCLVと同一の構造を有す
る。CRT2は、そのフロントフェイスをFOPからな
る基板2aとした以外は図1に示すCRTと同一の構造
を有する。LCLV及びCRTのFOP間には、シリコ
ンゲルからなる接合層30が配置されている。
Embodiments of the present invention will be described below with reference to the drawings. This embodiment is shown in FIG. In the LCLV 1, the writing side glass substrate 21 is a substrate 21 made of FOP.
It has the same structure as the LCLV shown in FIG. 2 except that it is a. The CRT 2 has the same structure as the CRT shown in FIG. 1 except that the front face thereof is a substrate 2a made of FOP. A bonding layer 30 made of silicon gel is arranged between the FOPs of the LCLV and the CRT.

【0011】これらLCLV1及びCRT2のFOP間
のギャップを充填するため通常、グリセリンのマッチン
グ液を用いるが、発明者は、グリセリンマッチング液と
同程度の性能を有し、しかも液体の封止も必要なく、実
使用温度でその特性が安定なカップリング材料として、
シリコンゲルを用い得ることを知見した。シリコンゲル
は通常の粘度が500cpの液体であるので、陰極線管
及び光導電型液晶ライトバルブを接合する際にギャップ
へ薄く広く行き渡り、70℃、30分でゲル状に変わ
り、その後はその安定性を保ち続ける。シリコンゲルか
らなる接合層30は空気よりも屈折率が高いので、ギャ
ップ量をみかけ上、少なくすることができ、反射損失を
軽減する。
In order to fill the gap between the FOPs of LCLV1 and CRT2, a matching solution of glycerin is usually used. However, the inventor has the same performance as the glycerin matching solution and does not require liquid sealing. , As a coupling material whose characteristics are stable at actual use temperature,
It has been found that silicon gel can be used. Since silicon gel is a liquid with a normal viscosity of 500 cp, it spreads thinly and widely into the gap when joining a cathode ray tube and a photoconductive liquid crystal light valve, and changes into a gel at 70 ° C for 30 minutes, after which its stability Keep on. Since the bonding layer 30 made of silicon gel has a higher refractive index than air, the gap amount can be apparently reduced, and the reflection loss is reduced.

【0012】そこで、CRT単体の場合、LCLV及び
CRTのFOP間のギャップをグリセリンで充填するの
場合、及び該ギャップをシリコンゲルで充填するの場
合、の3通りについてMTF及び空間分解能について測
定をおこなった。その結果、図5に示すグラフが得ら
れ、グリセリン充填の場合にしろ、シリコンゲル充填の
場合にしろ、CRT単体のMTFを低下させることなく
忠実にCRT画像光をLCLVへ書き込むことができる
ことがわかった。CRT2及びLCLV1のFOP間に
充填されこれらを接合したシリコンゲルからなる接合層
30を有する構造を用いれば、しかもゲル時の粘着力が
LCLVを支えるのに十分なので、その保持部品も必要
がなくなる。
Therefore, the MTF and the spatial resolution are measured for three cases, that is, in the case of the CRT alone, in the case of filling the gap between the FOPs of the LCLV and CRT with glycerin, and in the case of filling the gap with silicon gel. It was As a result, the graph shown in FIG. 5 was obtained, and it was found that the CRT image light can be faithfully written to the LCLV without lowering the MTF of the CRT alone, whether it is filled with glycerin or filled with silicon gel. It was If a structure having a bonding layer 30 made of silicon gel that is filled between the FOPs of the CRT 2 and the LCLV 1 and bonded to each other is used, and since the adhesive force during gel is sufficient to support the LCLV, a holding component for the same is also unnecessary.

【0013】かかるシリコンゲルの性状を表1に示す。Table 1 shows the properties of the silicon gel.

【0014】[0014]

【表1】 かかるシリコンゲルを接合層30に用いれば、シリコン
ゲル硬化後はある程度の弾性を示すので貼着したLCL
Vの基板を応力で歪めることが少なくなる、低温でゲル
化するので他の部材への影響が少なくなる、ゲル化する
と温度依存が少なくなる、粘度が低いので組立時に間に
広がり易い、反応副生成物がなく電食が起きなくなる、
無色透明で屈折率がガラスに近い(n=約1.40)の
で透過光の反射損失が少なくなる、などの効果を奏す
る。
[Table 1] If such a silicon gel is used for the bonding layer 30, it will show elasticity to some extent after the silicone gel is cured, so the LCL that has been adhered
The substrate of V is less likely to be distorted by stress, gelling at low temperature has less effect on other members, gelling has less temperature dependence, and the viscosity is low, so that it easily spreads during assembly, reaction side There is no product, and electrolytic corrosion does not occur,
Since it is colorless and transparent and has a refractive index close to that of glass (n = about 1.40), it has an effect of reducing reflection loss of transmitted light.

【0015】また、上記実施例では、CRT及びLCL
VのFOP間に充填されこれらを接合したシリコンゲル
からなる接合層30を有する構造を示したが、CRTの
フロントフェイスまたはLCLVの書き込み側基板の一
方にのみFOPを用いた場合でも、更に図1に示すよう
なFOPとCRT及びLCLVとの間にシリコンゲルか
らなる接合層30を用いても、同様な効果を奏する。
In the above embodiment, the CRT and LCL
Although the structure having the bonding layer 30 made of silicon gel filled between the FOPs of V and bonding them is shown, even when the FOP is used only on one of the front face of the CRT or the writing side substrate of the LCLV, FIG. Even if the bonding layer 30 made of silicon gel is used between the FOP, the CRT, and the LCLV as shown in FIG.

【0016】[0016]

【発明の効果】本発明によれば、陰極線管及び光導電型
液晶ライトバルブからなる投影光出力手段を有する投射
型表示装置において、陰極線管のフロントフェイス及び
光導電型液晶ライトバルブ間に充填されこれらを接合し
たシリコンゲルからなる接合層を有するので、シリコン
ゲルの接着力により、従来の液体封止に必要な液密封止
部材を設ける必要がなくなり、グリセリンマッチング液
と同程度の空間分解能性能が得られる。
According to the present invention, in a projection type display device having a projection light output means consisting of a cathode ray tube and a photoconductive liquid crystal light valve, a space between the front face of the cathode ray tube and the photoconductive liquid crystal light valve is filled. Since it has a bonding layer made of silicon gel that bonds these, it is not necessary to provide a liquid-tight sealing member required for conventional liquid sealing due to the adhesive force of silicon gel, and spatial resolution performance equivalent to that of glycerin matching liquid can be achieved. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】LCLVを用いた投射型表示装置の概略を示す
構造図である。
FIG. 1 is a structural diagram showing an outline of a projection type display device using an LCLV.

【図2】LCLVの概略を示す構造図である。FIG. 2 is a structural diagram showing an outline of LCLV.

【図3】LCLV及びFOP間のギャップが零のときM
TFが100%達成されるとしてMTFがそれに満たな
い85%、90%及び95%の場合、そのギャップと空
間分解能との関係を示すグラフである。
FIG. 3 M when the gap between LCLV and FOP is zero
It is a graph which shows the relationship between the gap and spatial resolution, when MTF is 85%, 90%, and 95% which is less than that when TF is achieved 100%.

【図4】CRTのフロントフェイス及びFOP間並びに
FOP及びLCLV間に充填されこれらを接合したシリ
コンゲルからなる接合層を有する投影光出力手段の構造
を示す概略部分断面図である。
FIG. 4 is a schematic partial cross-sectional view showing the structure of a projection light output means having a bonding layer made of silicon gel, which is filled between the front face and the FOP of the CRT and between the FOP and the LCLV and bonded them.

【図5】CRT単体の場合、LCLV及びFOP間のギ
ャップをグリセリンで充填するの場合、該ギャップをシ
リコンゲルで充填するの場合、の3通りにおけるMTF
及び空間分解能の関係を示すグラフである。
FIG. 5 shows MTFs in three ways, in the case of a CRT alone, in the case of filling the gap between LCLV and FOP with glycerin, and in the case of filling the gap with silicon gel.
3 is a graph showing the relationship between the spatial resolution and the spatial resolution.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 光導電型液晶ライトバルブ 2 陰極線管 4 ファイバーオプティックプレート 30 シリコンゲルの接合層 1 Photoconductive Liquid Crystal Light Valve 2 Cathode Ray Tube 4 Fiber Optic Plate 30 Silicon Gel Bonding Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陰極線管及び光導電型液晶ライトバルブ
からなる投影光出力手段を有する投射型表示装置であっ
て、前記陰極線管のフロントフェイス及び前記光導電型
液晶ライトバルブ間に充填されこれらを接合したシリコ
ンゲルからなる接合層を有することを特徴とする投射型
表示装置。
1. A projection type display device having a projection light output means composed of a cathode ray tube and a photoconductive liquid crystal light valve, which is filled between a front face of the cathode ray tube and the photoconductive liquid crystal light valve. A projection display device having a bonding layer made of bonded silicon gel.
JP14215493A 1993-06-14 1993-06-14 Projection type display device Pending JPH075413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14215493A JPH075413A (en) 1993-06-14 1993-06-14 Projection type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14215493A JPH075413A (en) 1993-06-14 1993-06-14 Projection type display device

Publications (1)

Publication Number Publication Date
JPH075413A true JPH075413A (en) 1995-01-10

Family

ID=15308622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14215493A Pending JPH075413A (en) 1993-06-14 1993-06-14 Projection type display device

Country Status (1)

Country Link
JP (1) JPH075413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315418B2 (en) 2005-03-31 2008-01-01 3M Innovative Properties Company Polarizing beam splitter assembly having reduced stress
US9620947B2 (en) 2012-11-08 2017-04-11 Albert S. Richardson, Jr. Antigalloping device
US10520744B2 (en) 2006-09-29 2019-12-31 3M Innovative Properties Company Adhesives inhibiting formation of artifacts in polymer based optical elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315418B2 (en) 2005-03-31 2008-01-01 3M Innovative Properties Company Polarizing beam splitter assembly having reduced stress
US10520744B2 (en) 2006-09-29 2019-12-31 3M Innovative Properties Company Adhesives inhibiting formation of artifacts in polymer based optical elements
US9620947B2 (en) 2012-11-08 2017-04-11 Albert S. Richardson, Jr. Antigalloping device

Similar Documents

Publication Publication Date Title
JP3799829B2 (en) Electro-optical device, manufacturing method thereof, and projection display device
JP3801890B2 (en) Liquid crystal display
JP2002182008A (en) Optical lens system, image display device, microlens array, liquid crystal display element and projection type liquid crystal display device
JPWO2007105371A1 (en) Liquid crystal device and projector provided with the same
JPH08262438A (en) Back light structure for liquid crystal display device
JPH03120503A (en) Polarizing component
US5712693A (en) Light valve and display system with a substrate having particular relationship between its central thickness, display area diameter, and refractive index
JP2005502911A5 (en)
JPH075413A (en) Projection type display device
JPH0410790B2 (en)
JP3366701B2 (en) Optical filter
JP2008097032A (en) Micro-lens array, liquid crystal display element, and liquid crystal display device of projection-type
CN109991782B (en) Display panel and display device
CA2136777C (en) Picture display apparatus using electro-optical device
JPH0222627A (en) Photoconductive liquid crystal light valve
JP3274275B2 (en) Projection display device
JP4277922B2 (en) Optical element manufacturing method
JPH05323257A (en) Liquid crystal projector
US6184944B1 (en) Optical fluid for projection prism
JPH04100002A (en) Projection type display device
JPH04143733A (en) Photoconduction type liquid crystal light valve
JPH0651341A (en) Spatial optical modulation element
JP2001100643A (en) Electro-optic device and projection type display device
KR100386335B1 (en) Optical Device for Liquid Crystal Display
JP3738582B2 (en) Electro-optical panel and projection display device