JPH075336B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JPH075336B2
JPH075336B2 JP61257994A JP25799486A JPH075336B2 JP H075336 B2 JPH075336 B2 JP H075336B2 JP 61257994 A JP61257994 A JP 61257994A JP 25799486 A JP25799486 A JP 25799486A JP H075336 B2 JPH075336 B2 JP H075336B2
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coating
viscosity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61257994A
Other languages
Japanese (ja)
Other versions
JPS63112443A (en
Inventor
裕男 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61257994A priority Critical patent/JPH075336B2/en
Publication of JPS63112443A publication Critical patent/JPS63112443A/en
Publication of JPH075336B2 publication Critical patent/JPH075336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバの製造方法に関し、とくに光フアイ
バの保護被覆材樹脂を高速で均一に光フアイバに被覆す
る方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing an optical fiber, and more particularly to a method for uniformly coating the optical fiber protective coating resin on the optical fiber at high speed.

〔従来の技術〕[Conventional technology]

第2図に従来の光フアイバの被覆工程を説明する図を示
す。3は光フアイバ、4は液状樹脂、5は塗布ダイス、
6は塗布した液状樹脂を硬化する硬化装置、7は被覆光
フアイバ、8は巻取機である。光フアイバ3の線引直後
の被覆の施されていない裸フアイバの場合、または既に
被覆されている場合のいずれの場合においても同様の工
程で被覆される。
FIG. 2 shows a diagram for explaining a conventional optical fiber coating process. 3 is an optical fiber, 4 is a liquid resin, 5 is a coating die,
6 is a curing device for curing the applied liquid resin, 7 is a coated optical fiber, and 8 is a winder. In the case of the bare fiber which has not been coated immediately after the drawing of the optical fiber 3 or in the case where it has already been coated, the coating is performed in the same process.

光フアイバは、通常、機械的強度や伝送特性の観点か
ら、複数層の被覆が施される。被覆材は硬化の方式によ
る観点からの分類で、一般に、熱硬化型樹脂と紫外線硬
化型樹脂が主に用いられているが、近年は後者の紫外線
硬化型樹脂が主流になりつつある。その理由は、光硬化
反応を用いるために、光フアイバの製造線引速度の高速
化が可能となり、硬化装置の、たとえば硬化炉としても
従来の熱硬化炉に比べ、小形の紫外線硬化炉を用いるの
で、設備上の簡易化に併せ、紫外線硬化型樹脂の材料自
身も、原料組成の点から低価格化がはかれ、経済的に有
効であることによる。
The optical fiber is usually coated with a plurality of layers from the viewpoint of mechanical strength and transmission characteristics. In general, thermosetting resins and UV-curable resins are mainly used as the coating materials in terms of the curing method, but in recent years, the latter UV-curable resins have become the mainstream. The reason is that the photo-curing reaction can be used to increase the drawing speed of the optical fiber, and the curing device, for example, a curing furnace, which is smaller than the conventional heat curing furnace, can be used. Therefore, the cost of the material of the ultraviolet curable resin itself can be reduced from the point of view of the raw material composition in addition to the facility simplification, and it is economically effective.

紫外線硬化型樹脂を用いた光フアイバへの塗布工程にお
いて、従来、一般に室温で、1sec-1程度の低せん断速
度で測定した粘度が1000乃至10000cps程度のものが用い
られている。第2図に示すような塗布ダイス5を用いた
被覆方法では、液状樹脂4の粘度は、一般に塗布性の点
で経験的に500乃至3000cpsの範囲による必要があること
がわかつており、室温では粘度が高すぎる場合は若干温
度を上げて、液状樹脂4の粘度を上記の範囲におさまる
ように調整していた。このときの被覆温度は、通常、最
高約50℃であつた。
In the coating process of an optical fiber using an ultraviolet curable resin, one having a viscosity of about 1000 to 10000 cps, which is generally measured at room temperature at a low shear rate of about 1 sec -1 , has been used. In the coating method using the coating die 5 as shown in FIG. 2, it is empirically known that the viscosity of the liquid resin 4 generally needs to be in the range of 500 to 3000 cps in view of coating property, and at room temperature, When the viscosity was too high, the temperature was raised slightly and the viscosity of the liquid resin 4 was adjusted to fall within the above range. The coating temperature at this time was usually about 50 ° C. at the maximum.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

光フアイバは、その需要の急激な増加に伴い、低価格の
生産が要求され、被覆工程においても高い生産性、すな
わち高速被覆することが重要となつている。しかし、従
来の被覆方法では、液状樹脂を安定かつ均一に塗布でき
る線引速度の上限は低いものであつた。その原因は明ら
かになつていないが、次のような理由が考えられてい
る。すなわち、塗布ダイス内では、たとえば第3図aお
よびbに示すような樹脂の流れ速度の分布が存在し、一
般にせん断速度も一定でない。一方樹脂の粘度は、第4
図に示すように、せん断速度の上昇に従つて低下するた
め、ダイス内のせん断速度が大きい部分において、樹脂
がついていかない、いわゆる“すべり”の現象が生じ
る。この“すべり”は、せん断速度がある限界値を越え
ると急に樹脂の粘度が低下するために生じ、そのため高
線引速度では安定した均一塗布が困難となるという問題
がある。
With the rapid increase in the demand for optical fibers, low-cost production is required, and it is important for the coating process to have high productivity, that is, high-speed coating. However, in the conventional coating method, the upper limit of the drawing speed at which the liquid resin can be applied stably and uniformly is low. The cause has not been clarified, but the following reasons are considered. That is, in the coating die, for example, there is a resin flow velocity distribution as shown in FIGS. 3A and 3B, and generally the shear velocity is not constant. On the other hand, the viscosity of the resin is
As shown in the figure, the shear rate decreases as the shear rate increases, so that a so-called "slip" phenomenon occurs in which the resin does not adhere to the portion of the die where the shear rate is high. This "slip" occurs because the viscosity of the resin suddenly decreases when the shear rate exceeds a certain limit value, which makes it difficult to perform stable and uniform coating at a high drawing rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、光フアイバ母材
から線引した光フアイバまたは被覆を施した光フアイバ
に、塗布ダイスにより液状の紫外線硬化型樹脂を塗布し
被覆した後、紫外線照射装置を通過させて液状の紫外線
硬化型樹脂を硬化させる光フアイバの製造方法におい
て、光フアイバに塗布する液状の紫外線硬化型樹脂は、
塗布温度が60℃乃至100℃の範囲で、かつ前記塗布温度
におけるせん断速度が限界せん断速度以下の領域におい
て、その粘度が500cps乃至3000cpsであることを特徴と
する。
In order to solve the conventional problems, the present invention applies a liquid ultraviolet curable resin to an optical fiber coated with an optical fiber drawn from an optical fiber base material or a coated optical fiber by a coating die and coats it, and then an ultraviolet irradiation device. In the method for manufacturing an optical fiber in which a liquid ultraviolet curable resin is cured by passing through, a liquid ultraviolet curable resin applied to the optical fiber is
The viscosity is 500 cps to 3000 cps when the coating temperature is in the range of 60 ° C. to 100 ° C. and the shear rate at the coating temperature is equal to or lower than the limit shear rate.

〔作用〕[Action]

本発明の、塗布温度におけるせん断速度が限界せん断速
度以下の領域において、その粘度が500cps乃至3000cps
である液状の紫外線硬化型樹脂を用い、60℃乃至100℃
の温度範囲で塗布することにより、高速線引において
も、樹脂の粘度の急激な低下がなく、“すべり”の現象
は発生し難く、高速で均一に安定に樹脂被覆を行うこと
ができることについて以下に説明する。
In the present invention, in the region where the shear rate at the coating temperature is equal to or lower than the limit shear rate, the viscosity is 500 cps to 3000 cps.
Liquid UV curable resin that is
By applying in the temperature range of above, even in high-speed drawing, the viscosity of the resin does not drop sharply, the phenomenon of "slip" does not occur easily, and it is possible to coat the resin uniformly at high speed. Explained.

樹脂の粘度特性、すなわち温度やせん断速度依存性は、
樹脂の組成、たとえばプレポマやモノマの種類や分子量
分布、添加剤などにより異なる。そこで種々の組成の樹
脂を合成し、その粘度のせん断速度依存性を測定した。
その結果、第5図に示すように、せん断速度が限界せん
断速度以下の領域においての粘度が同じになるように、
樹脂の組成が類似の3種の樹脂A,B,Cについて温度をそ
れぞれT1,T2,T3(ただしT1<T2<T3)と設定した場
合、以下の傾向があることが判明した。すなわち、同一
温度では高粘度の類似組成樹脂A,B,Cを、それぞれ異な
る温度T1,T2,T3、ただしT1<T2<T3のように温度にて
粘度を下げて測定した樹脂ほど、すなわち樹脂CがBよ
り、またBがAより高せん断速度領域まで粘度が低下し
難い傾向が認められた。この傾向は、エポキシアクリレ
ート系、ウレタンアクリレート系、シリコンアクリレー
ト系、シリコン系などすべてに共通であつた。また同一
温度であれば、異種の樹脂についても、第6図に示すよ
うに粘度が急激に低下しはじめるせん断速度(以下限界
せん断速度という。)はほぼ同一である。
Viscosity characteristics of resin, that is, temperature and shear rate dependence,
It depends on the composition of the resin, for example, the type and molecular weight distribution of the prepomer or monomer, and the additive. Therefore, resins with various compositions were synthesized and the shear rate dependence of the viscosity was measured.
As a result, as shown in FIG. 5, the viscosity is the same in the region where the shear rate is equal to or lower than the critical shear rate,
When the temperature is set to T 1 , T 2 , T 3 (however, T 1 <T 2 <T 3 ) for three types of resins A, B, and C with similar resin composition, the following tendencies may occur. found. That is, resins of similar composition A, B, and C, which have high viscosity at the same temperature, are measured at different temperatures T 1 , T 2 and T 3 , respectively, where T 1 <T 2 <T 3 It was observed that the viscosity of the resin was less likely to decrease to a higher shear rate region than that of the resin C, that is, the resin C was more than B and the resin B was more than A. This tendency was common to all of epoxy acrylate type, urethane acrylate type, silicon acrylate type and silicon type. Further, at the same temperature, the shear rates at which the viscosities start to decrease sharply (hereinafter referred to as critical shear rates) are almost the same for different resins, as shown in FIG.

一般に、紫外線硬化型樹脂は、上述したような粘度特性
を有していることから、高粘度の樹脂を高温にて光フア
イバに塗布すると、限界せん断速度が高く、ダイス内樹
脂の流れの高せん断速度領域、たとえば、多くの場合は
第3図aにおけるフアイバ表面、または第3図bにおけ
るダイス壁面においても“すべり”が生じ難く、高線引
速度においても安定かつ均一な塗布が可能となる。
Generally, UV curable resins have the above-mentioned viscosity characteristics, so when a high viscosity resin is applied to an optical fiber at high temperature, the critical shear rate is high and the resin flow in the die is highly sheared. "Slip" is unlikely to occur even in the velocity region, for example, the fiber surface in FIG. 3a in most cases, or the die wall surface in FIG. 3b, and stable and uniform coating is possible even at a high drawing speed.

また塗布温度範囲の上限は、樹脂の劣化の点から約100
℃である。下限の60℃の根拠については、後述の実施例
において説明する。
The upper limit of the coating temperature range is about 100 from the viewpoint of resin deterioration.
℃. The reason for the lower limit of 60 ° C. will be described in Examples below.

一般に、光フアイバは線引しながら一層または多層の被
覆が施される。この場合、被覆されるフアイバ、すなわ
ち一層目の場合は裸のガラスフアイバ、二層目以降は被
覆されたフアイバは線引速度によつて温度が変化する。
この温度変化は、裸のガラスフアイバはガラスの高温溶
融のためであり、また被覆されたフアイバは、硬化熱な
どのために高温になつた後の冷却時間が変化するためで
ある。均一・安定塗布の観点からは、塗布されるフアイ
バと塗布する樹脂の温度差を小さくし、ダイス内樹脂の
温度分布(粘度分布と称する。)は小さい方が望まし
い。このため、樹脂塗布前のフアイバ温度を制御し、樹
脂の温度と一致させるのが良い。以下に具体的実施例に
ついて説明する。
In general, the optical fiber is coated with a single layer or multiple layers while being drawn. In this case, the temperature of the coated fiber, that is, the bare glass fiber in the case of the first layer and the coated fiber in the second and subsequent layers changes depending on the drawing speed.
This temperature change is because the bare glass fiber is due to the high temperature melting of the glass, and the coated fiber changes the cooling time after being heated to a high temperature due to the heat of hardening or the like. From the viewpoint of uniform and stable application, it is desirable that the temperature difference between the applied fiber and the applied resin is small and the temperature distribution of the resin in the die (referred to as viscosity distribution) is small. Therefore, it is preferable to control the fiber temperature before applying the resin so that it matches the temperature of the resin. Specific examples will be described below.

〔実施例〕〔Example〕

第1図に示す光フアイバの製造方法工程により、この種
の光フアイバの数種試作し、比較評価した実施例につい
て示す。なお第1図において、第2図と同じ符号は同じ
部分を示す。1は光フアイバ母材、2は線引炉である。
An example in which several types of optical fibers of this type were experimentally manufactured and comparatively evaluated by the steps of the optical fiber manufacturing method shown in FIG. In FIG. 1, the same reference numerals as those in FIG. 2 indicate the same parts. Reference numeral 1 is an optical fiber base material, and 2 is a drawing furnace.

実施例1: 外径125μmφのガラスフアイバを線引しながら、線引
速度100m/分〜600m/分にて表1に示す9種類の樹脂を被
覆し、外径200μmφに仕上げ、塗布の均一性と安定性
を調べ評価した。
Example 1: While drawing a glass fiber having an outer diameter of 125 μmφ, the nine kinds of resins shown in Table 1 were coated at a drawing speed of 100 m / min to 600 m / min, and finished to an outer diameter of 200 μmφ. And stability was investigated and evaluated.

表1に示した結果から、試料No.2,3,5,6,9が均一で安定
な塗布を施すことができた。これにより、低温で高粘度
の樹脂を用い、塗布する樹脂の温度が60℃乃至100℃の
範囲において、均一で安定な塗布を施すことのできるこ
とが認められる。
From the results shown in Table 1, sample Nos. 2, 3, 5, 6, and 9 could be applied uniformly and stably. From this, it is recognized that a resin having a high viscosity at a low temperature can be used and uniform and stable coating can be performed when the temperature of the applied resin is in the range of 60 ° C to 100 ° C.

実施例2: 外径125μmφのガラスフアイバにウレタンアクリレー
ト被覆を施した、外径200μmφのウレタンアクリレー
ト被覆光フアイバに、線引速度500m/分で、表2に示す
6種類の樹脂を被覆し、外径300μmφに仕上げ、塗布
の均一性と安定性を調べ評価した。
Example 2: A urethane acrylate-coated optical fiber having an outer diameter of 200 μmφ and a urethane fiber coated with a glass fiber having an outer diameter of 125 μmφ was coated with 6 kinds of resins shown in Table 2 at a drawing speed of 500 m / min. The diameter was finished to 300 μmφ, and the uniformity and stability of coating were investigated and evaluated.

表2に示した結果から、試料No.2,3,6が均一で安定な塗
布を施すことができた。この結果からも、低温で高粘度
の樹脂を用い、塗布する樹脂の温度が60℃乃至100℃の
範囲において、均一で安定な塗布を施すことのできるこ
とが認められる。
From the results shown in Table 2, sample Nos. 2, 3, and 6 could be applied uniformly and stably. From these results, it is recognized that a resin having a high viscosity at a low temperature can be used and uniform and stable coating can be performed when the temperature of the resin to be coated is in the range of 60 ° C to 100 ° C.

本発明は、以上の実施例における光フアイバの被覆構造
などにとくに限定されるものではなく、広く通常の紫外
線硬化型樹脂被覆光フアイバに適用できるものである。
The present invention is not particularly limited to the coating structure of the optical fiber in the above embodiments, but can be widely applied to ordinary ultraviolet-curable resin-coated optical fibers.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明の光フアイバの製造方法によ
れば、高速の線引においても、紫外線硬化型樹脂の塗布
・被覆工程における樹脂の粘度の急激な低下がないので
“すべり”の現象が発生し難く、高速の線引で均一に安
定した紫外線硬化型樹脂の被覆が可能となり、その効果
は大きい。
As described above, according to the optical fiber manufacturing method of the present invention, even in high-speed drawing, there is no rapid decrease in the viscosity of the resin in the coating / coating process of the ultraviolet curable resin, so that the phenomenon of “slip” Is less likely to occur, and it becomes possible to uniformly and stably coat the ultraviolet curable resin by high-speed drawing, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る光フアイバの製造方法工程説明
図、第2図は従来の光フアイバの被覆工程説明図、第3
図a,bはダイス内樹脂の流れ速度分布を示す図、第4図
は代表的樹脂粘度のせん断速度依存性を示す図、第5図
は類似組成樹脂粘度のせん断速度依存性を示す図、第6
図は異種樹脂粘度のせん断速度依存性を示す図である。 1……光フアイバ母材、2……線引炉、3……光フアイ
バ、4……液状樹脂、5……塗布ダイス、6……硬化装
置、7……被覆光フアイバ、8……巻取機
FIG. 1 is a process explanatory view of an optical fiber manufacturing method according to the present invention, FIG. 2 is a conventional optical fiber coating process explanatory view, and FIG.
Figures a and b show the flow velocity distribution of the resin in the die, Figure 4 shows the shear rate dependence of typical resin viscosity, and Figure 5 shows the shear rate dependence of resin viscosity of similar composition. Sixth
The figure shows the shear rate dependence of the viscosity of different resins. 1 ... Optical fiber base material, 2 ... Drawing furnace, 3 ... Optical fiber, 4 ... Liquid resin, 5 ... Coating die, 6 ... Curing device, 7 ... Coating optical fiber, 8 ... Opportunity

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ母材から線引した光ファイバま
たは被覆を施した光ファイバに、塗布ダイスにより液状
の紫外線硬化型樹脂を塗布し被覆を施した後、紫外線照
射装置を通過させて前記液状の紫外線硬化型樹脂を硬化
させる光ファイバの製造方法において、 前記光ファイバに塗布する液状の紫外線硬化型樹脂は、 塗布温度が60℃乃至100℃の範囲で、かつ前記塗布温度
におけるせん断速度が限界せん断速度以下の領域におい
て、その粘度が500cps乃至3000cpsであることを特徴と
する光ファイバの製造方法。
1. An optical fiber drawn from an optical fiber preform or a coated optical fiber is coated with a liquid ultraviolet curable resin by a coating die and coated, and then passed through an ultraviolet irradiation device to obtain the coating. In the method for producing an optical fiber for curing a liquid ultraviolet curable resin, the liquid ultraviolet curable resin to be applied to the optical fiber has a coating temperature in the range of 60 ° C to 100 ° C, and a shear rate at the coating temperature. A method for producing an optical fiber, which has a viscosity of 500 cps to 3000 cps in a region below a critical shear rate.
【請求項2】前記光ファイバ母材を線引しながら前記液
状の紫外線硬化樹脂を光ファイバに塗布し被覆を施すこ
とを特徴とする特許請求の範囲第1項記載の光ファイバ
の製造方法。
2. The method for producing an optical fiber according to claim 1, wherein the liquid ultraviolet curing resin is applied to the optical fiber to coat the optical fiber while drawing the optical fiber preform.
JP61257994A 1986-10-29 1986-10-29 Optical fiber manufacturing method Expired - Lifetime JPH075336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257994A JPH075336B2 (en) 1986-10-29 1986-10-29 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257994A JPH075336B2 (en) 1986-10-29 1986-10-29 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS63112443A JPS63112443A (en) 1988-05-17
JPH075336B2 true JPH075336B2 (en) 1995-01-25

Family

ID=17314060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257994A Expired - Lifetime JPH075336B2 (en) 1986-10-29 1986-10-29 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH075336B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593693B2 (en) * 1988-08-11 1997-03-26 株式会社フジクラ Optical fiber coating method
JP2003183056A (en) 2001-12-13 2003-07-03 Fujikura Ltd Die for spinning optical fiber, device and method for spinning optical fiber
JP5242209B2 (en) * 2008-03-24 2013-07-24 古河電気工業株式会社 Optical fiber manufacturing method

Also Published As

Publication number Publication date
JPS63112443A (en) 1988-05-17

Similar Documents

Publication Publication Date Title
JP2765033B2 (en) Optical fiber drawing method
US5408564A (en) Strippable tight buffered optical waveguide
US4305770A (en) Fabrication of fiber reinforced resin structures
JP2836285B2 (en) Coated optical fiber
US5444808A (en) Plastics packaged optical fibre and method of making same
CA1137723A (en) Fabrication of fiber reinforced resin structures
US4741597A (en) Method of manufacturing an optical fibre having a synthetic resin coating and optical fibre having a synthetic resin coating manufactured according to the method
JPH075336B2 (en) Optical fiber manufacturing method
JP2975606B2 (en) Glass optical fiber and method for manufacturing the same
JP2003183056A (en) Die for spinning optical fiber, device and method for spinning optical fiber
JPH0699165B2 (en) Optical fiber manufacturing method
EP4046973A1 (en) Glass direct roving production method and glass direct roving
JP2928723B2 (en) Optical fiber manufacturing method
JPH10316452A (en) Production of optical fiber
JPH02175634A (en) Coating of optical fiber
JP2583996B2 (en) Optical fiber coating equipment
JPH0629157B2 (en) Optical fiber manufacturing method
JP3383565B2 (en) Optical fiber ribbon manufacturing method
JPH0882725A (en) Production of coated optical fiber
JP2975034B2 (en) Manufacturing method of optical fiber core
JP4455627B2 (en) Optical fiber spinning die, optical fiber spinning device, optical fiber spinning method, resin coating method using optical fiber spinning die
JPH04367541A (en) Production of optical fiber strand having small diameter
JP2968680B2 (en) Optical fiber manufacturing method
JP3857795B2 (en) Optical fiber manufacturing method
JPS5974505A (en) Glass fiber for light transmission and its manufacture