JPH0750879Y2 - AC elevator speed control device - Google Patents

AC elevator speed control device

Info

Publication number
JPH0750879Y2
JPH0750879Y2 JP1987073963U JP7396387U JPH0750879Y2 JP H0750879 Y2 JPH0750879 Y2 JP H0750879Y2 JP 1987073963 U JP1987073963 U JP 1987073963U JP 7396387 U JP7396387 U JP 7396387U JP H0750879 Y2 JPH0750879 Y2 JP H0750879Y2
Authority
JP
Japan
Prior art keywords
speed
signal
control device
speed pattern
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987073963U
Other languages
Japanese (ja)
Other versions
JPS63182699U (en
Inventor
泰之 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
Original Assignee
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd filed Critical Fujitec Co Ltd
Priority to JP1987073963U priority Critical patent/JPH0750879Y2/en
Publication of JPS63182699U publication Critical patent/JPS63182699U/ja
Application granted granted Critical
Publication of JPH0750879Y2 publication Critical patent/JPH0750879Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、減速時に速度帰還制御される交流エレベータ
の速度制御装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an improvement of a speed control device for an AC elevator that is speed feedback controlled during deceleration.

〔従来技術〕[Prior art]

一般に、減速時のみ速度帰還制御される交流エレベータ
においては、エレベータの負荷によって減速開始時点で
のかご速度が異なるため、負荷に関係なく同じ減速度で
減速した場合、大きな着床誤差を生じる。即ち、第2図
で示すように速度パターン信号V1に対し例えば重負荷上
昇の場合のエレベータかご実際速度V2と軽負荷上昇の場
合のエレベータかご実際速度V3とでは減速開始速度が異
なり、これらの負荷に対して同じ減速度で減速を行う
と、第2図の斜線部に示した面積が重負荷と軽負荷の着
床位置の差となって現れる。
Generally, in an AC elevator in which speed feedback control is performed only during deceleration, the car speed at the start of deceleration differs depending on the load of the elevator, and therefore when deceleration is performed at the same deceleration regardless of the load, a large landing error occurs. That is, as shown in FIG. 2, with respect to the speed pattern signal V 1, for example, the deceleration start speed is different between the actual elevator car speed V 2 when the heavy load increases and the actual elevator car speed V 3 when the light load increases, When deceleration is performed with the same deceleration for these loads, the area shown by the shaded area in FIG. 2 appears as the difference between the landing positions of the heavy load and the light load.

このため、塔内の着床位置手前約200mmの基準位置に着
床プレートを設け、エレベータかごがこの基準位置に到
達したときの基準速度と実際速度との速度誤差によって
修正信号を発生させ、この修正信号により速度パターン
信号を修正してかごの速度を制御し、着床精度を上げる
ようにしたり、又特開昭52−43244号公報のように、減
速点での基準速度と実際速度との速度偏差を修正信号と
して記憶し、この修正信号により速度パターン信号を修
正して着床精度を上げるようにしている。
For this reason, a landing plate is provided at a reference position of about 200 mm before the flooring position in the tower, and a correction signal is generated by a speed error between the reference speed and the actual speed when the elevator car reaches this reference position. The speed pattern signal is corrected by the correction signal to control the speed of the car so as to improve the landing accuracy, and as described in JP-A-52-43244, the reference speed at the deceleration point and the actual speed are set. The velocity deviation is stored as a correction signal, and the velocity pattern signal is corrected by this correction signal to improve the landing accuracy.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、前者の場合には、エレベータかごが等速走行
中、重負荷と軽負荷とで速度差が大きいと、この基準位
置による速度修正では着床精度を向上させることが困難
で、修正信号があまり大きいと修正信号挿入時、減速度
が第3図の破線のように変わり乗心地を大きく損なう欠
点があった。
However, in the former case, when the elevator car is traveling at a constant speed and the speed difference between the heavy load and the light load is large, it is difficult to improve the landing accuracy by speed correction using this reference position, and the correction signal is If it is too large, the deceleration changes when the correction signal is inserted, as shown by the broken line in FIG. 3, and the riding comfort is greatly impaired.

又、後者の場合には、定速走行時に基準速度と実際速度
とを比較しているため、エレベータ全体の慢性モーメン
トによる制御遅れの影響を解消することができないの
で、着床制御が極めて不十分であった。
Also, in the latter case, since the reference speed and the actual speed are compared during constant-speed traveling, the influence of the control delay due to the chronic moment of the entire elevator cannot be eliminated, so landing control is extremely insufficient. Met.

本考案は上記の点に鑑みなされたもので、乗心地を損な
わずに着床精度を向上させることのできる速度制御装置
を提供することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a speed control device capable of improving the landing accuracy without impairing the riding comfort.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、エレベータかごを駆動する誘導電動機と、該
誘導電動機の駆動トルクを制御する第一の制御装置と、
該誘導電動機の制動トルクを制御する第二の制御装置
と、エレベータかごの実際速度信号を出力する速度検出
器と、減速点におけるエレベータかごの実際速度信号の
大きさから漸減する速度パターン信号を発生する速度パ
ターン発生器とを備え、該速度パターン発生器の速度パ
ターン信号と、速度検出器の実際速度信号との速度偏差
に基づいて第一の制御装置及び第二の制御装置により適
宜エレベータかごの速度を制御するものにおいて、減速
点からの速度パターン信号と実際速度信号との連続的な
速度偏差に応じて、速度パターン発生器の速度パターン
信号の傾きを逐一変化させる修正信号を発する減速修正
器を設けるものである。
The present invention relates to an induction motor that drives an elevator car, a first control device that controls the drive torque of the induction motor, and
A second control device that controls the braking torque of the induction motor, a speed detector that outputs an actual speed signal of the elevator car, and a speed pattern signal that gradually decreases from the magnitude of the actual speed signal of the elevator car at the deceleration point. The speed pattern generator of the speed pattern generator, and based on the speed deviation between the speed pattern signal of the speed pattern generator and the actual speed signal of the speed detector, the first controller and the second controller appropriately adjust the elevator car In a device for controlling speed, a deceleration corrector that issues a correction signal that changes the slope of the speed pattern signal of the speed pattern generator step by step according to the continuous speed deviation between the speed pattern signal from the deceleration point and the actual speed signal. Is provided.

〔作用〕[Action]

上述の如く構成すれば、修正信号が挿入されても極めて
円滑にエレベータかごが減速制御される。
With the above configuration, even if the correction signal is inserted, the elevator car is decelerated very smoothly.

〔実施例〕〔Example〕

第1図は本考案による制御装置の全体の構成図、第4図
は第1図の部分回路図であり、図中1は三相交流電源、
2は起動指令が発せられると閉路し、停止指令が発せら
れると開路する電磁接触器の接点、3はゲート信号に応
じて駆動用電動機4に供給される電圧を適宜加減する両
方向性サイリスタ装置、5はゲート信号に応じて制動用
電動機6に供給される直流電圧を適宜加減するサイリス
タ整流装置、7はエレベータかご8の実際速度信号7aを
出力する速度検出器、9はステップ状の起動指令信号9a
と速度検出器7の実際速度信号7aに基づいて後述する理
想的な速度パターン信号9bを出力する速度パターン発生
器、10は速度パターン発生器9の速度パターン信号9bと
速度検出器7の実際速度信号7aの速度偏差に基づき制御
信号10aを出力する速度調節器、11は速度調節器10の正
の値の制御信号10a1あるいは全電圧点弧装置12の出力信
号に基づき両方向性サイリスタ装置3の移相を制御する
移相器、13はたとえば起動指令信号9aが発せられて所定
時間t1(概ねエレベータかご8の加速途中の時点)経過
すると、接点cとbが接続され、エレベータかご8が減
速点に到達すると接点cとaが接続される自動切換スイ
ッチ、14は速度調節器10の負の値の制御信号10a2に基づ
きサイリスタ整流装置5の移相を制御する移相器、15は
速度調節器10の制御信号10aに基づいて修正信号15aを速
度パターン発生器9に入力して速度パターン信号9bの傾
き(減速度)を加減する本考案による減速修正器、OP1
〜OP5は演算増幅器、C1,C2はコンデンサ、D1はダイオー
ド、FET1,FET2はスイッチング特性を利用したNチャン
ネル形電界効果トランジスタ、R1〜R15は抵抗、VR1,VR2
は可変抵抗、Sは起動指令が発せられて所定時間t1経過
すると、接点cとaが接続され、停止指令が発せられる
までその状態を維持し、それ以外は接点cとbが接続さ
れている自動切換スイッチ、RY1a,RY1cはエレベータか
ご8が減速点に到達すると閉路し、停止指令が発せられ
るまで閉路しつづける減速指令リレー(コイルは図示省
略)の常開接点、RY2bはエレベータかご8が減速点に到
達すると閉路し、所定の速度に下がるまで閉路しつづけ
る修正リレー(コイルは図示省略)の常閉接点である。
FIG. 1 is an overall configuration diagram of a control device according to the present invention, and FIG. 4 is a partial circuit diagram of FIG. 1, in which 1 is a three-phase AC power supply,
2 is a contact of an electromagnetic contactor that is closed when a start command is issued and is opened when a stop command is issued, 3 is a bidirectional thyristor device that appropriately adjusts the voltage supplied to the drive motor 4 according to a gate signal, 5 is a thyristor rectifier that appropriately adjusts the DC voltage supplied to the braking electric motor 6 according to the gate signal, 7 is a speed detector that outputs the actual speed signal 7a of the elevator car 8, and 9 is a step-like start command signal 9a
And a speed pattern generator that outputs an ideal speed pattern signal 9b described later based on the actual speed signal 7a of the speed detector 7, and 10 is the speed pattern signal 9b of the speed pattern generator 9 and the actual speed of the speed detector 7. speed regulator for outputting a control signal 10a on the basis of the speed deviation signal 7a, 11 is the speed regulator 10 positive values of the control signals 10a 1 or bidirectional thyristor device 3 based on the output signal of the full voltage ignition apparatus 12 of the The phase shifter 13 for controlling the phase shift, for example, when the start command signal 9a is issued and a predetermined time t 1 (about the time when the elevator car 8 is being accelerated) elapses, the contacts c and b are connected and the elevator car 8 is When reaching the deceleration point, an automatic changeover switch connecting the contacts c and a, 14 is a phase shifter for controlling the phase shift of the thyristor rectifier 5 based on the negative control signal 10a 2 of the speed regulator 10, and 15 is Based on the control signal 10a of the speed controller 10. Deceleration corrector according the present invention for adjusting the inclination (deceleration) of the stomach to enter a correction signal 15a to the speed pattern generator 9 speed pattern signal 9b, OP1
~ OP5 is an operational amplifier, C1 and C2 are capacitors, D1 is a diode, FET1 and FET2 are N-channel type field effect transistors using switching characteristics, R1 to R15 are resistors, VR1 and VR2.
Is a variable resistance, and S is a contact for connecting the contacts c and a after a lapse of a predetermined time t 1 after a start command is issued, and maintains that state until a stop command is issued, otherwise the contacts c and b are connected. The RY1a and RY1c automatic changeover switches are closed when the elevator car 8 reaches the deceleration point, and the normally closed contacts of the deceleration command relay (coil is not shown) keep closing until the stop command is issued. It is a normally-closed contact of a correction relay (coil is not shown) that closes when it reaches a deceleration point and continues to close until it reaches a predetermined speed.

次に本考案装置の動作について説明する。まず、呼びが
登録されて第5図に示すステップ状の起動指令信号9aが
速度パターン発生器9に入力されると、自動切換スイッ
チS,演算増幅器OP1,OP2を通じて演算増幅器OP3の出力Vo
は入力電圧Vpと抵抗R5及びコンデンサC1で決まる積分時
定数に応じた傾きで立上がり、抵抗R7とコンデンサC2か
らなる一次遅れ回路を通じて速度パターン信号9bを速度
調節器10に入力し、自動切換スイッチ13を通じて移相器
11を働かせるため、エレベータかご8の実際速度信号7a
は第5図の破線で示すように速度パターン信号9bに略追
従して立上がる。そして、起動指令信号9aが発せられて
から所定時間t1経過すると、自動切換スイッチ13の接続
が接点a−cの接続から接点b−cの接続に切り換わる
ため、速度調節器10の速度偏差に基づく制御信号10aに
関係なく全電圧点弧装置12の出力信号に基づき移相器11
により両方向性サイリスタ装置3は全点弧され、駆動用
誘導電動機4に三相電源1の全電圧が印加され、エレベ
ータの負荷に応じて上げ荷(重負荷上昇あるいは軽負荷
下降)の場合には実際速度信号は7a1,下げ荷(重負荷
下降あるいは軽負荷上昇)の場合には実際速度信号は7a
2のように異なる速度でエレベータは運転される。
Next, the operation of the device of the present invention will be described. First, when the call is registered and the stepwise start command signal 9a shown in FIG. 5 is input to the speed pattern generator 9, the output V o of the operational amplifier OP3 is passed through the automatic changeover switch S and the operational amplifiers OP1 and OP2.
Rises with a slope according to the input voltage V p , the integration time constant determined by the resistor R5 and the capacitor C1, and the speed pattern signal 9b is input to the speed controller 10 through the first-order lag circuit consisting of the resistor R7 and the capacitor C2, and the automatic changeover switch Phase shifter through 13
Actual speed signal 7a of elevator car 8 for working 11
Rises substantially following the speed pattern signal 9b as shown by the broken line in FIG. Then, starting when the command signal 9a is emitted a predetermined time t 1 has passed since, because the connection of the automatic changeover switch 13 is switched from the connection of the contacts a-c to connect the contacts b-c, the speed deviation of the speed regulator 10 Phase shifter 11 based on the output signal of full voltage ignition device 12 regardless of control signal 10a based on
Thus, the bidirectional thyristor device 3 is fully ignited, the full voltage of the three-phase power source 1 is applied to the driving induction motor 4, and when the load is increased (heavy load increase or light load decrease) depending on the elevator load. The actual speed signal is 7a 1 , and the actual speed signal is 7a when unloading (heavy load falling or light load rising).
Elevators are operated at different speeds such as 2 .

一方、起動指令信号9aが発せられてから所定時間t1経過
すると、自動切換スイッチSの接続は接点b−cの接続
から接点a−cの接続に切り換わるため、演算増幅器OP
1にはステップ状の起動指令信号9aに代わって電界効果
トランジスタFET1(ゲートには正の電源電圧が印加され
ておりON状態)を通じて実際速度信号7aが入力され、演
算増幅器OP3の出力Voが今度は実際速度信号7aに追従す
るように切り換わり、速度パターン発生器9は抵抗R7と
コンデンサC2からなる一次遅れ回路を通じて、エレベー
タの負荷が上げ荷の場合は第5図に示す9b1,下げ荷の
場合は9b2のようにエレベータ負荷によって異なる速度
パターン信号9bを出力して速度調節器10に入力される。
On the other hand, activation when a command signal 9a is emitted a predetermined time t 1 has passed since, because the connection of the automatic changeover switch S is switched from the connection of the contacts b-c to connect the contacts a-c, the operational amplifier OP
The actual speed signal 7a is input to 1 through the field effect transistor FET1 (a positive power supply voltage is applied to the gate and is in the ON state) in place of the stepwise start command signal 9a, and the output V o of the operational amplifier OP3 is This time, it switches so as to follow the actual speed signal 7a, and the speed pattern generator 9 goes through the first-order lag circuit consisting of the resistor R7 and the capacitor C2, and if the elevator load is increased, it is lowered 9b 1 shown in FIG. In the case of a load, a speed pattern signal 9b that differs depending on the elevator load, such as 9b 2 , is output and input to the speed controller 10.

その後、エレベータかご8が減速点に到達すると、まず
自動切換スイッチ13の接続が接点b−cの接続から接点
a−cの接続に切り換わり速度パターン発生器9の速度
パターン信号9bと実際速度信号7aとのつき合わせによる
速度帰還制御が開始されると同時に、減速指令リレーの
接点RY1Cの閉路により電界効果トランジスタFET1のゲー
トが負の電位に換わり電界効果トランジスタFET1がOFF
状態になって、演算増幅器OP1への入力が零になること
から、演算増幅器OP3の出力Voは入力電圧VPと抵抗R5及
びコンデンサC1で決まる積分時定数に応じた傾きで立下
がり、抵抗R7とコンデンサC2からなる一次遅れ回路を通
じた速度パターン信号9bが速度調節器10に入力され、減
速修正器15による修正信号15aが存在しない場合には第
5図に示すようにエレベータ負荷が上げ荷のときに9
b1,下げ荷のときに9b2のように変化する。したがっ
て、速度パターン信号9bにエレベータかご8の実際速度
が忠実に追従したとしても第5図に示す斜線の面積に相
当する着床誤差,あるいは着床位置手前の基準位置にお
けるエレベータかご8のエレベータ負荷による実際速度
のバラツキを生じることになるが、本考案はエレベータ
かご8が減速点に到達すると、今まで電界効果トランジ
スタFET2のゲートの電位が抵抗R14を通じた負の電源電
圧Nから接点RY1a,RY2b,ダイオードD1を通じて正の電源
電圧Pに切り換わり、電界効果トランジスタFET2がON状
態になることから、速度調節器10の速度偏差に応じた,
即ちエレベータの負荷に応じた修正信号15aが速度パタ
ーン発生器9の演算増幅器OP3に入力されるため、速度
偏差の大きい下げ荷負荷の場合には減速度を強め、速度
偏差のあまり生じない上げ荷負荷の場合には減速度を略
そのままに維持する第6図に示す速度パターン信号9
b1,9b2を発生させる。そして、速度パターン信号9bが
所定値に達したときあるいはエレベータかご8の実際速
度信号7aが所定値に達したとき修正リレーの接点RY2bが
開路するため、電界効果トランジスタFET2のゲートの電
位が負の電源電圧Nに変化することから電界効果トラン
ジスタFET2はOFF状態となって修正信号15aが零となり、
エレベータの負荷に関係なく略同一の傾きで速度パター
ン信号9bが漸減し、その後着床位置手前の基準位置にお
いて、図示は省略するが基準速度とエレベータかご8の
実際速度との速度偏差によって別の修正信号を発生させ
速度パターン信号9bの減速度を変化させて最終的に着床
精度を良好に保つようにすることができる。
After that, when the elevator car 8 reaches the deceleration point, the connection of the automatic changeover switch 13 is first switched from the connection of the contacts bc to the connection of the contacts ac, and the speed pattern signal 9b of the speed pattern generator 9 and the actual speed signal. At the same time as the speed feedback control by the contact with 7a is started, the gate of the field effect transistor FET1 is changed to the negative potential by closing the contact RY1C of the deceleration command relay, and the field effect transistor FET1 is turned off.
In this state, the input to the operational amplifier OP1 becomes zero, so the output V o of the operational amplifier OP3 falls with a slope according to the integration time constant determined by the input voltage VP, the resistor R5 and the capacitor C1, and the resistor R7 When the speed pattern signal 9b through the first-order delay circuit consisting of the capacitor C2 and the capacitor C2 is input to the speed adjuster 10 and the correction signal 15a by the deceleration corrector 15 does not exist, as shown in FIG. Sometimes 9
b 1 and changes like 9b 2 when unloading. Therefore, even if the actual speed of the elevator car 8 faithfully follows the speed pattern signal 9b, the landing error corresponding to the shaded area shown in FIG. 5 or the elevator load of the elevator car 8 at the reference position before the landing position. However, according to the present invention, when the elevator car 8 reaches the deceleration point, the potential of the gate of the field effect transistor FET2 has hitherto changed from the negative power supply voltage N through the resistor R14 to the contacts RY1a, RY2b. Then, since the positive power supply voltage P is switched through the diode D1 and the field effect transistor FET2 is turned on, the speed deviation of the speed regulator 10 is adjusted according to the speed deviation.
That is, since the correction signal 15a according to the load of the elevator is input to the operational amplifier OP3 of the speed pattern generator 9, the deceleration is increased in the case of a unloading load with a large speed deviation, and the lifting load with which the speed deviation does not occur much. In the case of load, the speed pattern signal 9 shown in FIG.
b 1 and 9b 2 are generated. Then, when the speed pattern signal 9b reaches a predetermined value or the actual speed signal 7a of the elevator car 8 reaches a predetermined value, the contact RY2b of the correction relay is opened, so that the potential of the gate of the field effect transistor FET2 becomes negative. Since the power supply voltage N is changed, the field effect transistor FET2 is turned off and the correction signal 15a becomes zero,
The speed pattern signal 9b gradually decreases at substantially the same inclination regardless of the load of the elevator. After that, at the reference position before the landing position, although not shown in the drawing, the speed deviation is different depending on the speed deviation between the reference speed and the actual speed of the elevator car 8. It is possible to generate a correction signal and change the deceleration of the speed pattern signal 9b to finally maintain good landing accuracy.

〔考案の効果〕[Effect of device]

以上述べたように本考案によれば、エレベータの負荷に
対応した負荷情報に応じて減速点から速度パターン信号
の傾きを加減して速度修正を行うため、エレベータの負
荷による着床位置の変動を改善できるだけでなく、さら
に着床精度を向上させるために、基準位置において基準
速度と実際速度の速度誤差による別の速度修正を行う場
合においても、この速度誤差を小さく抑えることがで
き、乗心地を損なう恐れもない。
As described above, according to the present invention, since the speed is corrected by adjusting the inclination of the speed pattern signal from the deceleration point according to the load information corresponding to the load of the elevator, the fluctuation of the landing position due to the load of the elevator is suppressed. Not only can this be improved, but in order to further improve the landing accuracy, even if another speed correction is performed at the reference position due to the speed error between the reference speed and the actual speed, this speed error can be suppressed to a small level, and the ride comfort can be reduced. There is no fear of damage.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による制御装置の全体の構成図、第2図
及び第3図は従来技術の問題点を説明する説明図、第4
図は第1図の部分回路図、第5図は第4図における各部
位の信号波形を示す波形図、第6図は本考案による効果
を説明する説明図である。 3……両方向性サイリスタ装置 4……駆動用電動機 5……サイリスタ整流装置 6……制動用電動機 7……速度検出器 7a……実際速度信号 8……エレベータかご 9……速度パターン発生器 9a……起動指令信号 9b……速度パターン信号 11,14……移相器 15……減速修正器 15a……修正信号
FIG. 1 is an overall configuration diagram of a control device according to the present invention, FIGS. 2 and 3 are explanatory diagrams for explaining problems of the prior art, and FIG.
FIG. 6 is a partial circuit diagram of FIG. 1, FIG. 5 is a waveform diagram showing signal waveforms of respective portions in FIG. 4, and FIG. 6 is an explanatory diagram for explaining the effect of the present invention. 3 …… Bidirectional thyristor device 4 …… Drive motor 5 …… Thyristor rectifier device 6 …… Brake motor 7 …… Speed detector 7a …… Actual speed signal 8 …… Elevator car 9 …… Speed pattern generator 9a …… Start command signal 9b …… Speed pattern signal 11,14 …… Phase shifter 15 …… Deceleration corrector 15a …… Correction signal

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】エレベータかごを駆動する誘導電動機と、
該誘導電動機の駆動トルクを制御する第一の制御装置
と、該誘導電動機の制動トルクを制御する第二の制御装
置と、前記エレベータかごの実際速度信号を出力する速
度検出器と、減速点における前記エレベータかごの実際
速度信号の大きさから漸減する速度パターン信号を発生
する速度パターン発生器とを備え、該速度パターン発生
器の該速度パターン信号と、前記速度検出器の前記実際
速度信号との速度偏差に基づいて前記第一の制御装置及
び前記第二の制御装置により適宜エレベータかごの速度
を制御するものにおいて、 前記減速点からの前記速度パターン信号と前記実際速度
信号との連続的な速度偏差に応じて、前記速度パターン
発生器の前記速度パターン信号の傾きを逐一変化させる
修正信号を発する減速修正器を設けたことを特徴とする
交流エレベータの速度制御装置。
1. An induction motor for driving an elevator car,
A first control device that controls the drive torque of the induction motor, a second control device that controls the braking torque of the induction motor, a speed detector that outputs an actual speed signal of the elevator car, and a deceleration point A speed pattern generator that generates a speed pattern signal that gradually decreases from the magnitude of the actual speed signal of the elevator car, the speed pattern signal of the speed pattern generator, and the actual speed signal of the speed detector In the one that appropriately controls the speed of the elevator car by the first control device and the second control device based on the speed deviation, a continuous speed of the speed pattern signal from the deceleration point and the actual speed signal A deceleration corrector for issuing a correction signal for changing the slope of the speed pattern signal of the speed pattern generator in accordance with the deviation is provided. AC elevator speed control device.
【請求項2】前記減速修正器は、減速点から前記速度パ
ターン信号あるいは前記実際速度信号が所定値に減少す
るまでの区間、前記速度パターン信号と前記実際速度信
号との連続的な速度偏差に応じて、前記速度パターン発
生器の前記速度パターン信号の傾きを逐一変化させる修
正信号を発生することを特徴とする実用新案登録請求の
範囲第1項記載の交流エレベータの速度制御装置。
2. The deceleration corrector determines a continuous speed deviation between the speed pattern signal and the actual speed signal during a section from the deceleration point until the speed pattern signal or the actual speed signal decreases to a predetermined value. A speed control device for an AC elevator according to claim 1, wherein a correction signal for changing the slope of the speed pattern signal of the speed pattern generator is generated in response to the correction signal.
JP1987073963U 1987-05-18 1987-05-18 AC elevator speed control device Expired - Lifetime JPH0750879Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987073963U JPH0750879Y2 (en) 1987-05-18 1987-05-18 AC elevator speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987073963U JPH0750879Y2 (en) 1987-05-18 1987-05-18 AC elevator speed control device

Publications (2)

Publication Number Publication Date
JPS63182699U JPS63182699U (en) 1988-11-24
JPH0750879Y2 true JPH0750879Y2 (en) 1995-11-15

Family

ID=30918762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987073963U Expired - Lifetime JPH0750879Y2 (en) 1987-05-18 1987-05-18 AC elevator speed control device

Country Status (1)

Country Link
JP (1) JPH0750879Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554336B2 (en) * 2009-09-09 2014-07-23 三菱電機株式会社 Elevator control device
JP6162287B1 (en) * 2016-04-28 2017-07-12 三菱電機エンジニアリング株式会社 Brake device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243244A (en) * 1975-09-30 1977-04-05 Meidensha Electric Mfg Co Ltd Device for controlling ac elevator
JPS5751670A (en) * 1980-09-10 1982-03-26 Hitachi Ltd Controller for alternating current elevator

Also Published As

Publication number Publication date
JPS63182699U (en) 1988-11-24

Similar Documents

Publication Publication Date Title
US5247140A (en) Brake control system in elevator control apparatus
JPS6054227B2 (en) AC elevator control device
US4491197A (en) Speed control apparatus for A.C. elevator car drive motor
JPH0750879Y2 (en) AC elevator speed control device
JPS5950791A (en) Controller for converter
JPH0654591A (en) Apparatus for control of at least one electric load of vehicle
US4213517A (en) Elevator control system
US4235309A (en) Control for starting electric motors
JP2502356Y2 (en) AC elevator control device
JPS5820612Y2 (en) elevator elevator
JPH0654415A (en) Torque controller for electric motor vehicle
JPH07163191A (en) Motor drive controller
JPH0229103Y2 (en)
NO171965B (en) ADJUSTMENT FOR POSITIONING OF AN ELEVATOR
JPS6359945B2 (en)
JPH0569041U (en) Motor brake controller
JPS6316690Y2 (en)
JPH03253208A (en) Speed controller of electric vehicle
JPH02228204A (en) Speed control device of electric motor car
JPH0614404A (en) Travel controller for battery-powered vehicle
JPH0578507B2 (en)
JP3225525B2 (en) Electric vehicle speed control device
JPH02118807A (en) Positioning control device
JPH0526953Y2 (en)
JPH0619355Y2 (en) Current source inverter for induction motor drive