JPH0753252A - Production of concrete formed by using laminar silicate ore-containing aggregate - Google Patents

Production of concrete formed by using laminar silicate ore-containing aggregate

Info

Publication number
JPH0753252A
JPH0753252A JP19816193A JP19816193A JPH0753252A JP H0753252 A JPH0753252 A JP H0753252A JP 19816193 A JP19816193 A JP 19816193A JP 19816193 A JP19816193 A JP 19816193A JP H0753252 A JPH0753252 A JP H0753252A
Authority
JP
Japan
Prior art keywords
aggregate
concrete
time
temperature
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19816193A
Other languages
Japanese (ja)
Other versions
JP3333974B2 (en
Inventor
Yasushi Fujiwara
靖 藤原
Yasunori Matsuoka
康訓 松岡
Kazunao Yokota
和直 横田
Hitoshi Takeda
均 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP19816193A priority Critical patent/JP3333974B2/en
Publication of JPH0753252A publication Critical patent/JPH0753252A/en
Application granted granted Critical
Publication of JP3333974B2 publication Critical patent/JP3333974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To produce a good-quality concrete having the sustained stability of the workability in particular by using aggregate contg. laminar silicate and more particularly smectite ore having various properties and various contents. CONSTITUTION:Specimen mortar is prepd. by sampling rocks, forming the supply aggregate by grain size sorting and drying and kneading the aggregate with water and cement at a prescribed weight ratio. The temp. change of the mortar at every lapse of time is measured by a temp. measuring instrument and the time differential value of the temp. change is determined by a computer to obtain the maximal value of a temp. rising rate and the setting start time. On the other hand, the amt. of the setting retarder to be added for obtaining the mortar of the desired setting start time is determined from the maximal value of the cement measured in accordance with the relation formula between the maximal value and the setting start time and the relation formula between the retarder and the start time. As a result, the concrete having the stable quality is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、層状ケイ酸塩鉱物を含
有する骨材を使用する可能性が大なるコンクリート、特
に層状ケイ酸塩中のスメクタイト鉱物を含有する骨材を
使用するコンクリートの品質管理工程を含むコンクリー
トの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete having a high possibility of using an aggregate containing a layered silicate mineral, particularly a concrete using an aggregate containing a smectite mineral in a layered silicate. The present invention relates to a concrete manufacturing method including a quality control process.

【0002】[0002]

【従来の技術】一般に、交通不便なる山間地域における
ダム建設工事や我国内においても多数存在する島々にお
ける防潮工事などでは、たまたま現場近くの山や丘より
コンクリート用骨材を採取して使用する可能性が大きい
場合がある。このような場合、前記現場採取骨材が層状
ケイ酸塩鉱物中、特にスメクタイトを含有している場合
にはそれを用いてコンクリートを製造すると、混練中に
おいて、セメントとスメクタイト族鉱物との化学反応に
より凝結が早まり、所定のワーカビリテイを有する時間
が極めて短くなるというような品質低下の現象が起る。
2. Description of the Related Art Generally, in dam construction work in mountainous areas where traffic is inconvenient and in tide protection work on many islands in Japan, it is possible to collect concrete aggregate from mountains and hills near the site and use it. There is a case that it has a large sex. In such a case, when the site-collected aggregate is a layered silicate mineral, particularly when smectite is used to produce concrete, a chemical reaction between the cement and the smectite group mineral during kneading occurs. As a result, there is a phenomenon of deterioration in quality such that the setting is accelerated and the time for which the workability is predetermined is extremely short.

【0003】ここで、スメクタイト族鉱物とは、白,
灰,淡黄,淡緑などの色彩を呈し、通常は粒状ないしは
粉末で、或は、岩石中に含まれて産出する単斜晶系の層
状ケイ酸塩である。結晶構造はT25(TはSi,Al
など)の組成の四面体シート2枚とこれに挾まれた八面
体シートの層状のもので、層間には各種の交換性陽イオ
ンを含む。従ってイオン交換能が大きく、膨潤度は大で
ある。尚層状ケイ酸塩には雲母族鉱物も含まれている。
[0003] Here, the smectite group mineral is white,
It is a monoclinic layered silicate that has a color such as ash, light yellow, and light green, and is usually granular or powder, or contained in rocks and produced. The crystal structure is T 2 O 5 (T is Si, Al
Etc.) and the octahedral sheet sandwiched between the two tetrahedral sheets each having the composition of (1) and (2) containing various exchangeable cations between the layers. Therefore, the ion exchange capacity is large and the swelling degree is large. The layered silicate also contains mica group minerals.

【0004】従来、前記スメクタイト族鉱物を含む層状
ケイ酸塩が多量に含まれている骨材を使用するコンクリ
ートの製造方法があったが、いずれもその欠点は除去さ
れておらず未解決である。
Conventionally, there has been a method for producing concrete using an aggregate containing a large amount of a layered silicate containing the above-mentioned smectite group mineral, but none of these drawbacks has been solved and is still unsolved. .

【0005】従来技術の第一は、スメクタイト鉱物を含
有する地質より骨材を採取してコンクリートを製造する
場合、原石山の地質情報からの分類をもとに骨材を採取
する方法である。
The first of the prior arts is a method of extracting aggregates from the geology containing smectite minerals to produce concrete, based on the classification based on the geological information of the rough ores.

【0006】従来技術の第二は、X線回析法によりスメ
クタイト含有量を測定して採取場を区分管理して骨材を
選択採取使用することにより品質の安定したコンクリー
トを製造しようとする方法である。
The second prior art is a method for producing concrete of stable quality by measuring smectite content by X-ray diffraction method, dividing and controlling the collection site, and selectively collecting and using aggregates. Is.

【0007】従来技術の第三は、骨材採取場の区分毎
に、骨材の陽イオン交換容量の測定を行い、その結果で
採取場を区分管理して骨材を選択採取使用することによ
り品質の安定したコンクリートを製造しようとする方法
である。
The third conventional technique is to measure the cation exchange capacity of the aggregate for each section of the aggregate collection site, and by using the results to classify the collection site and selectively collect and use the aggregate. This is a method for producing concrete of stable quality.

【0008】[0008]

【発明が解決しようとする課題】従来技術の第一の方法
では、原石山の地質情報からの分類によっても、凝結硬
化の性状の予測や製造されるコンクリートの品質の予想
が困難であり、この方法では凝結が早まったり急硬化し
たりすることのない、特にワーカビリテイの点で品質の
安定したコンクリートを製造することは殆んど出来ない
という問題点がある。
According to the first method of the prior art, it is difficult to predict the property of setting hardening and the quality of concrete to be manufactured, even by classification from the geological information of the ore stones. The method has a problem in that it is hardly possible to produce concrete of which quality is not set rapidly or hardened rapidly, and in particular, work quality is stable.

【0009】従来技術の第二の方法では、X線回析装置
が必要であり、その操作には専門知識が必要であり、微
量の試料を対象とするため多点数の分析が必要であるこ
とから、骨材を採取する場所などの現地での測定は困難
であり、また、簡易的な試験法とはならない。更にX線
回析法によるスメクタイト含有量測定法そのものの測定
精度が悪い上に、スメクタイトの種類、交換性陽イオン
の組成、産状、破砕のされ易さなどでコンクリートの品
質に与える影響の程度が大きく左右されるためこの方法
では前記と同様の点で品質の安定した良質のコンクリー
トを製造することは殆んど出来ないという欠点がある。
The second method of the prior art requires an X-ray diffractometer, requires specialized knowledge for its operation, and requires a multipoint analysis because it targets a small amount of sample. Therefore, it is difficult to measure on-site such as a place to collect aggregates, and it is not a simple test method. Furthermore, the measurement accuracy of the smectite content measurement method itself by X-ray diffraction is poor, and the degree of influence on the quality of concrete is affected by the type of smectite, the composition of exchangeable cations, the production condition, and the susceptibility to crushing. However, this method has a drawback in that it is almost impossible to produce high-quality concrete with stable quality in the same manner as described above.

【0010】更に、従来技術の第三の方法では、分析化
学用の器具、遠心分離器、原子吸光分析装置などが必要
であり、その操作や分析には専門知識が必要であり、微
量の試料を対象とするため多点数の分析が必要であるこ
とから、骨材を採取する場所などでの測定は困難であ
り、また、簡易的な試験法とはならない。また、スメク
タイトの種類、交換性陽イオンの組成、産状、破砕のさ
れ易さなどでコンクリートの品質に与える影響の程度が
大きく左右されるため、これまた、安定した良品質のコ
ンクリートを製造することは殆んど出来ないという欠点
がある。
Furthermore, the third method of the prior art requires an instrument for analytical chemistry, a centrifuge, an atomic absorption spectrometer, etc., and requires specialized knowledge for its operation and analysis, and a small amount of sample It is difficult to measure at the place where the aggregate is collected, etc., and it is not a simple test method because it requires multiple points of analysis. In addition, the type of smectite, the composition of exchangeable cations, the production condition, and the susceptibility to crushing greatly affect the degree of influence on concrete quality. It has the drawback that it can hardly do anything.

【0011】本発明は、前記従来技術上の諸欠点を除去
し諸問題点を殆んど解決し、これらの従来技術からは多
くの点で進歩改良された独創的手段により、種々の性質
を有し、かつまた含有量もいろいろである層状ケイ酸塩
中就スメクタイト含有骨材を使用して特にワーカビリテ
イの持続的安定な良品質コンクリートを製造する方法を
始めてここに提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks of the prior art and solves most of the problems, and in many respects from these prior arts, various properties can be obtained by original and improved means. It is intended to provide here for the first time a method of producing a good quality concrete having a stable and stable workability in particular, using a smectite-containing aggregate in a layered silicate having various contents and also various contents. .

【0012】[0012]

【課題を解決するための手段】本発明は、前記目的を達
成するために、原石山から採取した層状ケイ酸塩の骨
材、特にスメクタイト鉱物等を含有する骨材がコンクリ
ート用骨材としての品質を満足するものか否かを簡易的
な作業により正確、かつ迅速に把握し、使用の可否とそ
の対策を迅速に決定し、骨材の廃棄率を低くして有効利
用を可能とし、かつ安定した品質のコンクリートを製造
し得る層状ケイ酸塩鉱物含有骨材使用コンクリートの製
造方法を特徴とする。その具体的方法としては、概要は
次の順序により行う。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides an aggregate of a layered silicate collected from a rough ore, especially an aggregate containing smectite minerals as an aggregate for concrete. Whether or not the quality is satisfied can be accurately and quickly grasped by simple work, whether or not to use it and its countermeasures can be promptly determined, and the waste disposal rate of the aggregate can be reduced to enable effective use, and A method for producing concrete using aggregate containing layered silicate mineral capable of producing concrete of stable quality is characterized. As a concrete method, the outline will be performed in the following order.

【0013】1)コンクリート用骨材を採取する原石山
で地質状況で分類した区域ごとに岩石試料を採取する。 2)採取した岩石を破砕する。粉砕は岩石の大きさに応
じてリッパー、ハンマー、ジョークラッシャーなどを用
いて行う。 3)粉砕した岩石試料を所定の粒度にふるい分けする。
ふるい分けした骨材の単一粒度もしくは各々の粒度を所
定の割合で混合したものを初期製造用骨材とする。 4)採取試料を乾燥器を用いて乾燥する。 5)一定の温度(25℃前後)に保たれた環境下で、単
一粒度もしくは各々の粒度を所定の割合で混合した供試
骨材にセメント、水を所定の割合で配合し練り混ぜす
る。 6)一定の温度(25℃前後)に保たれた環境下で、混
合したセメント混合物を断熱材で覆った容器に入れ、熱
電対を挿入する。 7)挿入した熱電対で一定時間ごとの温度変化を所定の
時間(通常数時間程度)まで測定する(熱電対により抵
抗値の変化を捉え、A/D変換器で温度に変換し、変換
データをデータロッガーを通し、パソコン中に取り込
む)。 8)パソコンに取り込んだ温度データを、時間と温度の
関係として表示させる。 9)パソコンで表示したデータを時間微分して温度上昇
速度(温度変化率)として再表示させる。各供試試料の
練り混ぜ後30分以後に観察される温度上昇速度の極大
点の有無と極大値を得る。 10)得られた極大点の有無と極大値によりスメクタイ
ト鉱物を含有する骨材の品質を分類し、区分毎に均一化
する。 11)分類された品質によって、骨材の使用の可否並び
に混和剤の種類と添加量などの使用に当っての対策を決
定する。
1) A rock sample is collected for each area classified according to the geological condition in a raw ore mountain from which concrete aggregate is collected. 2) Crush the collected rock. The crushing is performed using a ripper, a hammer, a jaw crusher, etc. depending on the size of the rock. 3) The ground rock sample is sieved to a predetermined particle size.
A single particle size of the sieved aggregate or a mixture of each particle size at a predetermined ratio is used as the initial production aggregate. 4) Dry the collected sample using a dryer. 5) In an environment kept at a constant temperature (around 25 ° C), mix cement and water in a predetermined ratio and mix them into the test aggregate that has a single particle size or each particle size is mixed in a predetermined ratio. . 6) In an environment kept at a constant temperature (around 25 ° C), put the mixed cement mixture in a container covered with a heat insulating material, and insert a thermocouple. 7) Measure the temperature change at regular intervals with the inserted thermocouple up to a predetermined time (usually about several hours) (Capture the change in resistance value with the thermocouple, convert it to temperature with the A / D converter, and convert the data. Through the data logger and import it into your computer). 8) Display the temperature data imported to the personal computer as a relationship between time and temperature. 9) The data displayed on the personal computer is differentiated with respect to time and redisplayed as the temperature rise rate (temperature change rate). The presence or absence of the maximum point and the maximum value of the temperature rising rate observed 30 minutes after the kneading of each test sample are obtained. 10) The quality of the aggregate containing the smectite mineral is classified according to the presence or absence of the obtained maximum point and the maximum value, and is made uniform for each category. 11) Depending on the classified quality, determine whether or not to use the aggregate, and the measure to use such as the type and amount of the admixture.

【0014】より詳しく説明すると、予め算定された使
用量の骨材を産出する原石山の区域毎に採取され粉砕,
均一化された骨材を所定の粒度に調整し、前記骨材とセ
メントと水とを所定の割合で配合し混合し、該混合物に
ついて時間毎の温度変化を測定し、コンピュータに入力
処理し、次いで前記温度変化を時間微分し温度変化率を
求め表示させ、更に温度変化率の変曲点より温度上昇速
度の極大値を求め、該極大値より前記混合物の凝結の始
発時間を得、次に必要始発時間に応じて凝結遅延剤の使
用量を決定し添加してコンクリートを調合製造する。凝
結の始発時間と温度上昇速度の極大値から一次式により
求められた特性値と、更にこの特性値と遅延剤添加量と
の一次式の関係から遅延剤添加量(使用量)を決定し、
凝結時間を制御し、骨材を使用してもワーカビリテイの
安定したコンクリートの製造が始めて可能となる。更に
また、前記の製造手順はフローチャートに組み込み均一
化された各区分の骨材について混合物の凝結の始発時間
の測定を可及的短時間に数回行い凝結遅延剤の使用量に
フィードバックすることにより、スメクタイト等を骨材
に用いても、特にワーカビリテイを制御安定化されたコ
ンクリートの自動制御することも可能となる。
More specifically, it is collected and crushed in each area of the rough stones producing the aggregate of the pre-calculated amount of aggregate.
The homogenized aggregate is adjusted to a predetermined particle size, the aggregate, cement, and water are mixed and mixed at a predetermined ratio, the temperature change for each time of the mixture is measured, and input into a computer, Next, the temperature change is time-differentiated to obtain and display the temperature change rate, and the maximum value of the temperature rising rate is further obtained from the inflection point of the temperature change rate, and the initial time of condensation of the mixture is obtained from the maximum value, and then The amount of set retarder used is determined and added according to the required initial time, and concrete is prepared and manufactured. The characteristic value obtained by the linear equation from the maximum value of the initial time of condensation and the temperature rise rate, and further, the retarder addition amount (usage amount) is determined from the relation between this characteristic value and the linear equation of the retarder addition amount,
It is possible for the first time to produce concrete with stable workability by controlling the setting time and using aggregate. Furthermore, the above-mentioned manufacturing procedure is incorporated into a flow chart to measure the initial time of setting of the mixture of the uniformized aggregates several times in the shortest possible time and to feed back the amount of the setting retarder. Even if smectite or the like is used as the aggregate, it is possible to control the workability in particular and automatically control the stabilized concrete.

【0015】[0015]

【作用】前記のように、スメクタイト鉱物を含有する骨
材を使用した場合には、コンクリートやモルタルの凝結
が早まり、これにより所定の時間内のワーカビリテイの
低下がコンクリートやモルタルの品質上問題となるがそ
の作用は次の如くである。スメクタイト鉱物を含有する
骨材を使用した場合に、コンクリートやモルタルの凝結
が早まる現象は、骨材中のスメクタイト鉱物とセメント
が水と一緒に練り混ぜられた際に、スメクタイト鉱物の
陽イオン交換基を飽和している交換性カルシウムイオン
とセメントが接水した際にセメントクリンカー成分の溶
解により、練り混ぜ水中に放出される高濃度で水和イオ
ン半径が小さく交換侵入力の強いカリウムイオンとの間
でイオン交換反応を生じ、カルシウムイオンが練り混ぜ
水に放出され、練り混ぜ水のカルシウムイオン濃度が高
くなりセメントクリンカー成分の水和反応が促進される
ために引き起されるものである。本発明では、前記の現
象に対する使用対象の骨材と凝結遅延剤の相関を直接的
に予め近似的に決定しておき、始発時間を制御し、各工
事現場に必要なコンクリートの凝結時間とワーカビリテ
イを有するコンクリートの制御製造が出来る。
As described above, when the aggregate containing the smectite mineral is used, the setting of concrete or mortar is accelerated, which causes the deterioration of the workability within a predetermined time, which is a problem for the quality of concrete or mortar. However, its action is as follows. The phenomenon that the setting of concrete and mortar accelerates when aggregates containing smectite minerals are used is that when smectite minerals and cement in aggregates are mixed with water, the cation exchange groups of smectite minerals are mixed. Between the exchangeable calcium ions saturated with water and the potassium ions with high concentration and small hydration ionic radius, which are released into the mixing water by the dissolution of the cement clinker component when the cement comes into contact with water. Then, an ion exchange reaction occurs, calcium ions are released into the kneading water, the calcium ion concentration in the kneading water becomes high, and the hydration reaction of the cement clinker component is promoted, which is caused. In the present invention, the correlation between the aggregate to be used and the set retarder for the above phenomenon is directly and approximately determined in advance, the start time is controlled, and the set time and workability of concrete required for each construction site are controlled. Controlled production of concrete with

【0016】[0016]

【実施例】以下、本発明の一実施例を表および図面に基
づき説明する。なお、本実施例の製造方法の流れを明確
にするため、図1に示すフローチャートを基にして各ス
テップにおける内容を表および図面により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the table and the drawings. In order to clarify the flow of the manufacturing method of the present embodiment, the contents of each step will be described with reference to the flow chart shown in FIG.

【0017】ステップ100は表1に示すように岩石採
取である。
Step 100 is rock extraction as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】北海道産の粗粒玄武岩でスメクタイト鉱物
を約5[%],10[%]含有する各2[kg]の岩石
を用いる。
Coarse-grained basalt from Hokkaido, 2 [kg] each containing about 5 [%] and 10 [%] of smectite mineral is used.

【0020】次に、ステップ101の骨材作成工程に入
る。表1に示すように前記岩石の粗粒砕を行う。粗粒砕
は前記2[kg]の岩石をリッパー,ハンマー,ジョー
クラッシャー等の粉砕機により約5乃至10分間かけて
行う。
Next, the aggregate forming process of step 101 is started. As shown in Table 1, the rock is coarsely crushed. The coarse crushing is performed by using the crusher such as a ripper, a hammer, and a jaw crusher for about 5 to 10 minutes for the above-mentioned 2 kg of rock.

【0021】次に、表1に示すように粒度調整を行う。
自動ふるい器を用いて約10分のふるい作業を行う。
Next, the particle size is adjusted as shown in Table 1.
Sieve for about 10 minutes using an automatic sieving machine.

【0022】引き続き表1に示すように粉砕物の乾燥を
行う。乾燥は約110[℃]の温度で行う。以上により
粒度ごとに区分された供試用の骨材が作成される。
Subsequently, as shown in Table 1, the pulverized product is dried. Drying is performed at a temperature of about 110 [° C]. As described above, the aggregates for the test, which are classified according to the grain size, are created.

【0023】次に、ステップ102により供試用の骨材
(以下、骨材という)の粒度ごとの重量を求める。表2
はそれを示すもので0.15[mm]から4.75[m
m]の範囲にわたる各粒度ごとの5[%]および10
[%]のスメクタイト鉱物を含有する骨材の重量が求め
られる。
Next, in step 102, the weight of the sample aggregate (hereinafter referred to as aggregate) for each grain size is obtained. Table 2
Indicates that, from 0.15 [mm] to 4.75 [m]
5% and 10 for each grain size over a range of m]
The weight of aggregate containing [%] smectite mineral is determined.

【0024】[0024]

【表2】 [Table 2]

【0025】次に、ステップ103でセメント用の骨材
の粒度組成を決める。表3にその内容を示す。
Next, in step 103, the particle size composition of the aggregate for cement is determined. Table 3 shows the contents.

【0026】[0026]

【表3】 [Table 3]

【0027】次に、ステップ104で供試用のモルタル
(以下、モルタルという)を作る。表4は骨材,セメン
ト,水と配合を示し、表5はモルタル300[kg]に
おけるセメント,水,骨材の重量の配分を示す。
Next, in step 104, a mortar for test (hereinafter referred to as mortar) is prepared. Table 4 shows the composition of the aggregate, cement and water, and Table 5 shows the distribution of the weight of the cement, water and aggregate in the mortar 300 [kg].

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】次に、ステップ105により温度測定装置
を準備する。図2,図3は該装置の概要構造を示す。図
示のように温度測定装置は前記モルタル7を入れる容器
である100[cc]の複数個のポリビン1と、熱電対
2と、スイッチボックス3と、データロッガー4とパソ
コン5等から構成される。なお、以上のものを収納する
測定室6(図3)は温度制御され、ポリビン1を約25
[℃]前後に保持し、モルタル7の温度の一定化を図っ
ている。なお、ポリビン1は断熱容器から形成される。
本装置による測定方法は、ポリビン1内のモルタル7に
接触している熱電対2の抵抗値の変化をA/D変換器
(図略)で温度に変換し、経過時間ごとの温度変化を求
め、データロッガー4を介してパソコン5に入力し、以
下に説明する演算処理を行う。
Next, in step 105, the temperature measuring device is prepared. 2 and 3 show a schematic structure of the device. As shown in the figure, the temperature measuring device comprises a plurality of 100 [cc] polybins 1, which are containers for containing the mortar 7, a thermocouple 2, a switch box 3, a data logger 4, a personal computer 5, and the like. The temperature of the measuring chamber 6 (FIG. 3) containing the above is controlled and the polybin 1 is stored at about 25 ° C.
The temperature of the mortar 7 is kept constant by keeping it around [° C.]. The polybin 1 is formed of a heat insulating container.
The measuring method by this device is to convert the change in the resistance value of the thermocouple 2 in contact with the mortar 7 in the polybin 1 into a temperature with an A / D converter (not shown), and obtain the temperature change for each elapsed time. , Is input to the personal computer 5 via the data logger 4, and the arithmetic processing described below is performed.

【0031】次に、ステップ106のパソコン5による
経過時間と温度との関係図を求め(図4)、ステップ1
07で図4を基にして温度変化の時間微分値を演算し図
5に示す経過時間と温度上昇速度との関係図をパソコン
5により求め、画面に表示する。図4は前記したよう
に、横軸に経過時間[hour]をとり縦軸に温度[℃]を
表示したもので、曲線Aはスメクタイト鉱物を含有しな
い標準試料の温度変化を示し、曲線Bは5[%]のスメ
クタイトを含有するセメント混合物の温度変化を示し、
曲線Cは10[%]のスメクタイトを含有するセメント
混合物の温度変化をそれぞれ示す。図示のようにスメク
タイトを多く含有しているセメント混合物の方が温度ピ
ークの時間が早く、かつ立上りも急である。図5は横軸
に経過時間[hour]をとり、縦軸に温度上昇速度[℃/h
our]を表示したものである。なお、温度上昇速度は図
4の経過時間に対する温度変化微分値として求められる
ものである。図5における曲線A,B,Cは図4の曲線
A,B,Cにそれぞれ対応するものである。
Next, the relationship diagram between the elapsed time and the temperature by the personal computer 5 in step 106 is obtained (FIG. 4), and step 1
At 07, the time differential value of the temperature change is calculated based on FIG. 4, and the relationship diagram between the elapsed time and the temperature rise rate shown in FIG. 5 is obtained by the personal computer 5 and displayed on the screen. As described above, FIG. 4 shows the elapsed time [hour] on the horizontal axis and the temperature [° C.] on the vertical axis. The curve A shows the temperature change of the standard sample containing no smectite mineral, and the curve B shows Shows the temperature change of the cement mixture containing 5% of smectite,
Curve C shows the temperature change of the cement mixture containing 10% of smectite. As shown in the figure, the cement mixture containing a large amount of smectite had a faster temperature peak time and a steeper rise. In Fig. 5, the horizontal axis shows elapsed time [hour], and the vertical axis shows temperature rising rate [° C / h
our] is displayed. The temperature rising rate is obtained as a temperature change differential value with respect to the elapsed time in FIG. The curves A, B and C in FIG. 5 correspond to the curves A, B and C in FIG. 4, respectively.

【0032】次に、ステップ108で図5から温度変化
率の変曲点を求め、該変曲点における温度上昇速度の
値、すなわち、極大値を求める。図5に示すように、ス
メクタイト鉱物の含有量の多い方が極大値が大きいこと
がわかる。但し接水直後の温度上昇速度の高い値は接水
直後の急速な水和反応によるもので、この温度上昇はス
メクタイトの存在あるいは存在量とは関係がなく、経過
時間2時間付近にあらわれるものを極大値とする。
Next, in step 108, the inflection point of the temperature change rate is obtained from FIG. 5, and the value of the temperature rising rate at the inflection point, that is, the maximum value is obtained. As shown in FIG. 5, it is understood that the maximum value is larger as the content of the smectite mineral is higher. However, the high value of the rate of temperature increase immediately after contact with water is due to the rapid hydration reaction immediately after contact with water, and this increase in temperature has nothing to do with the presence or amount of smectite. Maximum value.

【0033】次に、ステップ109で温度上昇速度の極
大値と凝結の始発時間との関係および凝結を遅らせるた
めの遅延剤添加量[%]と凝結の始発時間との関係図
(図6)を求める。凝結の始発時間は前記極大値が高い
方が早いが、本実施例では表6に示した配合の試験練り
コンクリートによって求めた関係図(図6,図7)を用
いる。
Next, in step 109, a relationship diagram (FIG. 6) between the maximum value of the temperature rising rate and the initial time of condensation and the relationship between the amount [%] of the retarder added for delaying the condensation and the initial time of condensation is shown. Ask. The initial time of setting is faster when the maximum value is higher, but in this example, the relational diagrams (FIGS. 6 and 7) obtained by the test-mixed concrete having the composition shown in Table 6 are used.

【0034】[0034]

【表6】 [Table 6]

【0035】図6は表6の配分の試料を基にして前記試
験を行って求めたもので、直線E(■印)は遅延剤の1
つであるポゾリスNO.89の添加量が0[%]の場合
の温度上昇速度の極大値[℃/時]と凝結の始発時間と
の関係を示したものであり、直線F[●印]はNO.8
9添加量が0.4[%]の場合を示し、直線G[▲印]
はNO.89添加量が0.6[%]の場合を示す。
FIG. 6 was obtained by conducting the above-mentioned test based on the samples of the distribution shown in Table 6, and the straight line E (marked by ■) is 1 of the retarder.
Pozzolith NO. When the addition amount of 89 is 0%, the relationship between the maximum value of the temperature rising rate [° C./hour] and the initial time of condensation is shown. The straight line F [● mark] indicates NO. 8
9 shows the case where the added amount is 0.4 [%], and shows the straight line G [▲]
Is NO. 89 shows the case where the added amount is 0.6 [%].

【0036】一方、図7は横軸に遅延剤添加量[%]を
とり、縦軸に図8におけるY切片(温度上昇速度の極大
値の0位置における凝結の始発時間の値)を表示したも
ので、直線Hで近似的に表示される。
On the other hand, in FIG. 7, the horizontal axis represents the retarder addition amount [%], and the vertical axis represents the Y-intercept in FIG. 8 (the value of the initial time of condensation at the 0 position of the maximum temperature rise rate). And is displayed approximately by a straight line H.

【0037】次に、本実施例の最終目的である遅延剤の
添加量[%]を決めるステップ110を行う。前記した
ように、本実施例の測定および演算により任意の量のス
メクタイトを含有した骨材を用いたモルタルにおける温
度上昇速度の極大値[℃/時]を求めることが出来、か
つ凝結の始発時間を観察して求めることが可能である。
この始発時間が所望の始発時間を越えている場合、すな
わち、モルタルの凝結が早い場合には品質低下現象が生
じる。そのため、遅延剤を添加して所望の凝結の始発時
間を有するようにすることが必要である。本実施例では
この遅延剤添加量の決定のステップ110を図6,図7
を用いて説明する。
Next, step 110 for determining the additive amount [%] of the retarder, which is the final object of this embodiment, is performed. As described above, the maximum value [° C./hour] of the temperature rising rate in the mortar using the aggregate containing an arbitrary amount of smectite can be determined by the measurement and calculation of the present example, and the initial time of setting is set. Can be obtained by observing.
When the initial starting time exceeds the desired initial starting time, that is, when the mortar is quickly set, a quality deterioration phenomenon occurs. Therefore, it is necessary to add a retarder to have the desired onset time of setting. In this embodiment, the step 110 for determining the amount of retarder added is shown in FIGS.
Will be explained.

【0038】近似的に直線E,F,GはY=−X+4.
0,Y=−X+5.5,Y=−X+8.5の関係式をほ
ぼ満足する。このことから温度上昇速度の極大値[℃/
時]と凝結の始発時間[時間]とはY=−X+aとな
り、aはY切片の値である。そこで、例えば前記測定に
よって求めた温度上昇速度の極大値が1.5[℃/時]
の場合、遅延剤添加量が0[%]の場合には図6のPで
示すように凝結の始発時間は約2.5[時間]となる。
始発時間が2.5[時間]では早いためこれを6.0
[時間]にするにはどの位の遅延剤を必要とするかを次
に求める。すなわち、図6において極大値1.5[℃/
時]で凝結の始発時間が6[時間]のQ点を通るY=−
X+aを求めるとa=7.6となりY=−X+7.6の
直線Iとなる。直線IのY切片は7.6[時間]であ
る。
Approximately the straight lines E, F and G are Y = -X + 4.
The relational expressions of 0, Y = -X + 5.5, Y = -X + 8.5 are almost satisfied. From this, the maximum value of the temperature rise rate [℃ /
[Hours] and the initial time of condensation [hours] are Y = −X + a, and a is the value of the Y intercept. Therefore, for example, the maximum value of the temperature rising rate obtained by the measurement is 1.5 [° C./hour].
In the case of, the initial time of condensation is about 2.5 [hours] as indicated by P in FIG. 6 when the amount of retarder added is 0 [%].
Since the first departure time is 2.5 [hours], it is 6.0
Next, determine how much retarder is needed to reach [Time]. That is, in FIG. 6, the maximum value is 1.5 [° C. /
At time], the initial time of condensation is 6 [hours] and passes through Q point Y =-
When X + a is obtained, a = 7.6 and a straight line I of Y = −X + 7.6 is obtained. The Y intercept of the straight line I is 7.6 [hours].

【0039】一方、図7の遅延剤添加量[%]と凝結の
始発時間のY切片との関係の回帰直線はY=7X+3.
7の直線Hで表わせる。そこで前記のY切片の値,Y=
7.6を前式に代入するとX≒0.56となり、遅延剤
添加量が0.56[%]必要であることがわかる。
On the other hand, the regression line of the relationship between the retarder addition amount [%] in FIG. 7 and the Y intercept of the initial time of setting is Y = 7X + 3.
It can be represented by the straight line H of 7. Therefore, the value of the above Y intercept, Y =
Substituting 7.6 into the above equation results in X≈0.56, indicating that the retarder addition amount is required to be 0.56 [%].

【0040】同様に、温度上昇速度の極大値が1.4
[℃/時]で必要な凝結の始発時間が5[時間]の場合
には、Y=−X+6.4の直線Jとなり、Y=7X+
3.7の式からX≒0.36となり遅延剤添加量が0.
36[%]必要であることがわかる。
Similarly, the maximum value of the temperature rise rate is 1.4.
When the initial time of condensation required at [° C./hour] is 5 [hours], a straight line J of Y = −X + 6.4 is obtained, and Y = 7X +
From the equation of 3.7, X≈0.36, and the retarder addition amount is 0.
It turns out that 36 [%] is required.

【0041】図1のフローチャートにおいて、前記のよ
うにして決定した始発時間が使用目的の凝結の始発時間
に一致しているか否かを求める(ステップ111)。y
es(Y)ならばその条件による遅延剤を混練すること
により所望のコンクリートを調合製作することが出来
(ステップ112)、工程を終了する(ステップ11
3)。一方、no[N]の場合にはステップ110に戻
り繰返し行う。
In the flowchart of FIG. 1, it is determined whether or not the start time determined as described above matches the start time of the condensation for the purpose of use (step 111). y
If es (Y), the desired concrete can be mixed and manufactured by kneading the retarder according to the conditions (step 112), and the process is completed (step 11).
3). On the other hand, if no [N], the process returns to step 110 and is repeated.

【0042】図8は以上のようなプロセスによって求め
た遅延剤ポゾリスNO.89の添加量(セメント重量に
対する%)を横軸にとり縦軸に凝結の始発時間[時]を
表示したものである。折線K,L,M,Nは極大値が
0,0.7,1.0,1.8℃/時間にそれぞれ対応す
るものである。
FIG. 8 shows the delay agent Pozzolith NO. The amount of addition of 89 (% to cement weight) is plotted on the horizontal axis and the initial time [hours] of setting is plotted on the vertical axis. The polygonal lines K, L, M and N correspond to maximum values of 0, 0.7, 1.0 and 1.8 ° C./hour, respectively.

【0043】また、表7は本実施例による遅延剤の添加
の必要の可否、その添加量の[%]を具体的に求めた一
覧表であり、表8はコンクリートの骨材として使用され
る骨材の内容を前記の測定方法による結果に基づいて判
定,対策した一例を示す一覧表である。すなわち、温度
上昇速度の変曲点の値でランクにわけ、粒径の細かい方
が硬り易く、凝結の始発時間が早くなるため、粒径の細
かい骨材を廃棄し、ランクに対応して大径の骨材を使用
する対策が表示されている。
Further, Table 7 is a list showing whether or not it is necessary to add the retarder according to the present embodiment, and [%] of the addition amount thereof, and Table 8 is used as an aggregate of concrete. It is a list showing an example in which the content of the aggregate is judged based on the result of the above-mentioned measurement method and countermeasures are taken. In other words, the value of the inflection point of the temperature rise rate is divided into ranks, and the smaller the particle size, the easier it is to stiffen and the faster the initial time of setting. Measures to use large-diameter aggregate are displayed.

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【表8】 [Table 8]

【0046】以上のように、性質の不明の骨材を用いて
所望の凝結の始発時間を有するコンクリートを容易に製
作することが出来る。本実施例において層状ケイ酸塩鉱
物としてスメクタイト鉱物を採用して説明したがこれに
限るものではない。また、凝結の遅延剤はポゾリスN
O.89に限るものではなく、ポゾリスNO.8等も使
用される。
As described above, concrete having a desired initial setting time of setting can be easily manufactured by using an aggregate of unknown properties. Although the smectite mineral is adopted as the layered silicate mineral in this embodiment, the present invention is not limited to this. Also, the delaying agent for setting is Pozzolith N.
O. 89 is not limited to Pozzolith NO. 8 etc. are also used.

【0047】[0047]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)任意の骨材を使用して供試セメントを作り、本発明
の製造方法のプロセスを行うことにより骨材の使用の可
否と凝結の遅延剤の設定が自動的に求められる。そのた
め、骨材の内容に関係なく品質の安定した所望のコンク
リートを製作することが出来る。 2)以上のことは骨材に層状ケイ酸塩鉱物、特にスメク
タイト鉱物が含有されていても適用され、所望の凝結の
始発時間を有するコンクリートを製作出来る。 3)測定および判定等が自動的に行われるため、迅速
に、かつ正確にコンクリートを制御製造することが出来
る。
According to the present invention, the following remarkable effects are obtained. 1) By making a test cement using an arbitrary aggregate and performing the process of the production method of the present invention, the availability of the aggregate and the setting of the retarder for setting are automatically determined. Therefore, it is possible to produce desired concrete of stable quality regardless of the content of the aggregate. 2) The above applies even if the aggregate contains a layered silicate mineral, particularly a smectite mineral, and concrete having a desired initial time of setting can be produced. 3) Since measurements and judgments are automatically performed, concrete can be controlled and manufactured quickly and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造工程の全体を制御する
ためのフローチャート。
FIG. 1 is a flowchart for controlling the entire manufacturing process according to an embodiment of the present invention.

【図2】本実施例の温度測定装置の構成図。FIG. 2 is a configuration diagram of a temperature measuring device according to the present embodiment.

【図3】本実施例の温度測定装置の測定室内での配列を
示す正面図。
FIG. 3 is a front view showing an arrangement in the measurement chamber of the temperature measuring device according to the present embodiment.

【図4】本実施例における経過時間[時]とそれに対応
する温度[℃]の変化を示す線図。
FIG. 4 is a diagram showing a change in elapsed time [hour] and corresponding temperature [° C.] in the present embodiment.

【図5】本実施例における経過時間[時]に対する温度
上昇速度[℃/時]の変化を示す線図。
FIG. 5 is a diagram showing a change in temperature rising rate [° C./hour] with respect to elapsed time [hour] in the present embodiment.

【図6】温度上昇速度の極大値[℃/時]と凝結の始発
時間との相関を示す線図。
FIG. 6 is a diagram showing the correlation between the maximum value of temperature rising rate [° C./hour] and the initial time of condensation.

【図7】遅延剤添加量[%]と凝結の始発時間のY切片
との相関を示す線図。
FIG. 7 is a diagram showing the correlation between the amount of retarder added [%] and the Y-intercept of the initial time of condensation.

【図8】遅延剤ポゾリスNO.89の添加量と凝結の始
発時間[時]との関係を示す線図。
FIG. 8: Retarder Pozolis NO. The figure which shows the relationship between the addition amount of 89, and the time [hours] of the first time of condensation.

【符号の説明】[Explanation of symbols]

1 ポリビン 2 熱電対 3 スイッチボックス 4 データロッガー 5 パソコン 6 測定室 7 モルタル 1 Polybin 2 Thermocouple 3 Switch Box 4 Data Logger 5 Personal Computer 6 Measuring Room 7 Mortar

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 14:10) Z (72)発明者 武田 均 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 14:10) Z (72) Inventor Hitoshi Takeda 1-25-1 Nishishinjuku, Shinjuku-ku, Tokyo Within Taisei Construction Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 層状ケイ酸塩鉱物を含有する岩石を骨材
とするコンクリートの製造方法において、予め算定され
た使用量の当該骨材を産出する原石山の区域毎に採取
し、破砕ないし粉砕した前記骨材を所定の粒度に調整
し、前記骨材とセメントおよび水を所定の割合で配合し
て混合し、該混合物について時間毎の温度変化を測定
し、コンピュータに入力処理し、次いで前記温度変化を
時間微分し温度変化率を求めて表示させ、更に温度変化
率の変曲点より温度上昇速度の極大値を求め、該極大値
より前記混合物の凝結の始発時間を得、次に必要始発時
間に応じて凝結遅延剤の使用量を決定し、当該使用量の
遅延剤を添加してコンクリートを調合製造することを特
徴とする層状ケイ酸塩鉱物含有骨材使用コンクリートの
製造方法。
1. A method for producing concrete using rock containing a layered silicate mineral as an aggregate, which is sampled for each area of a rough ore that produces the aggregate in a pre-calculated amount, and is crushed or crushed. The aggregate was adjusted to a predetermined particle size, the aggregate and cement and water were mixed and mixed at a predetermined ratio, the temperature change for each hour of the mixture was measured, and input processing was performed on a computer, and then the above-mentioned. The temperature change is differentiated with respect to time to obtain and display the temperature change rate, and further, the maximum value of the temperature rising rate is obtained from the inflection point of the temperature change rate, the initial time of condensation of the mixture is obtained from the maximum value, and then necessary. A method for producing a concrete using a layered silicate mineral-containing aggregate, which comprises determining an amount of a setting retarder to be used according to a starting time, and mixing and producing the concrete by adding the amount of the retarder.
【請求項2】 前記層状ケイ酸塩鉱物がスメクタイト鉱
物である請求項1の層状ケイ酸塩鉱物含有骨材使用コン
クリートの製造方法。
2. The method for producing a concrete using aggregate containing a layered silicate mineral according to claim 1, wherein the layered silicate mineral is a smectite mineral.
【請求項3】 前記混合物の時間毎の温度変化の測定は
断熱材で覆った容器中で熱電対を用いて行い、該熱電対
の抵抗値の変化をA/D変換器で温度に変換し、この変
換されたデータをデータロッガーを通しコンピュータに
入力し、該入力された時間毎の温度変化のデータを時間
と温度の関係として表示させ処理させるものである請求
項1又は2の層状ケイ酸塩鉱物含有骨材使用コンクリー
トの製造方法。
3. The temperature change of the mixture over time is measured by using a thermocouple in a container covered with a heat insulating material, and the change in resistance value of the thermocouple is converted into a temperature by an A / D converter. The layered silicate according to claim 1 or 2, wherein the converted data is input to a computer through a data logger, and the input temperature change data is displayed and processed as a relationship between time and temperature. Method for producing concrete using mineral-containing aggregate.
JP19816193A 1993-08-10 1993-08-10 Method for producing concrete using layered silicate mineral-containing aggregate Expired - Fee Related JP3333974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19816193A JP3333974B2 (en) 1993-08-10 1993-08-10 Method for producing concrete using layered silicate mineral-containing aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19816193A JP3333974B2 (en) 1993-08-10 1993-08-10 Method for producing concrete using layered silicate mineral-containing aggregate

Publications (2)

Publication Number Publication Date
JPH0753252A true JPH0753252A (en) 1995-02-28
JP3333974B2 JP3333974B2 (en) 2002-10-15

Family

ID=16386482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19816193A Expired - Fee Related JP3333974B2 (en) 1993-08-10 1993-08-10 Method for producing concrete using layered silicate mineral-containing aggregate

Country Status (1)

Country Link
JP (1) JP3333974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043813A (en) * 2011-08-25 2013-03-04 Kajima Corp Concrete composition
CN113624582A (en) * 2021-08-20 2021-11-09 浙大宁波理工学院 Preparation method of surface sample of cement concrete interface transition zone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043813A (en) * 2011-08-25 2013-03-04 Kajima Corp Concrete composition
CN113624582A (en) * 2021-08-20 2021-11-09 浙大宁波理工学院 Preparation method of surface sample of cement concrete interface transition zone
CN113624582B (en) * 2021-08-20 2024-01-19 浙大宁波理工学院 Preparation method of cement concrete interface transition zone surface sample

Also Published As

Publication number Publication date
JP3333974B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
Cassagnabère et al. Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state
Rêgo et al. Microstructure of cement pastes with residual rice husk ash of low amorphous silica content
León-Reina et al. Round robin on Rietveld quantitative phase analysis of Portland cements
Chatterjee X-ray diffraction
Yılmaz et al. The effects of different sandstone aggregates on concrete strength
CN101539499B (en) Deductive method of hardened concrete mixing ratio
US20170363552A1 (en) Apparatus and method for producing and analyzing a plurality of sample materials
JP4557483B2 (en) Test method for hydratable cementitious composition
Saride et al. Micro-mechanical interaction of activated fly ash mortar and reclaimed asphalt pavement materials
JP6755068B2 (en) Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement
Singh et al. Characterization of lime plasters used in 16th century Mughal monument
Alvarez et al. A study of the ancient mortars in the north tower of Pamplona's San Cernin church
Cantisani et al. The mortars of Giotto’s Bell Tower (Florence, Italy): raw materials and technologies
Song et al. Effect of the fineness of copper slag on the early hydration properties of cement–copper slag binder
Khudhair et al. Development of a new hydraulic binder (composite cement) based on a mixture of natural Pozzolan active ‘PN’and Pure Limestone ‘P, Lime’: Study of the physical-chemical and mechanical properties
Katayama Late-expansive ASR in a 30-year old PC structure in eastern Japan
Rogers Evaluation and testing of brick dust as a pozzolanic additive to lime mortars for architectural conservation
Bruno et al. Chemical–physical and mineralogical investigation on ancient mortars from the archaeological site of Monte Sannace (Bari—Southern Italy)
Carvalho et al. Red ceramic industry residues: Used to produce Portland cement
Aubert et al. Characterization of earth used in earth construction materials
CN106204342A (en) The matching method that waste and old concrete recycles as regeneration aggregate
JPH0753252A (en) Production of concrete formed by using laminar silicate ore-containing aggregate
Rikoto et al. Effect of free lime and lime saturation factor on grindability of cement clinker
Cox et al. Procedure for the assessment of limestone resources
JP2017015737A (en) Method of inspecting copper slag containing fine aggregate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees