JPH0753269B2 - How to clean the pipeline - Google Patents

How to clean the pipeline

Info

Publication number
JPH0753269B2
JPH0753269B2 JP4178694A JP17869492A JPH0753269B2 JP H0753269 B2 JPH0753269 B2 JP H0753269B2 JP 4178694 A JP4178694 A JP 4178694A JP 17869492 A JP17869492 A JP 17869492A JP H0753269 B2 JPH0753269 B2 JP H0753269B2
Authority
JP
Japan
Prior art keywords
gas
cleaning
liquid
pipe
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4178694A
Other languages
Japanese (ja)
Other versions
JPH06285447A (en
Inventor
幸伸 丸山
喜愛 柴田
恵市郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP4178694A priority Critical patent/JPH0753269B2/en
Publication of JPH06285447A publication Critical patent/JPH06285447A/en
Publication of JPH0753269B2 publication Critical patent/JPH0753269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品・医療品・化学品
などの製造プラント等において管路内に付着・残留して
いる汚れを洗浄除去するための管路の洗浄方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a pipeline for cleaning and removing dirt adhering to and remaining in the pipeline in a manufacturing plant for foods, medical products, chemicals and the like.

【0002】[0002]

【従来の技術】このような食品・医療品・化学品等の製
造プラントでは、常に装置を清浄な状態に維持しておか
なければならず、このため製造に使用する槽類や機器類
等を接続する管路の洗浄はきわめて重要であり、かつ頻
繁に行われている。従来、このような管路内の洗浄は、
洗浄液のみを流すことによって配管内に付着・残留して
いる汚れ等を洗浄除去する方法が採られていた。しかし
ながら、このように洗浄液のみを単に送液ポンプによっ
て流すだけでは、管内に強く付着した汚れ等を確実に洗
浄することはできず、また洗浄に長時間を必要とすると
ともに洗浄液も多量に消費することになるため、洗浄方
法としては必ずしも十分ではなかった。
2. Description of the Related Art In such a plant for manufacturing foods, medical products, chemicals, etc., it is necessary to keep the equipment in a clean state at all times. Cleaning of connecting lines is extremely important and is frequent. Conventionally, such cleaning in the pipeline is
A method has been adopted in which dirt and the like adhering to and remaining in the pipe are washed away by flowing only the washing liquid. However, it is not possible to reliably clean the dirt and the like strongly adhered to the inside of the pipe by simply flowing only the cleaning liquid with the liquid-feeding pump as described above, and it requires a long time for cleaning and consumes a large amount of the cleaning liquid. Therefore, the cleaning method is not always sufficient.

【0003】一方、このような管路の洗浄方法として
は、特に内視鏡の管路の洗浄に関するものとして特開昭
58−156384号に記載されているような方法が提
案されている。この洗浄方法は、管路に洗浄液と気体
(圧縮空気)とを混合した気液混相流を流すことを特徴
とするものであり、供給された気液混相流の液相と気相
との境界部が管路内面に大きな衝撃を与えて汚れを除去
するため、高い洗浄効果を得ることができるという利点
がある。
On the other hand, as a method for cleaning such a conduit, a method described in JP-A-58-156384 has been proposed as a method for cleaning the conduit of an endoscope. This cleaning method is characterized in that a gas-liquid mixed phase flow in which a cleaning liquid and a gas (compressed air) are mixed is caused to flow through a pipeline, and the boundary between the liquid phase and the gas phase of the supplied gas-liquid mixed phase flow is characterized. Since the part gives a large impact to the inner surface of the conduit to remove the dirt, there is an advantage that a high cleaning effect can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、内視鏡
のように管径がきわめて小さく、かつ複雑な分岐が比較
的少ない管路に比べ、上述の食品・医療品・化学品等の
製造プラントにおける管路のように管径が大きく、複雑
な分岐が数多く存在する場合には、単に気液混相流を管
路に流しただけでは、十分な洗浄効果を得ることは困難
である。特に、上記の分岐に存在するデッド部では、付
着した汚れがきわめて除去され難く、上述のように気液
混相流を単に流しただけでは十分な洗浄を行なうことは
不可能であって汚れが残留してしまうため、結果的に長
時間の洗浄を行なわざるを得なかった。
However, in the above-mentioned manufacturing plant for foods, medical products, chemicals, etc., compared to a pipe line having an extremely small pipe diameter and relatively few complicated branches like an endoscope. In the case where the pipe diameter is large and many complicated branches exist, such as a pipe line, it is difficult to obtain a sufficient cleaning effect by simply passing a gas-liquid multiphase flow through the pipe line. In particular, in the dead part existing in the above branch, the adhered dirt is extremely difficult to be removed, and as described above, it is impossible to perform sufficient cleaning by simply flowing the gas-liquid multiphase flow, and the dirt remains. Therefore, as a result, there was no choice but to wash for a long time.

【0005】本発明は、このような課題を解決して、管
路に存在する分岐等のデッド部においても十分な洗浄を
効果的に行ない得る、特に食品・医療品・化学品等の製
造プラントにおける管路に好適な管路の洗浄方法を提供
することを目的としてなされたものである。
The present invention solves such a problem and can effectively perform sufficient cleaning even in a dead part such as a branch existing in a pipeline, especially a plant for manufacturing foods, medical products, chemicals, etc. The purpose of the present invention is to provide a method for cleaning a pipeline suitable for the pipeline in the above.

【0006】[0006]

【課題を解決するための手段】ここで本発明の発明者ら
は、上記の目的を達するために種々の研究を重ねた結
果、特定の流速を有する気液混相流を管路に供給して洗
浄を行なうことにより、上述のようなデッド部において
も効果的に汚れを除去することができるという知見を得
るに至った。そして、さらに研究を重ねたところ、管路
内を流れる気液混相流において、洗浄液の液空塔速度が
0.5m/sec以上となるように、かつ気体のガス空
塔速度が15m/sec以上となるように設定すること
によって、より効果的にデッド部の汚れを除去すること
が可能であるという結果を得た。
The inventors of the present invention have conducted various studies in order to achieve the above object, and as a result, supplied a gas-liquid multiphase flow having a specific flow velocity to a pipeline. It has been found that the cleaning can effectively remove the dirt even in the dead part as described above. As a result of further research, the liquid superficial velocity of the cleaning liquid was 0.5 m / sec or more and the gas superficial velocity of gas was 15 m / sec or more in the gas-liquid multiphase flow flowing in the pipe. As a result, it was possible to more effectively remove the dirt on the dead part by setting the above condition.

【0007】本発明は、このような知見に基づいてなさ
れたものであって、洗浄液と気体とを混合させて気液混
相流とし、この気液混相流を管路に供給して該管路を洗
浄する管路の洗浄方法において、管路内を流れる気液混
相流における洗浄液の液空塔速度を0.5m/sec以
上に、かつ該気液混相流における気体のガス空塔速度を
15m/sec以上に設定することを特徴とするもので
ある。ただし、ここで洗浄液の液空塔速度および気体の
ガス空塔速度とは、配管の断面積に対する単位時間当り
の流量の比として計算される速度として定義される。
The present invention has been made on the basis of such knowledge, and a cleaning liquid and a gas are mixed to form a gas-liquid mixed phase flow, and this gas-liquid mixed phase flow is supplied to a pipe to In the method for cleaning a pipeline for cleaning a liquid, the superficial velocity of the cleaning liquid in the vapor-liquid mixed phase flow flowing in the pipeline is 0.5 m / sec or more, and the gas superficial velocity of the gas in the vapor-liquid mixed phase flow is 15 m. It is characterized in that it is set to / sec or more. However, the liquid superficial velocity of the cleaning liquid and the gas superficial velocity of gas are defined here as the velocity calculated as the ratio of the flow rate per unit time to the cross-sectional area of the pipe.

【0008】なお、上記デッド部を含む管路の洗浄をよ
り効率的に行なうには、上記気液混相流における洗浄液
の液空塔速度を0.5〜1.5m/secに、また気体
のガス空塔速度を15〜30m/secに設定すること
が望ましい。
In order to more efficiently clean the pipeline including the dead part, the liquid superficial velocity of the cleaning liquid in the gas-liquid mixed phase flow is set to 0.5 to 1.5 m / sec, and the gas It is desirable to set the gas superficial velocity to 15 to 30 m / sec.

【0009】[0009]

【作用】上記構成の管路の洗浄方法においては、まず管
路に洗浄液と気体との気液混相流を供給することによ
り、管路の内壁面に対して衝撃力を与えられることによ
って管路壁面から溶解、剥離等の洗浄作用かつ促進され
る。
In the method of cleaning a pipeline having the above structure, first, by supplying a gas-liquid mixed phase flow of the cleaning liquid and the gas to the pipeline, an impact force is applied to the inner wall surface of the pipeline, thereby causing the pipeline to flow. The cleaning action such as dissolution and peeling from the wall surface is promoted.

【0010】このような管路に分岐等によるデッド部が
存在する場合、上記構成の洗浄方法では気液混相流にお
ける洗浄液の液空塔速度を0.5m/sec以上に、か
つ気体のガス空塔速度が15m/sec以上に設定する
ことにより、従来は流体エネルギーが到達しなかった上
記デッド部においても激しい渦流動を引き起こし、これ
によって流体はデッド部内に滞留することなく、その内
面をまんべんなく通過して高速で回流せしめられること
となる。従ってデッド部内面に付着した汚れは、この高
速流渦流動によって効果的に溶解、剥離等の洗浄作用が
促進される。
When there is a dead portion due to branching or the like in such a pipeline, in the cleaning method having the above structure, the liquid superficial velocity of the cleaning liquid in the gas-liquid mixed phase flow is 0.5 m / sec or more, and the gas is empty. By setting the tower speed to 15 m / sec or more, a violent vortex flow is caused even in the above-mentioned dead portion where the fluid energy has not reached in the past, so that the fluid does not stay in the dead portion and evenly passes through the inner surface thereof. Then, it will be circulated at high speed. Therefore, the dirt adhering to the inner surface of the dead portion effectively promotes the cleaning action such as dissolution and separation due to the high-speed vortex flow.

【0011】ここで、上記気液混相流における洗浄液の
液空塔速度が0.5m/secを下回ったり、気体のガ
ス空塔速度が15m/secを下回ったりすると、付着
した汚れを除去するに十分な渦流動を発生させることが
困難となり、汚れが完全に除去されずに洗浄不良箇所を
生じるおそれがある。また一方、上記液空塔速度または
ガス空塔速度を極端に高めても洗浄効果の著しい向上は
期待できず、却って気液混相流の流速が増加することか
ら管路内の圧力損失が増すことになる等の操作性の不都
合が生じる。このため上記気液混相流においては、洗浄
液の液空塔速度は0.5〜1.5/secの範囲に、ま
た気体のガス空塔速度は15〜30m/secの範囲に
設定されるのが好ましい。
Here, if the liquid superficial velocity of the cleaning liquid in the gas-liquid mixed phase flow is lower than 0.5 m / sec or the gas superficial velocity of gas is lower than 15 m / sec, the adhered dirt is removed. It becomes difficult to generate sufficient vortex flow, and stains may not be completely removed, resulting in poor cleaning. On the other hand, even if the liquid superficial velocity or the gas superficial velocity is extremely increased, the cleaning effect cannot be expected to be significantly improved, and the flow velocity of the gas-liquid multiphase flow is increased, resulting in an increase in pressure loss in the pipeline. It causes inconvenience of operability such as. Therefore, in the gas-liquid mixed phase flow, the liquid superficial velocity of the cleaning liquid is set in the range of 0.5 to 1.5 / sec, and the gas superficial velocity of the gas is set in the range of 15 to 30 m / sec. Is preferred.

【0012】[0012]

【実施例】図1は、本発明の一実施例に係わる管路の洗
浄装置を示す概略図である。なお、本実施例では気液混
相流を構成する気体として圧縮空気を用い、また液体と
して水温20℃の水道水を用いた。この図において符号
1は、上記圧縮空気を供給する供給源2に接続され、エ
アフィルター3、バルブ4、フローメーター5、および
逆止弁6を介して洗浄対象となる配管7に至る気体供給
管であり、また符号8は、上記水道水の供給源9に接続
され、バルブ10、タンク11、定量ポンプ12、電磁
流量計13、および逆止弁14を介して上記洗浄対象配
管7に至る洗浄液供給管であって、これら気体供給管1
および洗浄液供給管8は上記洗浄対象配管7の前方にお
いて、一つの気液混相流供給管15として統合されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing a pipe line cleaning apparatus according to an embodiment of the present invention. In this example, compressed air was used as the gas forming the gas-liquid multiphase flow, and tap water with a water temperature of 20 ° C was used as the liquid. In this figure, reference numeral 1 is a gas supply pipe connected to a supply source 2 for supplying the compressed air and reaching a pipe 7 to be cleaned through an air filter 3, a valve 4, a flow meter 5, and a check valve 6. Further, reference numeral 8 is a cleaning liquid which is connected to the tap water supply source 9 and reaches the cleaning target pipe 7 through the valve 10, the tank 11, the metering pump 12, the electromagnetic flow meter 13 and the check valve 14. Supply pipes, these gas supply pipes 1
The cleaning liquid supply pipe 8 is integrated as one gas-liquid mixed phase flow supply pipe 15 in front of the cleaning target pipe 7.

【0013】ここで本実施例では上記洗浄対象配管7と
して、図2に示すように上記気液混相流供給管15に一
端が連結される内径Dの主配管7Aのみで構成されてい
るもの、あるいは図3に示すように内径Dの主配管7A
と、この主配管7Aに対して直角に分岐する内径D、長
さLの分岐管7Bとから構成されてT字状を呈し、分岐
管7Bの端部が閉塞せしめられてデッド部を形成してい
るものを使用することとした。ただし図1には、後者の
分岐管7Bを有する洗浄対象配管7を用いた場合を示し
た。なお本実施例では、これらの主配管7Aおよび分岐
管7Bの内径Dは21.7mmに、また分岐管7Bの長
さLと内径Dとの比L/Dは4にそれぞれ設定されてお
り、さらにこれら主配管7Aおよび分岐管7Bの材質は
SUS316であってその内壁面には#400のバフ仕
上げが施されている。
In this embodiment, as the pipe 7 to be cleaned, as shown in FIG. 2, only the main pipe 7A having an inner diameter D whose one end is connected to the gas-liquid multiphase flow supply pipe 15 is used. Alternatively, as shown in FIG. 3, the main pipe 7A having an inner diameter D
And a branch pipe 7B having an inner diameter D and a length L branching at right angles to the main pipe 7A to form a T shape, and the end of the branch pipe 7B is blocked to form a dead portion. I decided to use the one. However, FIG. 1 shows the case where the cleaning target pipe 7 having the latter branch pipe 7B is used. In this embodiment, the inner diameter D of the main pipe 7A and the branch pipe 7B is set to 21.7 mm, and the ratio L / D between the length L of the branch pipe 7B and the inner diameter D is set to 4. Further, the material of the main pipe 7A and the branch pipe 7B is SUS316, and the inner wall surface thereof is buffed with # 400.

【0014】一方、この洗浄対象配管7の他端は回収管
16に連結されており、この回収管16は上記タンク1
1に連通せしめられている。なお、このタンク11には
攪拌装置17が設けられている。
On the other hand, the other end of the cleaning target pipe 7 is connected to a recovery pipe 16, which is connected to the tank 1 described above.
It is connected to 1. A stirring device 17 is provided in the tank 11.

【0015】このような構成の洗浄装置では、圧縮空気
はバルブ4によって所定のガス空塔速度に調節され、逆
止弁6を介して気液混相流管15に供給される。一方、
上記水道水はタンク11に所定量供給されて保持された
後、バルブ10を閉じ、次いで定量ポンプ12によって
所定の液空塔速度に調節されて気液混相流管15に供給
される。供給された圧縮空気と水道水は、気液混相流管
15において混合されて気液混相流とされ、洗浄対象配
管7に供給されて管の壁面に付着した汚れを洗浄する。
洗浄後の気液混相流は回収管16を通ってタンク11に
還流せしめられ、ここで水道水から圧縮空気が分離され
て再び洗浄に供される。
In the cleaning apparatus having such a structure, the compressed air is adjusted to a predetermined gas superficial velocity by the valve 4 and is supplied to the gas-liquid multiphase flow pipe 15 via the check valve 6. on the other hand,
The tap water is supplied to and retained in a tank 11 in a predetermined amount, and then the valve 10 is closed, and then the metering pump 12 adjusts the liquid superficial velocity to a predetermined value, and the tap water is supplied to the gas-liquid multiphase flow pipe 15. The supplied compressed air and tap water are mixed in the gas-liquid mixed phase flow pipe 15 to form a gas-liquid mixed phase flow, and are supplied to the pipe 7 to be cleaned to clean dirt adhering to the wall surface of the pipe.
The gas-liquid mixed phase flow after cleaning is returned to the tank 11 through the recovery pipe 16, where compressed air is separated from tap water and used again for cleaning.

【0016】そこで本実施例ではこのような洗浄装置を
用い、市販の水飴を汚れ物質として図2の洗浄対象配管
7の主配管7Aあるいは図3のデッド部となる分岐管7
Bに付着させ、これを実験目的に応じて水道水や圧縮空
気の供給流量や内部圧力を調整した気液混相流によって
洗浄し、その挙動を確認するとともに汚れの除去量を評
価した。ただし、この汚れ除去量の評価は、所定時間洗
浄後のタンク11内の回収水道水の有機炭素濃度を測定
し、この測定値によって求められる洗浄速度定数によっ
て行なった。
Therefore, in the present embodiment, such a cleaning apparatus is used, and commercially available starch syrup is used as a contaminant and the main pipe 7A of the pipe 7 to be cleaned shown in FIG. 2 or the branch pipe 7 which becomes a dead part in FIG.
It was attached to B and washed with a gas-liquid multiphase flow in which the supply flow rate of tap water or compressed air and the internal pressure were adjusted according to the purpose of the experiment, the behavior was confirmed, and the amount of dirt removed was evaluated. However, the amount of soil removed was evaluated by measuring the organic carbon concentration of the recovered tap water in the tank 11 after washing for a predetermined time and using the washing rate constant obtained from this measured value.

【0017】本実施例では、まず図2に示すように洗浄
対象配管7の主配管7Aの内壁面に上記汚れ物質18を
付着させ、これに水道水のみを供給して洗浄を行なった
場合と、気液混相流を供給して洗浄を行なった場合と
で、汚れ除去量の比較を行なった。この結果を図4に示
す。ただし、図4に示す実線は水道水のみで洗浄した場
合の液空塔速度に対する洗浄速度定数を示すものであ
り、また符号○で示すのは気液混相流による場合を示す
ものである。なお、後者において圧縮空気のガス空塔速
度は約15m/secであった。図4に示すように、同
じ液空塔速度においては水道水のみによる洗浄に比べて
気液混相流による洗浄の方が、数倍の洗浄効果が得られ
ている。これは、気液混相流において液の管内流速の増
加と渦流動によって洗浄作用が促進された結果である。
In this embodiment, first, as shown in FIG. 2, the contaminant 18 is adhered to the inner wall surface of the main pipe 7A of the pipe 7 to be cleaned, and only tap water is supplied to the contaminant 18 for cleaning. The amount of soil removed was compared between the case where cleaning was performed by supplying a gas-liquid mixed phase flow. The result is shown in FIG. However, the solid line shown in FIG. 4 shows the washing rate constant with respect to the liquid superficial velocity when washing with tap water only, and the symbol ◯ shows the case with gas-liquid multiphase flow. In the latter case, the gas superficial velocity of compressed air was about 15 m / sec. As shown in FIG. 4, at the same liquid superficial velocity, the cleaning effect with the gas-liquid mixed phase flow is several times that of the cleaning effect with the tap water alone. This is a result of the cleaning action being accelerated by the increase in the liquid flow velocity in the pipe and the swirling flow in the gas-liquid mixed phase flow.

【0018】次に、洗浄対象配管7の分岐管7Bの末端
に図3に示すような状態で上記汚れ物質18を付着さ
せ、この洗浄対象配管7に気液混相流を種々の条件下に
おいて供給して、液空塔速度およびガス空塔速度の変化
による汚れ除去量の変化を比較、検討した。まず初め
に、圧縮空気のガス空塔速度Ugをパラメーターとして
種々の値に設定し、その条件下において水道水の液空塔
速度ULの変化によって汚れ除去量がどのように変化す
るかを比較した。この結果を図5に示す。ただし、図5
において符号◇はガス空塔速度Ug=0m/secの場
合であり、符号+は同じくUg=15m/secの場
合、符号□はUg=22m/secの場合を示すもので
ある。図5に示す結果より、まず液空塔速度が同じなら
ばガス空塔速度が大きくなるほど洗浄効果が向上するこ
とが分かる。また、ガス空塔速度を一定とした場合に
は、液空塔速度の上昇に略比例して洗浄効果が向上して
いる。
Next, the dirt substance 18 is attached to the end of the branch pipe 7B of the pipe 7 to be cleaned in the state as shown in FIG. 3, and the gas-liquid mixed phase flow is supplied to the pipe 7 to be cleaned under various conditions. Then, the changes in the amount of dirt removed due to the changes in the liquid superficial velocity and the gas superficial velocity were compared and examined. First, various values were set by using the gas superficial velocity Ug of compressed air as a parameter, and how the dirt removal amount was changed by changing the liquid superficial velocity UL of tap water under the conditions. . The result is shown in FIG. However,
In the figure, the symbol ⋄ indicates the case of the superficial gas velocity Ug = 0 m / sec, the symbol + indicates the same case of Ug = 15 m / sec, and the symbol □ indicates the case of Ug = 22 m / sec. From the results shown in FIG. 5, it can be seen that, if the liquid superficial velocity is the same, the cleaning effect improves as the gas superficial velocity increases. Further, when the gas superficial velocity is constant, the cleaning effect is improved substantially in proportion to the increase in the liquid superficial velocity.

【0019】次に、水道水の液空塔速度ULをパラメー
ターとし、圧縮空気のガス空塔速度Ugの変化による汚
れ除去量の変化を測定した。この結果を図6に示す。た
だし、図6において符号◇は液空塔速度UL=1.5m
/secの場合であり、符号+は同じくUL=1.0m
/secの場合、符号□はUL=0.5m/secの場
合を示すものである。図6の結果により、液空塔速度が
一定の場合にガス空塔速度の変化と汚れ除去量の変化、
すなわち洗浄効果とは、特殊な関係を示すことが分か
る。すなわち、ガス空塔速度が略15m/secを下回
る範囲ではガス空塔速度の上昇にも係わらず洗浄効果は
略一定で低迷しているが、15m/secに達したとこ
ろからガス空塔速度の上昇に伴い洗浄効果は急激に向上
している。そして、ガス空塔速度が20m/secを越
えたところで再び一定の洗浄効果を示すようになる。
Next, using the liquid superficial velocity UL of tap water as a parameter, the change in the amount of soil removal due to the change in the gas superficial velocity Ug of compressed air was measured. The result is shown in FIG. However, in FIG. 6, the symbol ◇ indicates the liquid superficial velocity UL = 1.5 m.
/ Sec, sign + is UL = 1.0m
In the case of / sec, the symbol □ indicates the case of UL = 0.5 m / sec. From the results of FIG. 6, when the liquid superficial velocity is constant, the change in the gas superficial velocity and the change in the amount of dirt removal,
That is, it can be seen that the cleaning effect has a special relationship. That is, in the range where the gas superficial velocity is lower than approximately 15 m / sec, the cleaning effect is substantially constant and sluggish despite the increase in the gas superficial velocity, but when the gas superficial velocity reaches 15 m / sec, The cleaning effect sharply improved with the increase. Then, when the gas superficial velocity exceeds 20 m / sec, a constant cleaning effect is again exhibited.

【0020】このように洗浄効果が急激に向上するの
は、ガス空塔速度が15m/secに達したところから
デッド部である分岐管7Bに流入する気液混相流に激し
い渦流動が起き、これによってデッド部内での汚れの除
去が加速されるとともに、気液混相流のデッド部内での
滞留が防止されて、該気液混相流がデッド部の内面をま
んべんなく通過して高速で回流せしめられるようになる
ためである。なお、この洗浄効果の向上は分岐管7Bの
設置方向が、水平か垂直かのいずれであろうとも同様で
あった。また、本実施例を通じて主配管7A内における
気液混相流の流動状態は、該主配管7Aの上部壁面、あ
るいは下部壁面を問わず略均一であった。
As described above, the cleaning effect is sharply improved because a violent vortex flow occurs in the gas-liquid multiphase flow flowing into the branch pipe 7B, which is the dead part, when the gas superficial velocity reaches 15 m / sec. This accelerates the removal of dirt in the dead portion, prevents the gas-liquid multiphase flow from staying in the dead portion, and allows the gas-liquid multiphase flow to uniformly pass through the inner surface of the dead portion and be circulated at a high speed. This is because The improvement of the cleaning effect was the same regardless of whether the branch pipe 7B was installed horizontally or vertically. In addition, the flow state of the gas-liquid mixed phase flow in the main pipe 7A was substantially uniform throughout the present example regardless of the upper wall surface or the lower wall surface of the main pipe 7A.

【0021】このように上記構成の管路の洗浄方法で
は、管路に気液混相流を供給することにより、管路の内
壁面に対して与えられる衝撃力によって管路に付着した
汚れの除去が促されるため、洗浄効果の向上を図ること
ができる。さらに、この気液混相流における洗浄液の液
空塔速度を0.5m/sec以上に、かつ気体のガス空
塔速度を15m/sec以上に設定することにより、管
路に存在するデッド部においては激しい渦流動を生ぜし
めることができる。そしてこれにより、気液混相流の管
内流速を高めて汚れの除去を促進するとともに、従来で
は流体エネルギーが十分に到達し得なかったデッド部で
も、隅々にまで高速回流する気液混相流をゆきわたらせ
て衝撃を与えることができ、これらの効果によって洗浄
速度の増大を図って洗浄効果の向上をなすことができ
る。このため、上記構成の管路の洗浄方法によれば、洗
浄時間を短縮するとともに単位時間に供給すべき洗浄液
の低減を図ることができ、洗浄効率を大幅に向上させる
ことが可能となる。
As described above, in the method of cleaning a pipeline having the above structure, the gas-liquid mixed-phase flow is supplied to the pipeline to remove the dirt attached to the pipeline by the impact force applied to the inner wall surface of the pipeline. As a result, the cleaning effect can be improved. Further, by setting the liquid superficial velocity of the cleaning liquid in this gas-liquid mixed phase flow to 0.5 m / sec or more and the gas superficial velocity of gas to 15 m / sec or more, the dead portion existing in the pipeline is A violent vortex flow can be generated. As a result, the flow velocity of the gas-liquid mixed phase flow is increased to promote the removal of dirt, and even in the dead part where the fluid energy could not reach sufficiently in the past, the gas-liquid mixed phase flow that circulates at high speed to every corner is generated. It is possible to give an impact by making it spread, and by these effects, the cleaning rate can be increased and the cleaning effect can be improved. Therefore, according to the method of cleaning a pipeline having the above structure, the cleaning time can be shortened and the cleaning liquid to be supplied per unit time can be reduced, and the cleaning efficiency can be significantly improved.

【0022】なお、図5および図6に示す結果より明ら
かなように、上記洗浄液の液空塔速度を1.5m/se
cよりも大きな範囲に設定したり、あるいは上記気体の
ガス空塔速度を30m/secよりも大きな範囲に設定
したりしても、上記洗浄効果に著しい向上は認められな
い。そればかりか、液空塔速度やガス空塔速度をこのよ
うに大きな範囲に設定すると、却って管路内の圧力損失
が増加してしまうという不都合が生じるおそれがある。
このため、管路に供給する気液混相流における洗浄液の
液空塔速度および気体のガス空塔速度は、それぞれ0.
5〜1.5m/secおよび15〜30m/secに設
定することが望ましい。
As is clear from the results shown in FIGS. 5 and 6, the liquid superficial velocity of the cleaning liquid is 1.5 m / se.
Even if it is set to a range larger than c or the gas superficial velocity of the gas is set to a range larger than 30 m / sec, the cleaning effect is not significantly improved. In addition, if the liquid superficial velocity and the gas superficial velocity are set in such a large range, there is a possibility that the pressure loss in the pipeline may rather increase.
Therefore, the liquid superficial velocity of the cleaning liquid and the gas superficial velocity of the gas in the gas-liquid mixed phase flow supplied to the pipeline are respectively 0.
It is desirable to set to 5 to 1.5 m / sec and 15 to 30 m / sec.

【0023】また上記実施例では、洗浄液として水道水
を使用したが、洗浄対象となる製造プラントに応じて、
アルカリ水溶液や、その他洗剤等通常の洗浄液等を適宜
使用することができ、さらに気体についても、一般的に
は本実施例のような空気を用いるが、これに限られず、
対象とする製造プラントや使用する洗浄液等により選択
することができる。
In the above embodiment, tap water was used as the cleaning liquid. However, depending on the manufacturing plant to be cleaned,
Alkaline aqueous solution, other cleaning liquids such as other detergents can be appropriately used, and as gas, generally, air as in this embodiment is used, but not limited to this.
It can be selected depending on the target manufacturing plant, the cleaning liquid used, and the like.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、管
路内に供給される気液混相流から管路の内壁面に与えら
れる衝撃によって汚れの除去が促されるとともに、管路
に存在するデッド部においては激しい渦流動が起き、こ
れによって従来は十分な洗浄が困難とされていたデッド
部でも洗浄速度を増大させて洗浄効果の向上を図ること
ができる。そしてこれにより、洗浄時間の短縮と洗浄液
の低減を図ることができ、洗浄効率を大幅に向上させる
ことが可能となる。
As described above, according to the present invention, the removal of dirt is promoted by the impact exerted on the inner wall surface of the pipeline from the gas-liquid multiphase flow supplied into the pipeline, and the presence of the contaminant in the pipeline. Severe vortex flow occurs in the dead part, which increases the cleaning speed and improves the cleaning effect even in the dead part, which was conventionally difficult to sufficiently clean. As a result, the cleaning time and the cleaning liquid can be shortened, and the cleaning efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる管路の洗浄装置を示
す概略図である。
FIG. 1 is a schematic view showing a pipeline cleaning device according to an embodiment of the present invention.

【図2】上記一実施例における一の洗浄対象配管7であ
って、主配管7Aのみから構成されているものである。
FIG. 2 is one cleaning target pipe 7 in the above-described embodiment, which is composed of only a main pipe 7A.

【図3】上記一実施例における他の一の洗浄対象配管7
であって、デッド部となる分岐管7Bを有するものであ
る。
FIG. 3 is another pipe to be cleaned 7 according to the above embodiment.
And, it has a branch pipe 7B which becomes a dead part.

【図4】図2の洗浄対象配管7を用いた上記一実施例に
おいて、主配管7Aに付着せしめた汚れの洗浄効果を示
す図である。
FIG. 4 is a diagram showing a cleaning effect of dirt attached to the main pipe 7A in the above-described embodiment using the pipe 7 to be cleaned in FIG.

【図5】図3の洗浄対象配管7を用いた上記一実施例に
おいて、分岐管7B(デッド部)に付着せしめた汚れの
洗浄効果と液空塔速度との関係を示す図である。
5 is a diagram showing the relationship between the effect of cleaning dirt attached to the branch pipe 7B (dead part) and the liquid superficial velocity in the above-described embodiment using the cleaning target pipe 7 of FIG.

【図6】図3の洗浄対象配管7を用いて上記一実施例に
おいて、分岐管7B(デッド部)に付着せしめた汚れの
洗浄効果とガス空塔速度との関係を示す図である。
6 is a diagram showing a relationship between a cleaning effect of dirt adhered to a branch pipe 7B (dead part) and a gas superficial velocity in the above-described embodiment using the cleaning target pipe 7 of FIG.

【符号の説明】[Explanation of symbols]

1 気体供給管 7 洗浄対象配管 7A 主配管 7B 分岐管 8 洗浄液供給管 11 タンク 15 気液混相流供給管 16 回収管 18 汚れ物質 1 Gas Supply Pipe 7 Pipe for Cleaning 7A Main Pipe 7B Branch Pipe 8 Cleaning Liquid Supply Pipe 11 Tank 15 Gas-Liquid Multiphase Flow Supply Pipe 16 Recovery Pipe 18 Dirty Substance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 洗浄液と気体とを混合させて気液混相流
とし、この気液混相流を管路に供給して該管路を洗浄す
る管路の洗浄方法において、 管路内を流れる気液混相流における洗浄液の液空塔速度
を0.5m/sec以上に、かつ該気液混相流における
気体のガス空塔速度を15m/sec以上に設定するこ
とを特徴とする管路の洗浄方法。
1. A method for cleaning a pipeline in which a cleaning liquid and a gas are mixed to form a gas-liquid mixed phase flow, and the gas-liquid mixed phase flow is supplied to the pipeline to clean the pipeline. A method for cleaning a pipeline, characterized in that the liquid superficial velocity of the cleaning liquid in the liquid mixed phase flow is set to 0.5 m / sec or more, and the gas superficial velocity of the gas in the gas-liquid mixed phase flow is set to 15 m / sec or more. .
【請求項2】 管路内を流れる気液混相流における洗浄
液の液空塔速度を0.5〜1.5m/secに設定する
ことを特徴とする請求項1記載の管路の洗浄方法。
2. The method of cleaning a pipeline according to claim 1, wherein the liquid superficial velocity of the cleaning solution in the gas-liquid mixed phase flow flowing in the pipeline is set to 0.5 to 1.5 m / sec.
【請求項3】 管路内を流れる気液混相流における気体
のガス空塔速度を15〜30m/secに設定すること
を特徴とする請求項1または請求項2記載の管路の洗浄
方法。
3. The method for cleaning a pipeline according to claim 1, wherein the gas superficial velocity of the gas in the gas-liquid mixed phase flow flowing in the pipeline is set to 15 to 30 m / sec.
JP4178694A 1992-07-06 1992-07-06 How to clean the pipeline Expired - Fee Related JPH0753269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4178694A JPH0753269B2 (en) 1992-07-06 1992-07-06 How to clean the pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178694A JPH0753269B2 (en) 1992-07-06 1992-07-06 How to clean the pipeline

Publications (2)

Publication Number Publication Date
JPH06285447A JPH06285447A (en) 1994-10-11
JPH0753269B2 true JPH0753269B2 (en) 1995-06-07

Family

ID=16052920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178694A Expired - Fee Related JPH0753269B2 (en) 1992-07-06 1992-07-06 How to clean the pipeline

Country Status (1)

Country Link
JP (1) JPH0753269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272703A (en) * 2007-05-02 2008-11-13 Hitachi Plant Technologies Ltd Method of cleaning inside of piping of pneumatic conveyor and pneumatic conveyor
JP2009517638A (en) * 2005-11-29 2009-04-30 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for decontaminating a surface of a nuclear facility part or system containing an oxide layer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752614B1 (en) * 1996-08-26 1998-10-09 Gendre Francis DEVICE FOR CLEANING PLANTS AND EQUIPMENT FOR THE PRODUCTION AND TRANSPORT OF HEAT OR COLD USING A LIQUID HEAT TRANSFER FLUID
JP4730666B2 (en) * 2006-05-24 2011-07-20 株式会社日立プラントテクノロジー Method and apparatus for cleaning pneumatic transportation piping
US7950403B2 (en) * 2007-03-08 2011-05-31 The Coca-Cola Company Pipe clearing systems
JP2009142752A (en) * 2007-12-14 2009-07-02 Hitachi Plant Technologies Ltd In-place cleaning method of pipeline
KR101435986B1 (en) * 2013-02-15 2014-09-02 박종석 Pipe cleaning apparatus using shock wave

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517638A (en) * 2005-11-29 2009-04-30 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for decontaminating a surface of a nuclear facility part or system containing an oxide layer
JP2010107196A (en) * 2005-11-29 2010-05-13 Areva Np Gmbh Method of removing contamination of surface including oxide layer of component or system in nuclear power facility
JP2011169910A (en) * 2005-11-29 2011-09-01 Areva Np Gmbh Method for decontaminating component of nuclear facility or surface including oxide layer of system
JP4881389B2 (en) * 2005-11-29 2012-02-22 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of decontaminating a surface of a nuclear facility part or system containing an oxide layer
JP2008272703A (en) * 2007-05-02 2008-11-13 Hitachi Plant Technologies Ltd Method of cleaning inside of piping of pneumatic conveyor and pneumatic conveyor

Also Published As

Publication number Publication date
JPH06285447A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
US4206313A (en) Pipe cleaning nozzle
JPH0753269B2 (en) How to clean the pipeline
CN107774139A (en) Offline reverse osmosis membrane purging system and cleaning method
JP4814146B2 (en) Water-based cleaning method
JP2013056326A (en) Method for washing pipe
CN110404860A (en) A kind of use in waste water treatment probe cleaning method and device
SE516800C2 (en) Method and system for measuring the solids content of a liquid and using the method and the system
JPS58156384A (en) Washing system of duct
CN108772387A (en) A kind of stage variable pressure pulse cleaner
CN111451224B (en) Oil and gas field pipeline pipe cleaning and descaling device and method
JPH11156115A (en) Method for washing filter of filtration apparatus
CN207502263U (en) Cleaning treatment case before a kind of penetrant inspection applied to non-destructive testing
CN206467075U (en) Pesticide bottle raffinate circulates decomposition apparatus
CN205495361U (en) Device of portable washing RO membrane
CN209368963U (en) A kind of outlet device and the sink with the outlet device
JPH07181130A (en) Washer for turbidimeter
CN207665923U (en) A kind of recycling of sorting shrimp machine water and cleaning valve gear
JP2003220373A (en) Method and apparatus for washing water supply piping and ozone water supply device
JPS59225788A (en) Method of washing pipe
JPH06269756A (en) Method for washing pipe with ozone aerated water
DE4420604C2 (en) Vacuum centrifugation device and cleaning process
CN208495183U (en) A kind of novel chemical raw material rinsing device
CN208081187U (en) A kind of washing system of dish-washing machine
JPS62163790A (en) Method of washing inside of piping
JPS56140876A (en) Cleaning method of slurry for making laver sheet and device used therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980818

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees