JPH07509815A - Electromagnet for latch - Google Patents

Electromagnet for latch

Info

Publication number
JPH07509815A
JPH07509815A JP7500631A JP50063195A JPH07509815A JP H07509815 A JPH07509815 A JP H07509815A JP 7500631 A JP7500631 A JP 7500631A JP 50063195 A JP50063195 A JP 50063195A JP H07509815 A JPH07509815 A JP H07509815A
Authority
JP
Japan
Prior art keywords
core
electromagnet
coil
forming
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7500631A
Other languages
Japanese (ja)
Inventor
ゴロフ シー ニコラス
ロルフス ロドニー エル
Original Assignee
キャタピラー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キャタピラー インコーポレイテッド filed Critical キャタピラー インコーポレイテッド
Publication of JPH07509815A publication Critical patent/JPH07509815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ラッチ用電磁石に関し、より詳しくは、コア部分と磁気飽和で動作す るラッチ用電磁石に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a latching electromagnet, and more specifically, the present invention relates to a latching electromagnet, and more particularly, to a latching electromagnet that operates with a core portion and magnetic saturation. This invention relates to a latch electromagnet.

〔従来の技術〕[Conventional technology]

ラッチ用電磁石は各種の用途で使用されている。1つの用途では、制御回路が、 電磁石に可動部材を止め位置に「ラッチする」動作を行わせる場合がある。さら に又、制御回路により、所定の力を有する機械装置を介して可動部材に対し止め 位置から「ラッチ解除」の動作を行わせる場合がある。しかし、もし電磁石の「 ラッチ動作」力が変化すると、機械装置の力が電磁力に打ち勝つのに十分でなく なる場合もある。その結果、可動部材は止め位置にラッチされたままで、おそら く制御装置がうまく作動しなくなる。 Latching electromagnets are used in a variety of applications. In one application, the control circuit is An electromagnet may act to "latch" the movable member into a stopped position. Sara Also, the control circuit causes a stop to the movable member via a mechanical device having a predetermined force. There are cases where the "latch release" operation is performed from the position. However, if the electromagnet's If the latching force changes, the force of the mechanical device is not sufficient to overcome the electromagnetic force. Sometimes it happens. As a result, the movable member remains latched in the parked position and may The control device may not operate properly.

他の用途では、止め位置で電子油圧制御の制御レバーをラッチするのに、電磁石 が設けられる。電磁石を消磁するか、オペレーターが手動で制御レバーを励磁状 態の電磁石から外すまで、制御レバーは止め位置にラッチされる。後者の場合は 、オペレーターは電磁力に打ち勝つ力を制御レバーにかけなければならない。In other applications, electromagnets are used to latch electro-hydraulic control levers in the stop position. is provided. Either the electromagnet is demagnetized or the operator manually energizes the control lever. The control lever is latched in the stop position until it is removed from the electromagnet. In the latter case , the operator must apply a force to the control lever that overcomes the electromagnetic force.

不都合なことに、従来の電磁石の設計ではほぼ一定の電磁力を発生することはで きなかった。例えば、従来の電磁石100を図1に示す。電磁石100はコア1 05、コイル1lO2接極子115を含む。励磁状態では、コイル110は接極 子115をコア105にラッチする電磁力を生じる。コイル110を消磁すると 、バネ120が接極子を中立位置へ付勢する。Unfortunately, conventional electromagnet designs cannot generate nearly constant electromagnetic forces. I couldn't come. For example, a conventional electromagnet 100 is shown in FIG. Electromagnet 100 is core 1 05, including coil 11O2 armature 115. In the energized state, the coil 110 is polarized An electromagnetic force is generated that latches the child 115 to the core 105. When the coil 110 is demagnetized , a spring 120 biases the armature to a neutral position.

図2に(接極子がコアにラッチされているとき)電磁力とコイル電流との間の関 係を例示するカー電流曲線を示す。運転中、コイル電流は最小値と最大値の間を 変動する。電流の変動は、コイルの温度と電圧の変化による。曲線が「急」なの で、その結果束じる電磁力は、過少な力と過大な力の間を変化し、制御レバーが 意図しない時に外れを起こしたり、大きすぎてオペレーターが動かせないような 力を生じる場合がある。Figure 2 shows the relationship between the electromagnetic force and the coil current (when the armature is latched to the core). 2 shows Kerr current curves illustrating the relationship between the two. During operation, the coil current varies between the minimum and maximum values. fluctuate. The variation in current is due to changes in coil temperature and voltage. The curve is “steep” The resulting electromagnetic force changes between too little and too much force, and the control lever It may come off unexpectedly or be too large for the operator to move. Force may be generated.

従来の電磁石の設計の他の望ましくない態様は、エアギャップ長さが変化するこ とに関係する。例えば図1に示すように、接極子115は電磁コアとラッチ状態 で「ぴったり接触するjように設計されている。しかし、エアギャップ長さが変 化し、そのため電磁力が変化することがある。例えば、製造公差、コアと接極子 の調整不良、電磁石部品の上に蓄積した(ちりやさび粒子等の)異物等、全ての ものがエアギャップ長さをかなり変化させる場合がある。エアギャップ長さがか なり変化し、コイル電流が変動するので、電磁力の制御が困難になる。Another undesirable aspect of conventional electromagnet design is that the air gap length varies. related to. For example, as shown in FIG. However, if the air gap length changes, , and therefore the electromagnetic force may change. For example, manufacturing tolerances, core and armature All electromagnetic components, such as misalignment, foreign matter (such as dust or rust particles) that has accumulated on the electromagnetic parts, etc. may vary the air gap length considerably. What is the air gap length? The coil current fluctuates, making it difficult to control the electromagnetic force.

本発明は、上述の問題の1つ又はそれ以上を克服しようとするものである。The present invention seeks to overcome one or more of the problems mentioned above.

〔発明の開示〕[Disclosure of the invention]

本発明の1態様では、ラッチ用電磁石が提供される。電磁石は極表面、巻き線コ イル、接極子を持つコアを含む。コアは、磁束密度が飽和レベルまで局所的に増 加するような幾何学的配置を持つようにすると好都合である。 In one aspect of the invention, a latching electromagnet is provided. The electromagnet is located on the extreme surface, contains a core with an armature and an armature. The core has a magnetic flux density that locally increases to a saturation level. It is advantageous to have a geometric arrangement that adds

〔図面の簡単な説明〕[Brief explanation of the drawing]

本発明をより良く理解できるように添付図面の説明をする。 BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the invention, reference is made to the accompanying drawings.

図1は、従来の電磁石の断面図である。FIG. 1 is a cross-sectional view of a conventional electromagnet.

図2は、従来の電磁石の電磁力とコイル電流のグラフを示す。FIG. 2 shows a graph of electromagnetic force and coil current of a conventional electromagnet.

図3は、本発明の1実施例の電磁石の断面図である。FIG. 3 is a cross-sectional view of an electromagnet according to one embodiment of the present invention.

図4は、本発明の電磁石の磁束密度と磁束強度のグラフを示す。FIG. 4 shows a graph of magnetic flux density and magnetic flux strength for the electromagnet of the present invention.

図5は、本発明の電磁石の電磁力とコイル電流のグラフを示す。FIG. 5 shows a graph of electromagnetic force and coil current of the electromagnet of the present invention.

図6は、本発明の他の実施例の電磁石の断面図である。FIG. 6 is a cross-sectional view of an electromagnet according to another embodiment of the present invention.

図7は、本発明の例示の制御機構の断面図である。FIG. 7 is a cross-sectional view of an exemplary control mechanism of the present invention.

図8. 9. 10. IIは、本発明の電磁石の固定機構の断面図である。Figure 8. 9. 10. II is a sectional view of the electromagnet fixing mechanism of the present invention.

図12は、本発明のさらに他の実施例の電磁石の断面図である。FIG. 12 is a sectional view of an electromagnet according to still another embodiment of the present invention.

〔発明実施のための最良の形態〕[Best mode for carrying out the invention]

図3を参照すると、本発明の実施例が示されている。図3は円筒形ラッチ用電磁 石300の断面を示す。電磁石300は極表面を有するコア305、及びチャン ネル320で分割されている内側、外側部分310,315を含む。巻き線コイ ル325がチャンネル320内に配置されている。コイル325の励磁状態では 、コイル325は接極子330を極表面にラッチ力を生しる。 Referring to FIG. 3, an embodiment of the invention is shown. Figure 3 shows the solenoid for cylindrical latch. A cross section of stone 300 is shown. The electromagnet 300 includes a core 305 having a polar surface and a chamber. It includes inner and outer portions 310 and 315 separated by a wall 320. winding carp A channel 325 is disposed within the channel 320. In the excitation state of the coil 325 , the coil 325 exerts a latching force on the pole surface of the armature 330.

従来技術の部分で前述した問題を解決するため、電磁石300はコア部分で磁束 密度を局部的に飽和レベルまで増加させるように形成した幾何学的配置で設計さ れている。図4にこのタイプの電磁石の典型的なり−H曲線を示す。y軸は磁束 密度Bを表し、X軸は磁束強度即ち磁場の強さをHを表す。曲線の上の部分(B sat )は、飽和磁束密度の領域を表す。磁束飽和領域は、空気中で自然に起 こるB−Hの関係に対応する。In order to solve the problem mentioned above in the prior art section, the electromagnet 300 has a magnetic flux in the core part. Designed with a shaped geometry that locally increases the density to saturation levels. It is. FIG. 4 shows a typical L-H curve for this type of electromagnet. y-axis is magnetic flux The X axis represents the density B, and the X axis represents the magnetic flux strength, ie, the strength of the magnetic field, H. The upper part of the curve (B sat) represents the region of saturation magnetic flux density. The magnetic flux saturation region occurs naturally in air. This corresponds to the B-H relationship.

1つの幾何学的配置を図3の実施例に示し、ここでコア305は内側部分315 上の飽和領域335を形成し、飽和磁束密度を提供する。より詳しくは、コア3 05の内側部分310にボア333を形成する。飽和領域335は、次式で計算 した所定の断面積へを有する。One geometry is shown in the embodiment of FIG. 3, where core 305 is connected to inner portion 315 An upper saturation region 335 is formed to provide a saturation magnetic flux density. For more information, see Core 3 A bore 333 is formed in the inner portion 310 of 05. The saturation region 335 is calculated using the following formula It has a predetermined cross-sectional area.

Bsat = (φ/A)= (Ni/RA) [1]式[1]を八について解 いて、 A= (Ni/ (R)(Bsat )) [2]ここに、φ=磁束 R−電磁気抵抗 N=コイル巻き数 i=コイル電流 り、=飽和領域の外直径 り、=飽和領域の内直径 飽和領域335の所定の領域は、コイル電流と温度が変化しても、磁束密度と電 磁力が少ししか変化しない。Bsat = (φ/A) = (Ni/RA) [1] Solving equation [1] for 8 There, A=(Ni/(R)(Bsat))) [2] Here, φ=magnetic flux R-electromagnetic resistance N = number of coil turns i = coil current = outer diameter of saturated region = inner diameter of saturated region A predetermined region of the saturation region 335 maintains the magnetic flux density and current even as the coil current and temperature change. The magnetic force changes only slightly.

1つの幾何学的配置を上述したが、他の幾何学的配置で容易に代用できることは 当業者には明らかである。従って、本発明は、図3に示し上述した幾何学的配置 に制限されない。Although one geometrical arrangement has been described above, other geometrical arrangements can easily be substituted. It will be clear to those skilled in the art. Accordingly, the present invention utilizes the geometric arrangement shown in FIG. 3 and described above. not limited to.

結果として得られる力と電流の曲線を図5に示す。所望の電磁力が所定の作動ポ イントで作用する。図示するように、所定の作動ポイントに対応する曲線部分は 、従来の電磁石の作動ポイントと比較して比較的「フラット」である。従って、 従来の電磁石と比較して、コイル電流が変動しても電磁力は少ししが変化しない 。The resulting force and current curves are shown in Figure 5. the desired electromagnetic force at a given actuation point. Acts on the int. As shown, the curved section corresponding to a given actuation point is , is relatively "flat" compared to the actuation point of conventional electromagnets. Therefore, Compared to conventional electromagnets, the electromagnetic force remains the same even if the coil current changes. .

本発明の他の実施例を図6に示す。ここでは、外側部分315が内側部分310 より長さが長く、(接極子330が極表面にラッチされるとき)内側部分310 と接極子330の間に所定の作用エアギャップ長さLlを与える。所定のエアギ ャップ長さLlは、調整不良、磨耗、異物等によるエアギャップ長さの相対的増 加より実質的に大きいのが好ましい。従って、所定のエアギャップ長さり、があ るので、接極子とコアの調整不良によりエアギャップ長さが変化しても、電磁力 は少ししか変化しない。Another embodiment of the invention is shown in FIG. Here, the outer portion 315 is the inner portion 310 The inner portion 310 is longer in length (when the armature 330 is latched to the pole surface) and armature 330 to provide a predetermined working air gap length Ll. prescribed air conditioner The air gap length Ll is determined by the relative increase in air gap length due to poor adjustment, wear, foreign matter, etc. Preferably, it is substantially greater than the addition. Therefore, the predetermined air gap length is Therefore, even if the air gap length changes due to misalignment of the armature and core, the electromagnetic force will be changes only slightly.

本発明は、種々の用途で使うことができるが、1つの適用例を図7に示す。ここ では、本発明は制御機構の制御レバーを止め位置で「ラッチする」のに使われる 。図示するように、制御機構700は、ハウジング705とハウジング705内 に配置された制御レバー710を含む。制御レバー710は、中立と(中立の両 側の)所定の位置の間で2方向旋回運動を行う。図示するように、制御レバー7 10は2股のアーム715を形成する。電磁石接極子330がそれぞれのレバー アーム715にしっかり固定されている。センターリングバネ720が分岐に取 り付けられ、制御レバー710を中立位置に付勢する。以下に制御機構700に 関する本発明の作用を述べる。Although the present invention can be used in a variety of applications, one example application is shown in FIG. here In this case, the present invention is used to "latch" a control lever of a control mechanism in a stop position. . As shown, the control mechanism 700 includes a housing 705 and a including a control lever 710 located at. The control lever 710 has a neutral performs a two-way pivoting movement between predetermined positions (on both sides). As shown, the control lever 7 10 forms a bifurcated arm 715. Electromagnetic armature 330 connects each lever It is firmly fixed to arm 715. Centering spring 720 is attached to the branch. the control lever 710 to the neutral position. The control mechanism 700 is described below. The effects of the present invention regarding this will be described.

本発明を図7の制御機構700に関して示すが、本発明を電子、油圧、気圧型装 置等の多くの他の適用で使用できることは、当業者には明らかであろう。Although the present invention is illustrated with respect to control mechanism 700 in FIG. It will be obvious to those skilled in the art that it can be used in many other applications, such as in

本発明はさらに、製造公差、又は外側極表面の接極子との調整不良を補償する自 己調整型の取り付は態様を提供する。例えば、図8において電磁石300が取り 付はプレート800に取り付けられているように示されている。電磁石コア30 5を取り付はプレート800に取り付けるのに、ボルト805が使われている。The present invention further provides an automatic means for compensating for manufacturing tolerances or misalignment of the outer pole surface with the armature. Self-adjusting mounting provides an embodiment. For example, in FIG. The attachment is shown attached to plate 800. electromagnet core 30 5 to the plate 800, bolts 805 are used.

また、柔軟性のある材料で出来た2つのOリング810a、 bを備える。1つ の0リング810aはワッシャー815と取り付はプレート800の間に配置さ れ、他の0リング810bは取り付はプレート800と電磁石コア305の間に 配置されている。例示した構成では、電磁石の取り付けにある程度の柔軟性があ る。例えば図9に示すように、接極子330の調整はX軸に対して「傾いて」い て、しっかり取り付けられた電磁石コアとは適正に「係合」しない。しかし、こ こでは取り付けは柔軟性があり、接極子の方向に係わらず、接極子330が適正 に電磁石コア305と係合するようにすることができる。It also includes two O-rings 810a and 810b made of flexible material. one The O-ring 810a is placed between the washer 815 and the mounting plate 800. The other O-ring 810b is installed between the plate 800 and the electromagnet core 305. It is located. The example configuration allows some flexibility in mounting the electromagnets. Ru. For example, as shown in FIG. and will not properly "engage" with a firmly attached electromagnet core. However, this Here, the installation is flexible and the armature 330 is correct regardless of the armature orientation. The electromagnetic core 305 can be engaged with the electromagnetic core 305 at the same time.

他のタイプの自己調整態様を図1Oに示す。ここでは、電磁石コア305はフラ ンジ820を含み、取り付はプレート800は機械的ジヨイント825を含み、 フランジ820と噛み合って電磁石コア305を取り付はプレート800に固定 する。また、同様にこの態様により取り付けの柔軟性が増す。例えば図11に示 すように、接極子330が調整不良でも電磁石コア305と適正に係合する。Another type of self-adjustment embodiment is shown in FIG. 1O. Here, the electromagnet core 305 is the mounting plate 800 includes a mechanical joint 825; The electromagnet core 305 is attached and fixed to the plate 800 by engaging with the flange 820. do. This aspect also increases mounting flexibility. For example, as shown in Figure 11. Thus, even if the armature 330 is maladjusted, it will still properly engage the electromagnetic core 305.

他のタイプの幾何学的配置を図12に示す。ここではコア305は外側部分31 5の上に飽和領域335を形成し、飽和磁束密度を提供する。より詳しくは、コ ア305の外側コア表面上に環状溝337を形成する。飽和領域335は次の関 係の断面積Aここに、Doは飽和領域の外直径を、D、は飽和領域の内直径を表 す。Another type of geometry is shown in FIG. Here the core 305 is the outer portion 31 A saturation region 335 is formed above 5 to provide a saturation magnetic flux density. For more information, see An annular groove 337 is formed on the outer core surface of the core 305. The saturation region 335 is The cross-sectional area of A where Do is the outer diameter of the saturated region, and D is the inner diameter of the saturated region. vinegar.

この幾何学的配置により、幾つかの利点が得られる。極表面が飽和領域を作るよ うに修正されていないので、極表面の表面領域は比較的大きく、比較的高いラッ チ力を生む。その上、この構成により磁束密度と電磁力に生じる変化は僅かであ る。This geometry offers several advantages. The extreme surface creates a saturated region Since the surface area of the extreme surface is relatively large and the surface area is relatively high, Generates strength. Moreover, this configuration causes only small changes in magnetic flux density and electromagnetic force. Ru.

〔産業上の適用性〕[Industrial applicability]

本発明の運転は、作業用車両の用具制御装置に使用することができる。ここでは 用具制御装置について述べているが、本発明は「ラッチ」が必要な多くの用途で 使うことができることは当業者には明らかである。 The operation of the present invention can be used in a tool control system for a work vehicle. here Although referred to as an implement control device, the present invention is useful in many applications where a "latch" is required. It will be clear to those skilled in the art that it can be used.

本発明により、車両の作業道具の「自動」制御を提供するようにしてもよい。The invention may provide for "automatic" control of a vehicle's work implements.

例えば、電磁石330は制御レバー710を所定のレバー位置で「ラッチ」し、 それは作業用具の所定の位置例えば所定のパケットの「上昇距離」又は「角度」 を表す。For example, electromagnet 330 "latches" control lever 710 in a predetermined lever position; It refers to the given position of the work implement, e.g. the "ascent distance" or "angle" of a given packet. represents.

動作において、車両のオペレーターは制御レバー710を所定の位置に旋回させ る。駆動回路725は電磁石300に励磁信号を送り、それに応じて該電磁石が 励磁され制御レバー705を所定のレバー位置に「ラッチ」する。従って、電子 油圧装置が、作業道具を所定の位置に位置させる。いったん作業用具が所定の位 置に到着すると、用具制御装置は電磁石300を消磁し、制御レバー710を電 磁石300からラッチ解除する。その後、バネ720が制御レバー710を中立 位置に付勢する。In operation, the vehicle operator pivots control lever 710 into position. Ru. The drive circuit 725 sends an excitation signal to the electromagnet 300, and the electromagnet is activated accordingly. Energized to "latch" control lever 705 into a predetermined lever position. Therefore, electronic A hydraulic system positions the work implement in position. Once the work tools are in place Upon arrival at the location, the implement controller demagnetizes the electromagnet 300 and energizes the control lever 710. Unlatch from magnet 300. The spring 720 then moves the control lever 710 to the neutral position. Force into position.

しかし、車両のオペレーターにとって、制御レバー710を所定の位置から「手 動で」ランチ解除するほうが好ましい場合もある。However, it is difficult for the vehicle operator to manually move the control lever 710 from a predetermined position. In some cases, it may be preferable to cancel lunch manually.

本発明では、バネ720のバネ力に打ち勝つのに十分な大きさだが、車両オペレ ーターがかける力により動かせる程度の大きさの所定の電磁力を与えるようにす るのが好都合である。さらに、本発明により(変動するコイル電流で駆動されて も)所定の電磁力がほぼ一定になるようになる。In the present invention, the spring 720 is large enough to overcome the spring force, but the vehicle operator A predetermined electromagnetic force that is large enough to be moved by the force applied by the motor is applied. It is convenient to Furthermore, according to the present invention (driven with varying coil current) ) The predetermined electromagnetic force becomes approximately constant.

従って、電磁力は所定の力の範囲内のままで、はぼ一定の力のレベルを与え、そ れにより、電磁力がバネの力より弱くなって意図しないときにラッチ解除される のを防止し、また電磁力がオペレーターが手動で動かせないほど大きくなるのを 防止する。この態様により電磁石に一定の電磁力が所望される多くの制御装置で 使えるようになる。Therefore, the electromagnetic force remains within a given force range, giving an approximately constant force level, and This causes the electromagnetic force to become weaker than the spring force, causing the latch to release when not intended. This prevents the electromagnetic force from becoming so large that the operator cannot move it manually. To prevent. This aspect is used in many control devices where a constant electromagnetic force is desired in the electromagnet. You will be able to use it.

本発明の他の態様、目的、利点は、図面、発明の詳細な説明、特許請求の範囲を 読めばわかるであろう。Other aspects, objects, and advantages of the invention may be found in the drawings, detailed description, and claims. Read it and you'll understand.

CMINMAX 〉 Q)CMINMAX 〉 Q)

Claims (1)

【特許請求の範囲】 1.極表面を形成するコア(305)、前記コア(305)中に配置された巻き 線コイル(325)、及び、接極子(330)、を備え、 前記コアが前記コアの外側表面に、飽和磁束密度を与える環状溝(337)を形 成したことを特徴とするラッチ用電磁石(300)。 2.前記コア(305)は環状形で、現状チャンネル(320)で分けられる内 側と外側部分(310,315)を形成し、前記環状溝(337)が前記外側部 分(315)上に次の関係の断面積Aの飽和領域(335)を形成することを特 徴とする第1項記載の電磁石(300)。 A=π/4×(Do2−D12) ここに、Doは飽和領域の外直径を、D1は飽和領域の内直径を表す。 3.励磁したコイル(325)ははぼ一定の電磁力を生じることを特徴とする第 2項記載の電磁石(300)。 4.前記外側部分(315)の長さが前記内側部分(310)の長さより長く、 前記接極子(330)が前記極表面にラッチされるのに応じて、前記内側部分( 310)と前記接極子(330)の間に所定のエアギャツプ長さを生じることを 特徴とする第3項記載の電磁石(300)。 5.ハウジング(705)、及び、 前記ハウジング(705)に固定されたラッチ用電磁石(300)、を備え、前 記ラッチ用電磁石(300)が、極表面を形成するコア(305)と、前記コア (305)中に配置された巻き線コイル(325)と、接極子(330)、とを 備え、 前記コアが次式の関係の断面積Aを有する飽和領域(335)を形成して飽和磁 束密度を与え、 A≡π/4×(Do2−D12) ここに、D。は飽和領域の外直径を、D1は飽和領域の内直径を表し、前記接極 子(330)を前記コア(305)に隣接して位置させる手段、及び、前記接極 子(330)が極表面に隣接して位置するのに応じて、前記コイル(325)に 電気的エネルギーを供給する手段(725)を備え、前記コイル(325)にそ れに応じて励磁状態となり、前記接極子(330)を前記極表面にラッチする電 磁力を生じる、 ことを特徴とする制御機構。 6.前記コア(305)が円形状であり、環状チャンネル(320)で分けられ る内側と外側部分(310,315)を形成し、さらに前記コア(305)が前 記コアの外側表面に飽和磁束密度を与える環状溝(337)を形成して、前記飽 和領域(335)は前記環状溝(337)と環状チャンネル(320)の間に配 置されることを特徴とする5項記載の制御機構。 7.前記励磁したコイル(325)は、ほぼ一定の電磁力を生じることを特徴と する第6項記載の制御機構。 8.ハウジング(705)、 前記ハウジング(705)内に配置され、中立位置と所定の位置の間で旋回動作 を行い、アーム(マ15)を形成するレバー(710)、及び、前記ハウジング (705)に固定されたラッチ用電磁石(300)、を備え、前記ラッチ用電磁 石(300)が、極表面を形成するコア(305)、と、前記コア(305)中 に配置された巻き線コイル(325)、と、前記アーム(715)にしっかり固 定された接極子(330)、とを備え、前記コアが次式の関係の断面積Aを有す る飽和領域(335)を形成して飽和磁束密度を与え、 A=π/4×(Do2−D12) ここに、Doは飽和領域の外直径を、D1は飽和領域の内直径を表し、前記レバ ー(715)が所定の位置に位置するのに応じて、前記コイル(325)に電気 的エネルギーを供給する手段(725)を備え、前記コイルがそれに応じて励磁 状態となり、前記レバー(715)を所定の位置にラッチする電磁力を生じる、 ことを特徴とする制御機構(700)。 9.前記コア(305)が円形状であり、環状チャンネル(320)で分けられ る内側と外側部分(310,315)を形成し、さらに前記コア(305)が前 記コアの外側表面に飽和磁束密度を与える環状溝(337)を形成して、前記飽 和領域(335)は前記環状溝(337)と環状チャンネル(320)の間に配 置されることを特徴とする8項記載の制御機構(700)。 10.前記励磁したコイル(325)は、ほぼ一定の電磁力を生じることを特徴 とする第9項記載の制御機構。 11.前記レバーアーム(715)に接続され、前記コイル(325)が消磁さ れると前記レバー(715)を中立位置に付勢するセンターリングバネ(720 )を含むことを特徴とする第10項記載の制御機構(700)。 12.極表面を形成するコア(305)、前記コア(305)中に配置された巻 き線コイル(325)、及び、接極子(330)を備え、 前記コアが次式の関係の断面積Aを有する飽和領域(335)を形成して飽和磁 束密度を与えることを特徴とするラッチ用電磁石(300)。 A=π/4×(Do2−D12) ここに、Doは飽和領域の外直径を、D1は飽和領域の内直径を表す。[Claims] 1. a core (305) forming a polar surface, a winding arranged in said core (305); Comprising a wire coil (325) and an armature (330), The core forms an annular groove (337) on the outer surface of the core that provides a saturation magnetic flux density. A latch electromagnet (300) characterized by the following: 2. The core (305) has an annular shape and is currently divided by channels (320). forming sides and outer portions (310, 315), said annular groove (337) forming said outer portions; It is special to form a saturated region (335) with a cross-sectional area A of the following relationship on the part (315). The electromagnet (300) according to item 1, which is characterized by: A=π/4×(Do2-D12) Here, Do represents the outer diameter of the saturated region, and D1 represents the inner diameter of the saturated region. 3. The excited coil (325) is characterized in that it produces a nearly constant electromagnetic force. Electromagnet (300) according to item 2. 4. the length of the outer portion (315) is longer than the length of the inner portion (310); In response to said armature (330) being latched to said pole surface, said inner portion ( 310) and the armature (330). The electromagnet (300) according to item 3, characterized in that: 5. a housing (705), and a latching electromagnet (300) fixed to the housing (705); The latching electromagnet (300) includes a core (305) forming an extreme surface and the core. (305) and the armature (330). Prepare, The core forms a saturated region (335) having a cross-sectional area A according to the following equation, and the saturated magnetic field is give the flux density, A≡π/4×(Do2-D12) Here, D. represents the outer diameter of the saturated region, D1 represents the inner diameter of the saturated region, and means for positioning a child (330) adjacent to said core (305); and said armature. said coil (325) in response to said coil (330) being located adjacent to the pole surface. means (725) for supplying electrical energy to said coil (325); In response to this, the electric current becomes energized and latches the armature (330) to the pole surface. generates magnetic force, A control mechanism characterized by: 6. The core (305) is circular and separated by annular channels (320). forming inner and outer portions (310, 315), with said core (305) forming a front An annular groove (337) is formed on the outer surface of the core to provide a saturation magnetic flux density. A sum region (335) is disposed between the annular groove (337) and the annular channel (320). 6. The control mechanism according to item 5, characterized in that: 7. The excited coil (325) is characterized in that it generates a substantially constant electromagnetic force. 7. The control mechanism according to claim 6. 8. Housing (705), disposed within the housing (705) and capable of pivoting between a neutral position and a predetermined position; a lever (710) forming an arm (ma15), and the housing. a latch electromagnet (300) fixed to the latch electromagnet (705); a core (305) in which a stone (300) forms an extreme surface; a winding coil (325) disposed on the arm (715); an armature (330), and the core has a cross-sectional area A with the following relationship: forming a saturated region (335) to provide a saturated magnetic flux density; A=π/4×(Do2-D12) Here, Do represents the outer diameter of the saturated region, D1 represents the inner diameter of the saturated region, and the lever - (715) is in a predetermined position, electricity is applied to the coil (325). means (725) for supplying target energy, said coil being energized accordingly. state, producing an electromagnetic force that latches the lever (715) in place; A control mechanism (700) characterized by: 9. The core (305) is circular and separated by annular channels (320). forming inner and outer portions (310, 315), with said core (305) forming a front An annular groove (337) is formed on the outer surface of the core to provide a saturation magnetic flux density. A sum region (335) is disposed between the annular groove (337) and the annular channel (320). 9. The control mechanism (700) according to claim 8, wherein the control mechanism (700) is 10. The excited coil (325) is characterized in that it produces a substantially constant electromagnetic force. 10. The control mechanism according to claim 9. 11. connected to the lever arm (715), and the coil (325) is demagnetized. a centering spring (720) that biases the lever (715) to a neutral position when ) The control mechanism (700) according to claim 10, characterized in that the control mechanism (700) includes: 12. a core (305) forming an extreme surface; a winding disposed within said core (305); Comprising a feeder coil (325) and an armature (330), The core forms a saturated region (335) having a cross-sectional area A according to the following equation, and the saturated magnetic field is A latching electromagnet (300) characterized by providing a flux density. A=π/4×(Do2-D12) Here, Do represents the outer diameter of the saturated region, and D1 represents the inner diameter of the saturated region.
JP7500631A 1993-06-01 1994-04-20 Electromagnet for latch Pending JPH07509815A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6979793A 1993-06-01 1993-06-01
US069,797 1993-06-01
PCT/US1994/004372 WO1994028559A1 (en) 1993-06-01 1994-04-20 Latching electromagnet

Publications (1)

Publication Number Publication Date
JPH07509815A true JPH07509815A (en) 1995-10-26

Family

ID=22091271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7500631A Pending JPH07509815A (en) 1993-06-01 1994-04-20 Electromagnet for latch

Country Status (4)

Country Link
EP (1) EP0653097B1 (en)
JP (1) JPH07509815A (en)
DE (1) DE69407387T2 (en)
WO (1) WO1994028559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520844A (en) * 2007-03-23 2010-06-17 オーチス エレベータ カンパニー Magnetic coupling device for elevator system
JP2011519733A (en) * 2008-04-22 2011-07-14 テクノマグネーテ ソチエタ ペル アツィオーニ Integrated magnetic device and method of manufacturing the integrated magnetic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517360A (en) * 1966-07-14 1970-06-23 Bell Aerospace Corp Electromagnetic force motor having linear output characteristics
US3571769A (en) * 1969-05-08 1971-03-23 Bell Aerospace Corp Electromagnetic force motor having adjustable magnetic saturation
US3644932A (en) * 1969-10-08 1972-02-22 Synergistics Inc High-speed indenting recorder
US3861643A (en) * 1973-10-05 1975-01-21 United Aircraft Corp Saturating magnetic control valve
GB1509907A (en) * 1974-08-14 1978-05-04 Lucas Industries Ltd Electro-magnetic actuating devices
US3921111A (en) * 1974-09-25 1975-11-18 Marotta Scientific Controls Solenoid actuator for high pressure valve
JPS606526B2 (en) * 1980-04-15 1985-02-19 ブラザー工業株式会社 rotary solenoid
US4419642A (en) * 1982-01-28 1983-12-06 Deere & Company Solenoid with saturable element
US4812884A (en) * 1987-06-26 1989-03-14 Ledex Inc. Three-dimensional double air gap high speed solenoid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520844A (en) * 2007-03-23 2010-06-17 オーチス エレベータ カンパニー Magnetic coupling device for elevator system
JP2011519733A (en) * 2008-04-22 2011-07-14 テクノマグネーテ ソチエタ ペル アツィオーニ Integrated magnetic device and method of manufacturing the integrated magnetic device

Also Published As

Publication number Publication date
DE69407387D1 (en) 1998-01-29
EP0653097A1 (en) 1995-05-17
DE69407387T2 (en) 1998-07-16
WO1994028559A1 (en) 1994-12-08
EP0653097B1 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPS5935335A (en) Electromagnetic switch
US4940958A (en) Polarized electromagnetic apparatus
EP0886285B1 (en) Bi-stable self-adjusting actuator mechanism
US5781090A (en) Latching electromagnet
US4959567A (en) Magnetodistortive actuator with adjustable magnetic bias
US5574416A (en) Electromagnetic relay
JPH07509815A (en) Electromagnet for latch
US6815846B2 (en) Linear voice coil actuator with a latching feature
US4801910A (en) Magnetic actuating mechanism
WO1986000168A1 (en) Electromagnetic actuator
US5646588A (en) Stroke elongation device for an electromagnetic actuator
JPH07151166A (en) Solenoid and wound spring clutch
US5659288A (en) Method for setting horn air gap
EP0191549B1 (en) Wire dot-printing head
JPS6138166Y2 (en)
US2834846A (en) Relay switch
JPS6028096Y2 (en) electromagnet device
US7328498B2 (en) Method for producing the surface geometry of solenoids
JPH073602Y2 (en) Electromagnetic actuator
JPS6141123B2 (en)
JP2002340218A (en) High strength pull type solenoid
JPS6325694Y2 (en)
JPH0116383Y2 (en)
JPH0720891Y2 (en) Electromagnet type bidirectional actuator
JPH0225210Y2 (en)