JPH075188A - Current measuring equipment - Google Patents

Current measuring equipment

Info

Publication number
JPH075188A
JPH075188A JP17099293A JP17099293A JPH075188A JP H075188 A JPH075188 A JP H075188A JP 17099293 A JP17099293 A JP 17099293A JP 17099293 A JP17099293 A JP 17099293A JP H075188 A JPH075188 A JP H075188A
Authority
JP
Japan
Prior art keywords
image
camera
current
frames
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17099293A
Other languages
Japanese (ja)
Inventor
Tsuneo Suzuki
恒夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP17099293A priority Critical patent/JPH075188A/en
Publication of JPH075188A publication Critical patent/JPH075188A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a current measuring equipment effecting noncontact remote measurement of current velocity of a river over a wide range through image processing without requiring any special TV camera in which the equipment is not required to be installed in the current and thereby it is protected against fracture due to storm while facilitating the work and maintenance. CONSTITUTION:A TV camera 1 disposed at a position separated by a predetermined distance from the surface of current to be measured picks up the surface image of current every predetermined time. The frames picked up every predetermined time are stored in image memories 3a, 3n. The frames are then subjected to correlation by a correlation unit 5 and feature points, e.g. wave and floating matters, are extracted by an extracting means 6. A pixel number calculating means 7 detects the moving amount thereof. Current velocity is then operated based on the moving amount and the time difference between frames.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、河川等の流速を画像処
理により計測する流速計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring device for measuring the flow velocity of a river or the like by image processing.

【0002】[0002]

【従来の技術】従来、この種の流速計測装置には、浮子
を川に流す方法がある。これは水面に浮かべた浮子が、
水面を移動する距離を目視観察するものであり、自動化
ができなかった。また、マイクロ波によるドップラー効
果を利用した方法もあるが、電波法上等の制約があるた
め、実用的でない。そのため、熱映像装置を用い液体表
面の凹凸パターンを見掛け上の温度パターンとし、その
温度パターンの移動量を測定することにより、液体表面
の流速を求める発明がなされた。
2. Description of the Related Art Conventionally, in this type of flow velocity measuring device, there is a method of flowing a float into a river. This is a float floating on the water surface,
The distance traveled on the water surface was visually observed, and automation could not be performed. Also, there is a method using the Doppler effect by microwaves, but it is not practical because of restrictions such as the Radio Law. Therefore, an invention has been made to obtain the flow velocity on the liquid surface by using a thermal imager as an apparent temperature pattern and measuring the amount of movement of the temperature pattern.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
の流速計測装置では、河川の流れの中に装置を設置する
ため、工事等が困難であった。また、温度パターンを用
いる方法は、熱映像装置が必要であり、複数の温度パタ
ーンから特定の温度パターンを抽出する手段が開示され
ていない。また、移動の基準となる基準点を、対岸等に
設置する必要がある。本発明はこのような事情にかんが
みてなされたものであり、非接触遠隔計測とすることに
より広範囲に計測可能とし、上記欠点を解決することを
課題とする。
However, in these conventional flow velocity measuring devices, since the device is installed in the flow of the river, it is difficult to carry out the construction work. Further, the method using the temperature pattern requires a thermal imaging device, and a means for extracting a specific temperature pattern from a plurality of temperature patterns is not disclosed. In addition, it is necessary to set a reference point, which is a reference for movement, on the opposite bank. The present invention has been made in view of such circumstances, and an object of the present invention is to solve the above drawbacks by enabling non-contact telemetry to measure a wide range.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明の流速計測装置においては、図3に示すよう
に、テレビカメラにて流体の表面を撮像する。その撮像
した一定時間毎のフレームを記憶し、フレーム間の相関
処理を利用して波、浮遊物等の移動量を検出する。その
移動量と所定のフレーム間時間差から流速を演算する。
具体的には、以下〜の構成とした。 流体の表面を撮影する撮像手段と、 所定の時間を隔てて該撮像手段が撮影する第1及び第
2の画像を記憶する記憶手段と、 第1及び第2の画像のそれぞれ一部の類似度を比較し
て、最も類似している第1の画像中の類似領域と第2の
画像中の類似領域とを検出する検出手段、 第1の画像中の類似領域と第2の画像中の類似領域の
位置とを用いて流体の速度を演算する演算手段。
In order to solve the above problems, in the flow velocity measuring device of the present invention, as shown in FIG. 3, the surface of the fluid is imaged by the television camera. The imaged frames at fixed time intervals are stored, and the amount of movement of waves, floating substances, etc. is detected by utilizing the correlation processing between the frames. The flow velocity is calculated from the movement amount and a predetermined time difference between frames.
Specifically, the following configurations are adopted. An image capturing unit that captures the surface of the fluid, a storage unit that stores the first and second images captured by the image capturing unit at a predetermined time interval, and a degree of similarity of each of the first and second images. And detecting similar areas in the first image and similar areas in the second image that are most similar to each other, similarity between the first image and the similar areas in the second image, Calculation means for calculating the velocity of the fluid using the position of the region.

【0005】[0005]

【作用】このように構成された水位計測装置によれば、
テレビカメラにて、河川の水面を一定長の水平横画角
で撮影し、時間差ΔTの2画像をメモリに記憶する。
記憶した2画像から、水面の波、浮遊物等の移動距離Δ
Lを画像処理により算出する。ΔL/ΔTの演算によ
り、表面流速を算出することができる。
According to the water level measuring device configured as described above,
The water surface of the river is photographed by a TV camera at a horizontal horizontal angle of view of a certain length, and two images with a time difference ΔT are stored in a memory.
From the two stored images, the movement distance Δ of waves on the water surface, floating objects, etc.
L is calculated by image processing. The surface flow velocity can be calculated by calculating ΔL / ΔT.

【0006】[0006]

〔第1の実施例〕[First Embodiment]

(機器設置例の説明)図3は、本発明を設置した例を示
す外観図である。図に示すように、テレビカメラは、所
定の水面を撮影するように設置角度が調整される。つま
り、図に示す4mの水平横画角を撮像する。テレビカメ
ラの画像出力は、他の場所に設置された処理装置に伝送
され、流速が求まる。つまり、水面の遠隔画像監視を実
現している。
(Explanation of an example of equipment installation) FIG. 3 is an external view showing an example in which the present invention is installed. As shown in the figure, the installation angle of the television camera is adjusted so as to photograph a predetermined water surface. That is, the horizontal horizontal field angle of 4 m shown in the figure is captured. The image output of the TV camera is transmitted to a processing device installed in another place, and the flow velocity is obtained. That is, remote image monitoring of the water surface is realized.

【0007】(構成の説明)図1は、本発明の第1の実
施例を示すブロック図である。水面から一定距離にに配
置した画像手段であるテレビカメラ1は、川の水面を撮
影する。その画像信号をA/D変換器2でデジタル信号
に変換する。そのデジタル信号を、撮像したフレーム時
間に応じて、それぞれ記憶手段である画像メモリ3で記
憶する。検出手段は、画像分割手段4、相関器5と抽出
手段6で構成される。画像分割手段4は、記憶された画
像データを小領域に分割する。それぞれ分割された画像
データを、相関器5で相関をとる。相関されたデータか
ら、特徴点を抽出手段6で抽出する。演算手段は、画素
数算出手段7と流速算出手段8で構成される。画素数算
出手段7は、その抽出されたそれぞれの特徴点間の画素
数を求める。流速算出手段8は、その画素数と、基準値
設定手段9で予め設定された基準データ(水平画角の長
さ)に基づいて、流速を算出する。水平画角は、テレビ
カメラ1と水面までの距離、テレビカメラ1の特性で決
定される。
(Description of Configuration) FIG. 1 is a block diagram showing a first embodiment of the present invention. The television camera 1, which is an image means arranged at a fixed distance from the water surface, photographs the water surface of the river. The image signal is converted into a digital signal by the A / D converter 2. The digital signal is stored in the image memory 3, which is a storage unit, according to the captured frame time. The detecting means is composed of the image dividing means 4, the correlator 5, and the extracting means 6. The image dividing unit 4 divides the stored image data into small areas. Correlator 5 correlates the divided image data. From the correlated data, the feature point is extracted by the extraction means 6. The calculation means is composed of a pixel number calculation means 7 and a flow velocity calculation means 8. The pixel number calculation means 7 calculates the number of pixels between the extracted feature points. The flow velocity calculation means 8 calculates the flow velocity based on the number of pixels and the reference data (horizontal angle of view) preset by the reference value setting means 9. The horizontal angle of view is determined by the distance between the television camera 1 and the water surface and the characteristics of the television camera 1.

【0008】(処理の説明)図2は、実施例の処理を説
明するためのフローチャートである。テレビカメラ1で
一定時間毎に画像信号を入力する(a)。画像信号を、
それぞれn個の画像メモリ3に記憶する(b)。画像メ
モリ3に記憶された第1の画像信号内の予め小領域Z1
を設定する(c)。小領域Z1 近傍の第2の画像信号内
の小領域との相関係数を演算する(d)。小領域Z1
の相関係数が最大となる小領域Z2 を抽出する(e)。
小領域Z2 近傍の第3の画像信号内の小領域との相関係
数を演算する(f)。小領域Z2 との相関係数が最大と
なる小領域Z3 を抽出する(g)。同様にして、小領域
n-1 との相関係数が最大となる小領域Zn を抽出する
(h)。小領域Z1 と小領域Zn との距離、すなわち波
形等の移動距離ΔLを算出する(i)。第1の画像入力
時刻と、第nの画像入力時刻との時間差ΔTと、ΔLか
ら、流速を算出する(j)。なお、相関係数Cは、数1
で求められる。
(Explanation of Processing) FIG. 2 is a flow chart for explaining the processing of the embodiment. An image signal is input to the television camera 1 at regular intervals (a). Image signal,
The data is stored in each of the n image memories 3 (b). A small area Z 1 in advance in the first image signal stored in the image memory 3
Is set (c). The correlation coefficient with the small area in the second image signal near the small area Z 1 is calculated (d). A small area Z 2 having the maximum correlation coefficient with the small area Z 1 is extracted (e).
The correlation coefficient with the small area in the third image signal in the vicinity of the small area Z 2 is calculated (f). A small area Z 3 having the maximum correlation coefficient with the small area Z 2 is extracted (g). Similarly, to extract a small area Z n the correlation coefficient between the small regions Z n-1 is the maximum (h). The distance between the small area Z 1 and the small area Z n , that is, the moving distance ΔL of the waveform or the like is calculated (i). The flow velocity is calculated from the time difference ΔT between the first image input time and the nth image input time and ΔL (j). The correlation coefficient C is expressed by
Required by.

【0009】数1Equation 1

【0010】また、設定ポイントを複数用意し、それぞ
れのポイントにつき流速を算出する。その値から誤差を
小さくする処理、例えば最大値、最小値を除き、残りを
平均化する等を行うこともできる。さらに、演算した小
領域群の相関係数値に一定値以上(例C=0.5)が無
い場合は、最初から処理を再実行し、測定確度を高め
る。
Further, a plurality of set points are prepared and the flow velocity is calculated for each point. It is also possible to perform processing for reducing the error from the value, for example, removing the maximum value and the minimum value and averaging the rest. Furthermore, when the calculated correlation coefficient value of the small region group does not have a certain value or more (example C = 0.5), the process is re-executed from the beginning to improve the measurement accuracy.

【0011】(実験例の説明)図4は本発明の第1の実
施例における画像例を示す図である。実験では、水平画
角を4mとする。5フレームの画像を入力し、時間差Δ
T=5/30secとした。これにより、1画素L
g は、Lg =4m/512画素=0.78125cmと
なる。図4に示すように、相関係数値が一定値以上とな
った、特徴点が8個ある。その移動ベクトルを、Vn
示す。ここで、V1 〜V8 の移動量の総和は、164画
素が検出され、特徴点の平均移動量ΔLは、ΔL=16
4×L/8=16cmが算出される。流速は、16/
(5/30)=96cm/secが算出される。
(Explanation of Experimental Example) FIG. 4 is a diagram showing an image example in the first embodiment of the present invention. In the experiment, the horizontal angle of view is 4 m. Input 5 frame images, time difference Δ
T = 5/30 sec. As a result, one pixel L
g is L g = 4 m / 512 pixels = 0.78125 cm. As shown in FIG. 4, there are eight feature points whose correlation coefficient values are above a certain value. The movement vector is indicated by V n . Here, 164 pixels are detected as the total sum of the movement amounts of V 1 to V 8 , and the average movement amount ΔL of the feature points is ΔL = 16.
4 × L / 8 = 16 cm is calculated. Flow rate is 16 /
(5/30) = 96 cm / sec is calculated.

【0012】以上、デジタル処理で説明したが、カメ
ラ、相関処理等はアナログ系(例えば、同一出願人によ
る特公昭60−34317号公報「テレビ画像アナログ
相関装置」)であっても可能であることは、言うまでも
ない。なお、類似度の検出手段として、相関器を用いた
が、これに限るものではない。例えば、二つのパターン
を重ねあわせ、それぞれの位置で差分をとる。差分を二
乗し、小領域全体でたしあわせる。この値が小さいほ
ど、二つのパターンは類似していることになる。
Although the digital processing has been described above, the camera, the correlation processing and the like can be performed by an analog system (for example, Japanese Patent Publication No. 60-34317, "TV image analog correlation apparatus" by the same applicant). Needless to say. Although the correlator is used as the similarity detection unit, the present invention is not limited to this. For example, two patterns are superposed and a difference is obtained at each position. Square the difference and add together in the small area. The smaller this value is, the more similar the two patterns are.

【0013】〔第2の実施例〕第1の実施例では、水平
画角は予め設定したものとした。しかし、河川の水位が
変化した場合、水平画角も変化するため、以下に説明す
る手段で水位を算出し、水平画角を自動的に補正する必
要がある。そのため、本実施例で算出した水位を、第1
の実施例の基準値設定手段9に設定する。 (機器設置例の説明)図5は、本実施例の装置を設置し
た例を示す外観図である。図に示すように、もう1台の
テレビカメラを備え、2台のテレビカメラは、河川の水
面から堤防を隔てた道路脇に設置された、鉄塔に備えら
れている。テレビカメラの他に、投光器を備え夜間でも
水位を測定できるようにしている。2台のテレビカメラ
は、同一水面を撮影するように設置角度が調整される。
また、テレビカメラの画像出力は、他の場所に設置され
た処理装置に伝送され、水位が求まる。つまり、水面の
遠隔画像監視を実現している。
[Second Embodiment] In the first embodiment, the horizontal angle of view is set in advance. However, when the water level of the river changes, the horizontal angle of view also changes, so it is necessary to calculate the water level by means described below and automatically correct the horizontal angle of view. Therefore, the water level calculated in this example is
It is set in the reference value setting means 9 of the embodiment. (Explanation of Equipment Installation Example) FIG. 5 is an external view showing an example in which the apparatus of the present embodiment is installed. As shown in the figure, another television camera is provided, and two television cameras are provided on a steel tower installed on the side of the road separating the embankment from the water surface of the river. In addition to the TV camera, it is equipped with a floodlight so that the water level can be measured even at night. The installation angles of the two TV cameras are adjusted so that the same water surface is photographed.
Further, the image output of the television camera is transmitted to the processing device installed at another place, and the water level is obtained. That is, remote image monitoring of the water surface is realized.

【0014】(原理の説明)図6で示すように、計測対
象水面から等距離にある直線上に配置した2台のテレビ
カメラで同一水面を撮影する。この水面の水位により2
台のテレビカメラ画像の撮像パターンに画角差が生じる
ことにより水位を演算する。2台のテレビカメラ画像の
画角差抽出は、画像処理によって水面の特徴点(波、浮
遊物等)をとらえて行う。具体的には、図7で示す関係
により水位を求める。第1のテレビカメラの水平画素数
をS、第1のテレビカメラの水平画角を2φ、第1のテ
レビカメラと第2のテレビカメラの間隔を2L、第1の
テレビカメラの水平角をθとすると、第1のテレビカメ
ラと第2のテレビカメラの垂直2等分線O−M上の点P
n類似領域(特徴点)が第1のテレビカメラの撮影画像
の左からn画素目にあるとき、関係式 OPn=L・tanλ=L・tan(θ+φ−2φ・n/S)・・・(2) が成立する。さらに、予め基準位置でOPsを求めてお
く。その時の水位と、OPsと、数2で求めたOPnよ
り、水位を求める。
(Explanation of Principle) As shown in FIG. 6, the same water surface is photographed by two TV cameras arranged on a straight line equidistant from the water surface to be measured. 2 depending on this water level
The water level is calculated based on the difference in the angle of view between the image pickup patterns of the television camera images. The angle of view difference extraction between the two TV camera images is performed by capturing the characteristic points (waves, floating substances, etc.) on the water surface by image processing. Specifically, the water level is calculated from the relationship shown in FIG. The number of horizontal pixels of the first TV camera is S, the horizontal angle of view of the first TV camera is 2φ, the distance between the first TV camera and the second TV camera is 2L, and the horizontal angle of the first TV camera is θ. Then, a point P on the vertical bisector OM of the first TV camera and the second TV camera
When the n-similar region (feature point) is at the n-th pixel from the left of the image captured by the first television camera, the relational expression OPn = L · tan λ = L · tan (θ + φ-2φ · n / S) ( 2) holds. Further, OPs is obtained in advance at the reference position. The water level is obtained from the water level at that time, OPs, and OPn obtained from Equation 2.

【0015】(構成の説明)図8は、本発明の第2の実
施例である、水位を算出するためのブロック図である。
水面から等距離にある直線上に配置した第1のテレビカ
メラ1aと、第2のテレビカメラ1bは、川の水面を撮
影する。その画像信号をそれぞれ第1のA/D変換器2
aと、第2のA/D変換器2bでデジタル信号に変換す
る。そのデジタル信号をそれぞれ第1の画像メモリ3a
と、第2の画像メモリ3bで記憶する。それぞれ記憶さ
れた画像データを、第1及び第2の画像分割手段4a、
4bで分割する。その分割されたそれぞれのデータの類
似度を比較するため相関器5で相関をとる。相関された
データから、特徴点を抽出回路10で抽出する。その抽
出された特徴点の画素位置を、画素数算出手段11で求
める。水位算出手段12は、その画素位置と、基準値設
定手段13で予め設定された基準データ(別の手段で求
めた水位と画素位置の関係)に基づいて、水位を算出す
る。水位算出手段12は、算出された水位を第1の実施
例の基準値設定手段9に出力する。基準値設定手段9
は、水位の変化から水平画角を補正する。なお、第1の
テレビカメラ1aと、第2のテレビカメラ1bの撮影時
間をずらして、A/D変換器を共用することもできる。
時間差が1フレーム(1/30秒)程度だと、計測対象
水面の映像に差はでないからである。さらに、第1のテ
レビカメラ1a、A/D変換器2、画像メモリ等は、第
1の実施例の構成要素と兼ねることができる。
(Description of Configuration) FIG. 8 is a block diagram for calculating the water level, which is the second embodiment of the present invention.
The first TV camera 1a and the second TV camera 1b, which are arranged on a straight line that is equidistant from the water surface, photograph the water surface of the river. The image signals are respectively converted into the first A / D converter 2
a and the second A / D converter 2b convert into a digital signal. The digital signals are respectively transferred to the first image memory 3a.
And stored in the second image memory 3b. The image data stored in each of the first and second image dividing means 4a,
Divide by 4b. Correlation is performed by the correlator 5 in order to compare the similarities of the respective divided data. A feature point is extracted by the extraction circuit 10 from the correlated data. The pixel position of the extracted feature point is calculated by the pixel number calculation means 11. The water level calculating means 12 calculates the water level based on the pixel position and the reference data preset by the reference value setting means 13 (the relationship between the water level and the pixel position obtained by another means). The water level calculation means 12 outputs the calculated water level to the reference value setting means 9 of the first embodiment. Reference value setting means 9
Corrects the horizontal angle of view from the change in water level. The A / D converter can be shared by shifting the shooting times of the first TV camera 1a and the second TV camera 1b.
This is because if the time difference is about 1 frame (1/30 second), there is no difference in the image of the water surface to be measured. Further, the first television camera 1a, the A / D converter 2, the image memory and the like can also serve as the constituent elements of the first embodiment.

【0016】(処理の説明)図9は、実施例の処理を説
明するためのフローチャートである。第1のテレビカメ
ラ1aと第2のテレビカメラ1bから画像信号を入力す
る(a)。画面を水平方向中心線に沿った小領域(本実
施例では、9画素×9画素とした。)に分割する
(b)。第1のテレビカメラ1aと第2のテレビカメラ
1bの画像の対応する小領域間の相関係数を演算する
(c)。求めた相関係数の最大となる小領域を抽出する
(d)。対応する最大相関係数の、第1のテレビカメラ
1aの画像における左からの画素数を算出する(e)。
第1のテレビカメラ1aから水面までの距離を数2で演
算する(f)。その距離と基準値設定手段13で予め設
定された基準データに基づいて、第1のテレビカメラ1
aから水面までの垂直距離を、数2で求める(g)。そ
の垂直距離と、予め計測した基準位置の水位とから、求
めるべき水位を算出する(h)。
(Explanation of Processing) FIG. 9 is a flow chart for explaining the processing of the embodiment. Image signals are input from the first television camera 1a and the second television camera 1b (a). The screen is divided into small regions (9 pixels × 9 pixels in this embodiment) along the horizontal center line (b). The correlation coefficient between the corresponding small areas of the images of the first television camera 1a and the second television camera 1b is calculated (c). A small area having the maximum calculated correlation coefficient is extracted (d). The number of pixels from the left of the corresponding maximum correlation coefficient in the image of the first television camera 1a is calculated (e).
The distance from the first television camera 1a to the water surface is calculated by the equation 2 (f). Based on the distance and the reference data preset by the reference value setting means 13, the first television camera 1
The vertical distance from a to the water surface is calculated by the equation 2 (g). The water level to be obtained is calculated from the vertical distance and the water level at the reference position measured in advance (h).

【0017】このように、本実施例は、測定箇所から測
定対象の流体までの距離が不明な場合、また変化する場
合、有効な手段となる。
As described above, this embodiment is an effective means when the distance from the measurement point to the fluid to be measured is unknown or changes.

【0018】[0018]

【発明の効果】本発明は、以上説明したように、計測対
象水面から一定距離に配置したテレビカメラで水面を、
一定時間毎に撮影する。そのフレーム間の相関係数によ
り、特徴点の移動量を検出する。その移動量とフレーム
間時間差から流速を演算する。そのため、河川の流れの
中に装置を設置する必要がなく、工事、メンテナンスが
簡単であり、大雨時等で破損することがない。また、特
別なテレビカメラを用意する必要がない。
As described above, according to the present invention, the water surface of a television camera placed at a constant distance from the water surface to be measured
Take pictures at regular intervals. The amount of movement of the feature point is detected by the correlation coefficient between the frames. The flow velocity is calculated from the amount of movement and the time difference between frames. Therefore, it is not necessary to install the device in the flow of the river, the construction and the maintenance are easy, and it is not damaged by heavy rain. Also, it is not necessary to prepare a special TV camera.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施例を示すフローチャトであ
る。
FIG. 2 is a flow chart showing a first embodiment of the present invention.

【図3】本発明を設置した例を示す外観図である。FIG. 3 is an external view showing an example in which the present invention is installed.

【図4】本発明の第1の実施例での画像例を示す図であ
る。
FIG. 4 is a diagram showing an example of an image in the first embodiment of the present invention.

【図5】第2の実施例での設置例を示す外観図である。FIG. 5 is an external view showing an installation example in the second embodiment.

【図6】第2の実施例の計測原理を説明するための図で
ある。
FIG. 6 is a diagram for explaining the measurement principle of the second embodiment.

【図7】第2の実施例の計測原理の関係式を説明するた
めの図である。
FIG. 7 is a diagram for explaining a relational expression of the measurement principle of the second embodiment.

【図8】第2の実施例を示すブロック図である。FIG. 8 is a block diagram showing a second embodiment.

【図9】第2の実施例を示すフローチャトである。FIG. 9 is a flow chart showing a second embodiment.

【符号の説明】[Explanation of symbols]

1…画像手段(テレビカメラ)、2…A/D変換器、3
…記憶手段(画像メモリ)、4…検出手段(画像分割手
段)、5…検出手段(相関器)、6…検出手段(抽出回
路)、7…演算手段(画素算出手段)、8…演算手段
(流速算出手段)、9…基準値設定手段。
1 ... Image means (TV camera), 2 ... A / D converter, 3
... storage means (image memory), 4 ... detection means (image division means), 5 ... detection means (correlator), 6 ... detection means (extraction circuit), 7 ... calculation means (pixel calculation means), 8 ... calculation means (Flow velocity calculation means) 9, reference value setting means.

【数1】 [Equation 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体の表面を撮影する撮像手段(1)と、
所定の時間を隔てて該撮像手段が撮影する第1及び第2
の画像を記憶する記憶手段(3)と、該第1及び第2の
画像のそれぞれ一部の類似度を比較して、最も類似して
いる第1の画像中の類似領域と第2の画像中の類似領域
とを検出する検出手段(4、5、6)と、該第1の画像
中の類似領域と第2の画像中の類似領域の位置とを用い
て流体の速度を演算する演算手段(7、8)とを備えた
流速計測装置。
1. An imaging means (1) for imaging the surface of a fluid,
First and second images taken by the image pickup means at a predetermined time interval
Of the first image and the second image by comparing the similarity of a part of each of the first and second images with the storage means (3) for storing the second image. Computation for computing the velocity of the fluid using the detection means (4, 5, 6) for detecting the similar region in the inside and the positions of the similar region in the first image and the similar region in the second image. A flow velocity measuring device comprising means (7, 8).
JP17099293A 1993-06-17 1993-06-17 Current measuring equipment Pending JPH075188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17099293A JPH075188A (en) 1993-06-17 1993-06-17 Current measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17099293A JPH075188A (en) 1993-06-17 1993-06-17 Current measuring equipment

Publications (1)

Publication Number Publication Date
JPH075188A true JPH075188A (en) 1995-01-10

Family

ID=15915115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17099293A Pending JPH075188A (en) 1993-06-17 1993-06-17 Current measuring equipment

Country Status (1)

Country Link
JP (1) JPH075188A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956339A (en) * 1987-09-21 1990-09-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing superconducting ceramics in a magnetic field
WO2005095993A1 (en) * 2004-03-31 2005-10-13 The Tokyo Electric Power Company, Incorporated Fluid measuring system, fluid measuring method, and computer program
JP2006258575A (en) * 2005-03-16 2006-09-28 Takuwa Corp Method and system for measuring flow velocity of river and method and system for measuring river flow rate
JP2007212350A (en) * 2006-02-10 2007-08-23 Mitsubishi Electric Corp Flow velocity measurement device
JP2007225493A (en) * 2006-02-24 2007-09-06 National Maritime Research Institute Log speed measuring device for ship
JP2008216010A (en) * 2007-03-02 2008-09-18 Tokyo Electric Power Co Inc:The River flow rate calculating device and method, and computer program
JP2009210489A (en) * 2008-03-05 2009-09-17 Tokyo Electric Power Co Inc:The Oscillation measuring system and computer program
JP2015004660A (en) * 2013-06-18 2015-01-08 財團法人國家實驗研究院National Applied Research Laboratories Mobile image velocimetry method, and mobile image velocimetry device
CN110187142A (en) * 2019-06-13 2019-08-30 上海彩虹鱼海洋科技股份有限公司 Flow monitoring method and system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956339A (en) * 1987-09-21 1990-09-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing superconducting ceramics in a magnetic field
JP4548417B2 (en) * 2004-03-31 2010-09-22 東京電力株式会社 Fluid measurement system and fluid measurement method
WO2005095993A1 (en) * 2004-03-31 2005-10-13 The Tokyo Electric Power Company, Incorporated Fluid measuring system, fluid measuring method, and computer program
WO2005095994A1 (en) * 2004-03-31 2005-10-13 The Tokyo Electric Power Company, Incorporated Fluid measuring system and fluid measuring method
WO2005095995A1 (en) * 2004-03-31 2005-10-13 The Tokyo Electric Power Company, Incorporated Fluid measuring system and long focal point optical system
US7853065B2 (en) 2004-03-31 2010-12-14 The Tokyo Electric Power Company, Incorporated Fluid measuring system and fluid measuring method
US7826653B2 (en) 2004-03-31 2010-11-02 The Tokyo Electric Power Company, Incorporated Fluid measuring system and long focal point optical system
JPWO2005095994A1 (en) * 2004-03-31 2008-02-21 東京電力株式会社 Fluid measurement system and fluid measurement method
JP2006258575A (en) * 2005-03-16 2006-09-28 Takuwa Corp Method and system for measuring flow velocity of river and method and system for measuring river flow rate
JP2007212350A (en) * 2006-02-10 2007-08-23 Mitsubishi Electric Corp Flow velocity measurement device
JP2007225493A (en) * 2006-02-24 2007-09-06 National Maritime Research Institute Log speed measuring device for ship
JP4677637B2 (en) * 2006-02-24 2011-04-27 独立行政法人海上技術安全研究所 Marine water speed measurement device
JP2008216010A (en) * 2007-03-02 2008-09-18 Tokyo Electric Power Co Inc:The River flow rate calculating device and method, and computer program
JP2009210489A (en) * 2008-03-05 2009-09-17 Tokyo Electric Power Co Inc:The Oscillation measuring system and computer program
JP2015004660A (en) * 2013-06-18 2015-01-08 財團法人國家實驗研究院National Applied Research Laboratories Mobile image velocimetry method, and mobile image velocimetry device
CN110187142A (en) * 2019-06-13 2019-08-30 上海彩虹鱼海洋科技股份有限公司 Flow monitoring method and system

Similar Documents

Publication Publication Date Title
Lin et al. Automatic water-level detection using single-camera images with varied poses
US5311305A (en) Technique for edge/corner detection/tracking in image frames
US7733342B2 (en) Method of extracting 3D building information using shadow analysis
US10366500B2 (en) Autonomous characterization of water flow from surface water velocity
US20120113256A1 (en) System for detecting image abnormalities
KR20200064873A (en) Method for detecting a speed employing difference of distance between an object and a monitoring camera
JP6858415B2 (en) Sea level measurement system, sea level measurement method and sea level measurement program
CN113223075A (en) Ship height measuring system and method based on binocular camera
JPH075188A (en) Current measuring equipment
CN112614177B (en) Sea ice thickness identification system and method suitable for ship ice area sailing test
CN106012778B (en) Digital image acquisition analysis method for express highway pavement strain measurement
CN107966137A (en) A kind of satellite platform flutter detection method based on TDICCD splice regions image
Sandru et al. A complete process for shipborne sea-ice field analysis using machine vision
JP4108593B2 (en) Inundation monitoring device
CN105869108B (en) A kind of method for registering images in the mobile target detecting of moving platform
JP4752319B2 (en) Image recognition apparatus and image recognition method
US10970857B2 (en) Moving object detection method and system based on multiple sensors on same platform
JPH10512953A (en) Optical range and speed detection system
JPH02236420A (en) Method and device for measuring water level
JPH0777451A (en) Water level measuring device
JP2011133423A (en) Object deducing device
Lyons et al. Measurement of seafloor roughness with close range digital photogrammetry
JP2004212077A (en) Track displacement measuring method, and track displacement measuring device
Dong et al. A full version of vision-based structural identification
US20220114809A1 (en) Stereoscopic Camera System for Geo-registration of 3D Reconstructed Points and Vectors