JPH0750145B2 - Fault location method for parallel two-line transmission line - Google Patents

Fault location method for parallel two-line transmission line

Info

Publication number
JPH0750145B2
JPH0750145B2 JP63307612A JP30761288A JPH0750145B2 JP H0750145 B2 JPH0750145 B2 JP H0750145B2 JP 63307612 A JP63307612 A JP 63307612A JP 30761288 A JP30761288 A JP 30761288A JP H0750145 B2 JPH0750145 B2 JP H0750145B2
Authority
JP
Japan
Prior art keywords
line
terminal
phase
point
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63307612A
Other languages
Japanese (ja)
Other versions
JPH02154168A (en
Inventor
賢次 村田
和夫 園原
進 伊藤
京二 石津
徳男 江村
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP63307612A priority Critical patent/JPH0750145B2/en
Publication of JPH02154168A publication Critical patent/JPH02154168A/en
Publication of JPH0750145B2 publication Critical patent/JPH0750145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、2端子系及び3端子系平行2回線送電線の
故障点標定方法に関し、さらに詳細にいえば、各端子で
検出される差電流に基いて平行2回線送電線の故障点の
標定を行なう方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a fault point locating method for a two-terminal system and a three-terminal system parallel two-line transmission line, and more specifically, a difference detected at each terminal. The present invention relates to a method of locating a fault point of a parallel two-line transmission line based on electric current.

<従来の技術> 変電所間の送電線は、電力供給の信頼度向上のため、一
般的に、平行2回線方式で行われている。上記送電線
は、建造物内で保守管理されている変電所等と比較し
て、外部(主として雷撃)に起因する故障(地絡及び短
絡)が不可避であり、これらの故障発生時には、故障点
探索作業が伴うが、特に、山間部における故障点探索は
非常に困難な場合がある。上記故障例としては、一地
点における一回線の故障、端子から異なる地点におけ
る一回線の故障、端子から等距離の地点における両回
線にわたる故障、端子から異なる距離における両回線
にわたる故障等がある。上記の故障は一般に単純故障
と言われ(一地点における一回線の一相以上の故障も含
む)、の故障は一般に多重故障と言われている
が、故障の大半はの単純故障であり、多重故障の大半
はの形態である。本願では、上記の場合を取り扱
う。
<Prior Art> Transmission lines between substations are generally parallel two-line system in order to improve reliability of power supply. The above transmission lines are inevitable for failures (ground faults and short circuits) due to outside (mainly lightning strikes) compared to substations and the like that are maintained and managed in the building. Although a search operation is involved, it may be very difficult to search for a fault point in a mountainous area. Examples of the above failure include a failure of one line at one point, a failure of one line at a different point from the terminal, a failure of both lines at a point equidistant from the terminal, and a failure of both lines at different distances from the terminal. The above-mentioned failures are generally called simple failures (including failures in one phase or more of one line at one point), and the failures of are generally called multiple failures. However, most of the failures are simple failures of Most failures are of the form. The present application deals with the above case.

上記単純故障における故障点標定方式としては、故障時
における電圧を電流で除算することにより、送電端から
故障点までのインピーダンスを求め、さらに送電線の単
位長さ当りのインピーダンスで除算することにより、送
電端から故障点までの距離を求める、いわゆるインピー
ダンスリレー(44Sリレー、或は44Gリレー)の演算原理
を応用した方式がある。また、送電端側で検出される零
相電流を、所定の演算式に代入して地絡故障点を標定す
る、いわゆる零相電流分流比方式がある。上記零相電流
分流比方式は、インピーダンスリレー方式に比して簡易
な演算によりに故障点を標定できる特徴を持つ。
As the fault point locating method in the above simple fault, by dividing the voltage at the time of the fault by the current, the impedance from the power transmission end to the fault point is obtained, and by further dividing by the impedance per unit length of the transmission line, There is a method that applies the calculation principle of the so-called impedance relay (44S relay or 44G relay) to find the distance from the power transmission end to the failure point. There is also a so-called zero-phase current shunt ratio method in which the zero-phase current detected on the power transmission end side is substituted into a predetermined arithmetic expression to locate a ground fault point. The zero-phase current shunt ratio method has a feature that a fault point can be located by a simple calculation as compared with the impedance relay method.

第10図は零相電流分流比方式を説明するための零相等価
回路であり、2端子系平行2回線送電線は、送電端
(A)と受電端(B)とを距離lの2回線(1)(2)
で接続した構成である。そして、送電端(A)側の回線
(1)(2)にそれぞれ零相電流10,20が流れ、受
電端(B)側の回線(1)(2)にそれぞれ零相電流
′10,′20が流れ、送電端(A)から距離xの点の
回線(1)に故障が発生し、故障点から零相故障電流
10fが流出している状態である(単純故障) そして、下記演算式に送電端から故障点までの距離xを
算出することができる。
FIG. 10 is a zero-phase equivalent circuit for explaining the zero-phase current shunt ratio method. A two-terminal parallel two-line power transmission line is a two-line system with a transmission end (A) and a receiving end (B) at a distance of l. (1) (2)
It is a configuration connected by. Then, the zero-phase currents 10 and 20 flow in the lines (1) and (2) on the power transmission end (A) side, respectively, and the zero-phase currents “10,” respectively to the lines (1) and (2) on the power reception end (B) side. 20 flows, a fault occurs in the line (1) at the point of distance x from the power transmission end (A), and the zero-phase fault current flows from the fault point.
The state 10f is flowing out (simple failure). Then, the distance x from the power transmission end to the failure point can be calculated by the following arithmetic expression.

x=2l20/(10+20) しかし、同地点において回線(2)も故障し、故障点か
ら零相故障電流20f(図中破線で示す)が流出した場
合(多重故障)には、零相電流分流比方式では、故障点
標定を行なうことができないという欠点がある。
x = 2l20 / (10 + 20) However, if the line (2) also fails at the same point and the zero-phase fault current 20f (shown by the broken line in the figure) flows out from the fault point (multiple fault), the zero-phase current shunt The ratio method has a drawback in that it cannot perform fault point localization.

さらに詳細に説明すれば、受電端(B)には零相インピ
ーダンスが無いものとすると、 ′10−′20=0であるから、 下式が成立する。
More specifically, assuming that there is no zero-phase impedance at the power receiving end (B), the following expression holds because ′10 −′20 = 0.

10−20=(10f−20f)(l−x)/l、 10+20=10f+20f、 上式により10と20とを求めれば、 10={10f(2l−x)/l+20fx/l}/2、 20={10fx/l+20f(2l−x)/l}/2、 220/(10+20) =(x/l){10f+20f(2l−x)/x}/ (10f+20f)、 となる。上式における故障電流10f,20fは未知数で
あるから、零相電流分流比方式では、多重故障に対して
正しい標定ができない。
10−20 = (10f−20f) (l−x) / l, 10 + 20 = 10f + 20f, If 10 and 20 are obtained by the above equation, 10 = {10f (2l−x) / l + 20fx / l} / 2, 20 = {10fx / l + 20f (2l-x) / l} / 2, 220 / (10 + 20) = (x / l) {10f + 20f (2l-x) / x} / (10f + 20f). Since the fault currents 10f and 20f in the above equation are unknowns, the zero-phase current shunt ratio method cannot accurately locate multiple faults.

次に、3端子系平行2回線送電線における故障点標定を
説明する。
Next, fault location in a 3-terminal parallel 2-line transmission line will be described.

上記の零相電流分流比による地絡故障点算出方法は、送
電端においてそれぞれの回線から検出される零相電流の
分流比のみに基いて送電端から地絡故障点までの距離を
算出しているので、簡易であるという特徴を有するが、
送電線を分岐して負荷を接続する方式、即ち3端子系統
における地絡故障点の標定には適用することができない
という問題がある。即ち、3端子系統においては、分岐
線に電流が分流するため、分岐誤差が生ずる。従って、
単純故障であっても上述の零相電流分流比による方法を
そのまま適用して故障点の算出を行うことができないと
いう問題がある。また多重故障に対しても同様の問題が
ある。
The above method of calculating the ground fault point by the zero-phase current diversion ratio calculates the distance from the power transmission end to the ground fault point based on only the diversion ratio of the zero-phase current detected from each line at the power transmission end. Since it has a feature that it is simple,
There is a problem that it cannot be applied to a method of branching a transmission line to connect a load, that is, locating a ground fault point in a three-terminal system. That is, in the three-terminal system, a current is shunted to the branch line, so that a branch error occurs. Therefore,
Even for a simple failure, there is a problem that the above-mentioned method based on the zero-phase current shunt ratio cannot be applied as it is to calculate the failure point. There is a similar problem with multiple failures.

以上、零相電流分流比方式についての問題点を詳細に説
明したが、インピーダンスリレー方式についても原理的
に、単純故障については適用することができるが、多重
故障には適用できない。即ち、正しく故障点までの距離
を測定することができないという問題点がある。
Although the problems of the zero-phase current shunt ratio method have been described above in detail, the impedance relay method can in principle be applied to simple failures but not to multiple failures. That is, there is a problem that the distance to the failure point cannot be measured correctly.

この発明は、上記の問題に鑑み、平行2回線送電線の単
純故障、多重故障の標定を可能にする平行2回線送電線
の故障点標定方法を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a fault point locating method for a parallel two-line power transmission line, which makes it possible to locate a simple fault or multiple faults in the parallel two-line power transmission line.

<課題を解決するための手段> 上記目的を達成するための、請求項1の発明の平行2回
線送電線の故障点標定方法は、2端子系平行2回線送電
線の一地点で一回線に故障が発生した場合、または2端
子系平行2回線送電線の端子から等距離の地点で両回線
に故障が発生した場合における端子から故障点までの距
離を算出する平行2回線送電線の故障点標定方法であっ
て、2端子系平行2回線送電線の両端において、それぞ
れ検出される2回線の差電流Δn,Δ′n{但し、n
は0(零相),1(正相),2(逆相)から選択される一つ
の整数、またはa(A相),b(B相),c(C相)から選
択される一つの記号である}を入力とし、 x=l|Δ′n|/(|Δn|+|Δ′n|) {但し、xは一方の端子から故障点までの距離、lは送
電線の距離である}なる演算式に基いて、端子から故障
点までの距離xを求めることを特徴とする。
<Means for Solving the Problems> In order to achieve the above object, a fault point locating method for a parallel two-line power transmission line according to the invention of claim 1 is one line at one point of a two-terminal parallel two-line power transmission line. Failure point of parallel two-line transmission line that calculates the distance from the terminal to the failure point when a failure occurs or when a failure occurs on both lines at a point equidistant from the terminals of the two-terminal parallel two-line transmission line It is a method of orientation, in which differential currents Δn, Δ′n of two lines detected at both ends of a two-terminal parallel two-line power transmission line (however, n
Is one integer selected from 0 (zero phase), 1 (normal phase), 2 (reverse phase), or one selected from a (A phase), b (B phase), c (C phase) , Which is the symbol}, x = l | Δ'n | / (| Δn | + | Δ'n |) {where x is the distance from one terminal to the fault point and l is the distance of the transmission line It is characterized in that the distance x from the terminal to the failure point is obtained based on the arithmetic expression

また、請求項2の発明は、3端子系平行2回線送電線の
一地点で一回線に故障が発生した場合、または3端子系
平行2回線送電線の端子から等距離の地点で両回線に故
障が発生した場合における故障点を、自端側の情報と他
の2つの端子からの情報とに基いて標定する平行2回線
送電線の故障点標定方法であって、3端子系平行2回線
送電線の各端子において、それぞれ検出される2回線の
差電流Δn,Δ′n,Δ″n{但し、nは0(零
相),1(正相),2(逆相)から選択される一つの整数、
またはa(A相),b(B相),c(C相)から選択される
一つの記号である}を入力とし、 x ={L/(lb+lc)}(|Δ′n|+|Δ″n|)/ (|Δn|+|Δ′n|+|Δ″n|) x′={L/(lc+la)}(|Δ″n|+|Δn|)/ (|Δn|+|Δ′n|+|Δ″n|) x″={L/(la+lb)}(|Δn|+|Δ′n|)/ (|Δn|+|Δ′n|+|Δ″n|) {(但し、la;自端と2回線分岐点との距離、lb;2回線
分岐点と一方の端子との距離、lc;2回線分岐点と他方の
端子との距離、L;(la lb+lb lc+la lc)とする} なる演算式に基いてx,x′,x″を算出し、xがlaよりも
小さい場合には、xを自端から故障点までの距離とし、
xがlaよりも大きい場合には、x′とlbとを比較し、
x′がlbよりも小さい場合には、x′を一方の端子から
故障点までの距離とし、x′がlbよりも大きい場合に
は、x″を他方の端子と故障点までの距離とすることを
特徴とする。
Further, in the invention of claim 2, when a failure occurs in one line at one point of the three-terminal parallel two-line power transmission line, or at both points at a point equidistant from the terminals of the three-terminal parallel two-line power transmission line. A method for locating a fault point of a parallel two-line power transmission line, in which a fault point when a fault occurs is determined based on information on the self-end side and information from two other terminals. At each terminal of the power transmission line, the difference currents Δn, Δ′n, Δ ″ n of the two lines detected respectively, where n is selected from 0 (zero phase), 1 (positive phase), 2 (negative phase) One integer,
Or, it is one symbol selected from a (A phase), b (B phase) and c (C phase)}, and x = {L / (lb + lc)} (| Δ'n | + | Δ ″ N |) / (| Δn | + | Δ′n | + | Δ ″ n |) x ′ = {L / (lc + la)} (| Δ ″ n | + | Δn |) / (| Δn | + | Δ′n | + | Δ ″ n |) x ″ = {L / (la + lb)} (| Δn | + | Δ′n |) / (| Δn | + | Δ′n | + | Δ ″ n |) {(However, la; distance between self-end and 2-line branch point, lb; distance between 2-line branch point and one terminal, lc; distance between 2-line branch point and other terminal, L; (la lb + lb lc + la lc)} x, x ′, x ″ is calculated based on the following equation, and when x is smaller than la, x is the distance from the self end to the failure point,
If x is greater than la, compare x'and lb,
If x'is less than lb, x'is the distance from one terminal to the fault point, and if x'is greater than lb, x'is the distance from the other terminal to the fault point. It is characterized by

<作用> 以上のこの発明は、本件発明者が、2端子系及び3端子
系平行2回線送電線を解析する過程において、平行2回
線の各端子の電流情報を得ることにより、従来において
殆ど不可能とされていた多重故障における故障点標定が
可能であることに着目した方法である。従って、上記手
段の作用を説明する前提として、2端子系及び3端子系
平行2回線送電線の解析過程を説明する。
<Operation> The present invention described above is almost unconventional in the prior art because the inventor of the present invention obtains the current information of each terminal of the parallel 2 lines in the process of analyzing the 2 terminal system and 3 terminal system parallel 2 line transmission line. This method focuses on the fact that fault points can be located in multiple faults that were possible. Therefore, the analysis process of the two-terminal system and the three-terminal system parallel two-line transmission line will be described as a premise for explaining the operation of the above means.

第1図は一般的な2端子平行2回線送電線を示す図であ
り、2端子平行2回線送電線は、A端子側の母線(A1)
と、B端子側の母線(B1)との間に、平行に回線(1)
(2)を接続した構成である。尚、端子AB間の距離を
l、端子Aから故障点までの距離をx,yとしている。ま
ず、第1図の2端子平行2回線送電線を下記のように設
定する。
FIG. 1 is a diagram showing a general two-terminal parallel two-line power transmission line. The two-terminal parallel two-line power transmission line is a busbar (A1) on the A terminal side.
And the bus (B1) on the B terminal side in parallel with the line (1)
(2) is connected. The distance between the terminals AB is l, and the distance from the terminal A to the failure point is x, y. First, the 2-terminal parallel 2-line transmission line of FIG. 1 is set as follows.

a,b,c;母線(A1)のA,B,C相の電圧、 ′a,′b,′c;母線(B1)のA,B,C相の電圧、 la,1b,1c;端子A側から回線(1)に流れるA,B,C
相の電流、 2a,2b,2c;端子A側から回線(2)に流れるA,B,C
相の電流、 ′la,′1b,′1c;端子B側から回線(1)に流れ
るA,B,C相の電流、 ′2a,′2b,′2c;端子B側から回線(2)に流れ
るA,B,C相の電流、 1af,1bf,1cf;回線(1)の故障点xから流出する
A,B,C相の電流、 1af,1bf,1cf;回線(1)の故障点xのA,B,C相の
電圧、 2af,2bf,2cf;回線(2)の故障点xから流出する
A,B,C相の電流、 2af,2bf,2cf;回線(2)の故障点xのA,B,C相の
電圧、 ′laf,′1bf,′1cf;回線(1)の故障点yから流
出するA,B,C相の電流、 ′1af,′1bf,′1cf;回線(1)の故障点yのA,B,
C相の電圧、 ′2af,′2bf,′2cf;回線(2)の故障点yから流
出するA,B,C相の電流、 ′2af,′2bf,′2cf;回線(2)の故障点yのA,B,
C相の電圧。
a, b, c; A, B, C phase voltage of bus (A1), 'a,' b, 'c; A, B, C phase voltage of bus (B1), la, 1b, 1c; Terminal A, B, C flowing from A side to line (1)
Phase current, 2a, 2b, 2c; A, B, C flowing from terminal A side to line (2)
Phase current, 'la,' 1b, '1c; A, B, C phase currents flowing from terminal B side to line (1),' 2a, '2b,'2c; Terminal B side to line (2) Currents of A, B, and C phases that flow, 1af, 1bf, 1cf; flows out from fault point x of line (1)
A, B, C phase current, 1af, 1bf, 1cf; Phase A, B, C phase voltage at line (1) x x 2af, 2bf, 2cf; Line (2) fault x
A, B, C phase current, 2af, 2bf, 2cf; Failure point x of line (2) A, B, C phase voltage, 'laf,' 1bf, '1cf; Failure point y of line (1) A, B, C phase currents flowing out from ′ 1af, ′ 1bf, ′ 1cf; A, B at fault point y of line (1),
C-phase voltage, ′ 2af, ′ 2bf, ′ 2cf; A-, B-, and C-phase currents flowing from fault point y of line (2), ′ 2af, ′ 2bf, ′ 2cf; Fault point of line (2) y's A, B,
Phase C voltage.

そして、母線(A1)の電圧、端子A側から回線(1)
に流れる電流1、および端子A側から回線(2)に流
れる電流2は、下記行列式により表わすものとする。
Then, the voltage of the bus (A1), the line from the terminal A side (1)
A current 1 flowing in the line 1 and a current 2 flowing in the line (2) from the terminal A side are represented by the following determinant.

同様に、母線(B1)の電圧′、端子B側から回線
(1)に流れる電流′1、端子B側から回線(2)に
流れる電流′2、回線(1)の故障点xから流出する
故障電流1f、回線(1)の故障点xの電圧1f、回線
(2)の故障点xから流出する故障電流2f、回線
(2)の故障点xの電圧2f、回線(1)の故障点yか
ら流出する故障電流′1f、回線(1)の故障点yの電
圧′1f、回線(2)の故障点yから流出する故障電流
′2f、回線(2)の故障点yの電圧′2fも行列表現
する。この行列に基づいて、第1図の回路図を第2図に
示される単線図で表示する。ここで、回線の送電線単位
長当りの自己インピーダンス行列をs、回線の送電線
単位長当りの相互インピーダンス行列をm;とし、第2
図の等価回路を解析する。
Similarly, the voltage of the bus (B1) ', the current' 1 flowing from the terminal B side to the line (1), the current flowing from the terminal B side to the line (2) '2, flowing out from the fault point x of the line (1). Fault current 1f, voltage 1f at fault point x of line (1), fault current 2f flowing out of fault point x of line (2), voltage 2f at fault point x of line (2), fault point of line (1) Fault current '1f flowing out of y, voltage' 1f at fault point y of line (1), fault current '2f flowing out of fault point y of line (2), voltage' 2f at fault point y of line (2) Is also expressed in a matrix. Based on this matrix, the circuit diagram of FIG. 1 is displayed in the single diagram shown in FIG. Here, the self-impedance matrix per unit length of the transmission line of the line is s, and the mutual impedance matrix per unit length of the transmission line of the line is m;
Analyze the equivalent circuit in the figure.

1)回線(1)については、キルヒホッフの第2法則
(電圧降下則)により、 1f=−x(s1+m2) …1 ′1f=1f−(y−x){s(1−1f)+ m(2−2f)} …2 ′=′1f+(l−y)(s′1+m′2)
…3 が成立し、3式に1,2式を代入して、 ′=−x(s+m2)−(y−x) {s(1−1f)+m(2−2f)}+ (l−y)(s′1+m′2) …4 を得る。
1) Regarding the line (1), 1f = −x (s1 + m2) ... 1′1f = 1f− (y−x) {s (1-1f) + m () according to Kirchhoff's second law (voltage drop law). 2-2f)} ... 2 '=' 1f + (l-y) (s'1 + m'2)
3 is established, and the formulas 1 and 2 are substituted into the formula 3, and ′ = −x (s + m2) − (y−x) {s (1-1f) + m (2−2f)} + (l−y ) (S'1 + m'2) ... 4 is obtained.

2)回線(2)についても、同様にして ′=−x(s2+m1)−(y−x) {s(2−2f)+m(1−1f)}+ (l−y)(s′2+m′1) …5 を得る。2) For the line (2), similarly, ′ = −x (s2 + m1) − (y−x) {s (2−2f) + m (1−1f)} + (l−y) (s′2 + m ′). 1) ... 5 is obtained.

そして、4式から5式を減算し、 Δ=1−2,Δf=1f−2f, Δ′=′1−′2,Δ′f=′1f−′2fとし
て、 0=−x(s−m)Δ−(y−x)(s−
m) (Δ−Δf)+(l−y)(s−m)Δ
′を得る。さらに、上式の両辺に(s−m)-1
乗じて xΔ+(y−x)(Δ−Δf)−(l−y)Δ
′=0 …6 が求められる。
Then, 5 equations are subtracted from 4 equations, and Δ = 1-2, Δf = 1f-2f, Δ '='1-'2,Δ'f = '1f-'2f, and 0 = -x (s- m) Δ- (y-x) (s-
m) (Δ−Δf) + (l−y) (s−m) Δ
Get ′. Furthermore, multiplying both sides of the above equation by (s−m) −1 , xΔ + (y−x) (Δ−Δf) − (l−y) Δ
′ = 0 ... 6 is required.

3)また、キルヒホッフの第1法則(電流連続則)によ
り、 1−1f+1′−′1f=0, 2−2f+2′−′2f=0 が成立し、両式の差をとることにより、下式7を得る Δ−Δ1f+Δ′−Δ′f=0 …7 上記6,7式は下記一般式〔I〕で表現することができ、
また、第3図に示されるような差電流による等価回路
(以下、差電流等価回路と略称する)で表示することが
できる。
3) Also, according to Kirchhoff's first law (current continuity law), 1−1f + 1 ′ − ′ 1f = 0, 2−2f + 2 ′ − ′ 2f = 0 holds, and by taking the difference between the two equations, 7 is obtained Δ−Δ1f + Δ′−Δ′f = 0 ... 7 The above formulas 6 and 7 can be expressed by the following general formula [I],
Further, it can be displayed by an equivalent circuit based on a difference current as shown in FIG. 3 (hereinafter abbreviated as a difference current equivalent circuit).

xΔn+(y−x)(Δn−Δnf)− (l−y)Δ′n=0 Δn−Δnf+Δ′n−Δ′nf=0 …〔I〕 {但し、n=0(零相),1(正相),2(逆相)またはa
(A相),b(B相),c(C相)} また和電流については、 1+′1=1f+′2f、2+′2=1f+
′2f、Σ=1+2、Σ′=′1+′2、
Σf=1f+2f、Σ′f=′1f+′2f とし、下記一般式〔II〕が得られる。
xΔn + (y−x) (Δn−Δnf) − (l−y) Δ′n = 0 Δn−Δnf + Δ′n−Δ′nf = 0 ... [I] {however, n = 0 (zero phase), 1 ( Positive phase), 2 (reverse phase) or a
(A phase), b (B phase), c (C phase)} Further, regarding the sum current, 1 + ′ 1 = 1f + ′ 2f, 2 + ′ 2 = 1f +
′ 2f, Σ = 1 + 2, Σ ′ = ′ 1 + ′ 2,
When Σf = 1f + 2f and Σ′f = ′ 1f + ′ 2f, the following general formula [II] is obtained.

Σn+Σ′n=Σnf+Σ′nf …〔II〕 {但し、n=0(零相),1(正相),2(逆相)またはa
(A相),b(B相),c(C相)} そして、上記〔I〕〔II〕式より、下記のような3相、
または対称座標で表現された式が得られる。
Σn + Σ′n = Σnf + Σ′nf (II) {where n = 0 (zero phase), 1 (normal phase), 2 (reverse phase) or a
(A phase), b (B phase), c (C phase)} Then, from the above formulas [I] and [II], the following three phases,
Alternatively, an expression expressed in symmetrical coordinates can be obtained.

3相表現 Δa={Δaf(l−x)/l}+ Δ′af(l−y)/l, Δ′a=(Δafx/l)+Δ′af y/l, Σa+Σ′a=Σaf+Σ′af, Δb={Δbf(l−x)/l}+ Δ′bf(l−y)/l, Δ′b=(Δbfx/l)+Δ′bf y/l, Σb+Σ′b=Σbf+Σ′bf, [C相についても同様] 対称座標表現 Δ0={Δ0f(l−x)/l}+ Δ′0f(l−y)/l, Δ′0=(Δ0fx/l)+Δ′0f y/l, Σ0+Σ′0=Σ0f+Σ′0f, Δ1={Δ1f(l−x)/l}+ Δ′1f(l−y)/l, Δ′1=(Δ1fx/l)+Δ′1fy/l, Σ1+Σ′1=Σ1f+Σ′1f, [逆相についても同様] 本件発明者は、上記のように解析して3相或は対称座標
表現された式を求めることができた。
Three-phase expression Δa = {Δaf (l−x) / l} + Δ′af (l−y) / l, Δ′a = (Δafx / l) + Δ′af y / l, Σa + Σ′a = Σaf + Σ′af , Δb = {Δbf (l−x) / l} + Δ′bf (l−y) / l, Δ′b = (Δbfx / l) + Δ′bf y / l, Σb + Σ′b = Σbf + Σ′bf, [ The same applies to the C phase] Symmetrical coordinate expression Δ0 = {Δ0f (l−x) / l} + Δ′0f (l−y) / l, Δ′0 = (Δ0fx / l) + Δ′0f y / l, Σ0 + Σ ′ 0 = Σ0f + Σ′0f, Δ1 = {Δ1f (l−x) / l} + Δ′1f (l−y) / l, Δ′1 = (Δ1fx / l) + Δ′1fy / l, Σ1 + Σ′1 = Σ1f + Σ′1f, [Same for reverse phase] The inventor of the present application was able to obtain an expression represented by three phases or symmetrical coordinates by performing the analysis as described above.

そして、平行2回線の両端で検出されるそれぞれの差電
流の内からいずれかの差電流を選択し、上記に表現され
た式に基いて、単純故障及び多重故障の標定を行なうこ
とができることを以下に証明する。
Then, one of the differential currents detected at both ends of the parallel two lines is selected, and the simple fault and the multiple faults can be located based on the expression expressed above. Prove below.

一地点で一回線に故障が発生した場合、または端子から
等距離の地点で両回線にわたって故障が発生した場合に
は、第3図におけるy地点から流出する故障電流′1
f,′2fをOにする。この結果、Δ′nf=0となり、
上記3相或は対象座標で表現された式は、 Δn=Δnf(l−x)/l Δ′n=Δnf(x/l) となる。これらの式により、各端子の差電流 ΔnとΔ′nとは同位相となることがわかるので、
故障点の差電流の大きさは、 |Δnf|=|Δn+Δ′n|=|Δn|+|Δ′n
| として求めることができ、 x=l|Δ′n|/(|Δn|+|Δ′n|) なる非常に簡単な演算式により、故障点までの距離を標
定できることになる。
If a failure occurs in one line at one point, or if a failure occurs in both lines at a point equidistant from the terminal, the fault current flowing from the y point in Fig. 3'1
Set f, '2f to O. As a result, Δ'nf = 0,
The equation expressed in the three phases or the target coordinates is Δn = Δnf (l−x) / l Δ′n = Δnf (x / l). From these equations, it can be seen that the differential currents Δn and Δ′n at each terminal have the same phase.
The magnitude of the difference current at the fault point is: | Δnf | = | Δn + Δ′n | = | Δn | + | Δ′n
It can be obtained as |, and the distance to the failure point can be located by a very simple arithmetic expression such as x = l | Δ′n | / (| Δn | + | Δ′n |).

次いで、3端子系の故障点標定方法の解析過程を説明す
る。上記第1図の2端子系平行2回線送電線の故障点標
定方法の場合同様にして、第4図の単線表示の等価回路
にする。そして、3端子系で発生するあらゆる故障を想
定し、両回線にまたがって故障が発生し、その故障点が
端子Aから距離x,y、端子Bから距離x′,y′、端子C
から距離x″,y″である。さらに、2端子系の場合と同
様にして、上記単線表示回路の各回線の差電流をΔn,
Δnfx,Δnfy,Δ′n,Δ′nfx,Δ′nfy,Δ″
n,Δ″nfx,Δ″nfyと行列表現し、第5図に示され
る差電流等価回路を得る。
Next, the analysis process of the fault locating method for a three-terminal system will be described. Similarly to the case of the fault locating method of the two-terminal parallel two-line transmission line of FIG. 1, the equivalent circuit of the single line display of FIG. 4 is obtained. Then, assuming any failure that occurs in the three-terminal system, a failure occurs across both lines, and the failure points are distance x, y from terminal A, distance x ', y' from terminal B, and terminal C.
From the distance x ″, y ″. Further, as in the case of the two-terminal system, the difference current of each line of the above single-line display circuit is
Δnfx, Δnfy, Δ′n, Δ′nfx, Δ′nfy, Δ ″
The difference current equivalent circuit shown in FIG. 5 is obtained by matrix expression as n, Δ ″ nfx, Δ ″ nfy.

1)この差電流等価回路の端子Aと端子B間にキルヒホ
ッフの第2法則(電圧降下則)を適用して、 xΔn+(y−x)(Δn−Δnfx)+(la−
y) (Δn−Δnfx−Δnfy)+ {x′Δ′n+(y′−x′)(Δ′n−Δ′nf
x)− (lb−y′)(Δ′n−Δ′nfx−Δ′nfy)} =O …8 が求められ、これを変形することにより、 laΔn−lbΔ′n ={(la−x)Δ′nfx+(la−y)Δnfy}− {(lb−x′)Δ′nfx+(lb−y′)Δ′nfy}…
9 が得られる。
1) By applying Kirchhoff's second law (voltage drop law) between terminals A and B of this differential current equivalent circuit, xΔn + (y−x) (Δn−Δnfx) + (la−
y) (Δn−Δnfx−Δnfy) + {x′Δ′n + (y′−x ′) (Δ′n−Δ′nf
x) − (lb−y ′) (Δ′n−Δ′nfx−Δ′nfy)} = O ... 8 is obtained, and by transforming this, laΔn−lbΔ′n = {(la−x) Δ′nfx + (la−y) Δnfy} − {(lb−x ′) Δ′nfx + (lb−y ′) Δ′nfy} ...
9 is obtained.

2)同様に、端子Aと端子C間にもキルヒホッフの第2
法則(電圧降下則)を適用して、 laΔn−lcΔ″n ={(la−x)Δnfx+(la−y)Δnfy}− {(lc−x″)Δ″nfx+(lc−y″)Δ″nfy}…
10 が得られる。
2) Similarly, between the terminals A and C, the second Kirchhoff
By applying the law (voltage drop law), laΔn−lcΔ ″ n = {(la−x) Δnfx + (la−y) Δnfy} − {(lc−x ″) Δ ″ nfx + (lc−y ″) Δ ″ nfy} ...
You get 10.

3)また、キルヒホッフの第1法則(電流連続則)によ
り、 Δn+Δ′n+Δ″n=Δnfx+Δnfy+ Δ′nfx+Δ′nfy+Δ″nfx+Δ″nfy …11 が成立する。
3) Further, according to Kirchhoff's first law (current continuity law), Δn + Δ′n + Δ ″ n = Δnfx + Δnfy + Δ′nfx + Δ′nfy + Δ ″ nfx + Δ ″ nfy ... 11 holds.

上記9式、10式、11式により、以下の一般式〔III〕を
得る。
The following general formula [III] is obtained from the above formulas 9, 10, and 11.

{但し、n=0,1,2またはa,b,cであり、 L=la lb+lb lc+la lcである} …〔III〕 上記〔III〕式により、端子Aと2回線分岐点との間で
あって、端子から等距離で2回線にまたがる故障が発生
した場合(例えば、第4図A)の場合には、x地点以外
でのの故障差電流Δnfy,Δ′nfx,Δ′nfy,Δ″
nfx,Δ″nfyをOにすれば良い。上記のことは端子B
と2回線分岐点との間、または端子Cと2回線分岐点と
の間に、同地点2回線にまたがる故障が発生した場合
(第4図B,C参照)にも言える。尚、一地点で一回線に
故障が発生した場合にも、両回線の差電流を用いて、論
ずる限り、以上に説明してきた内容、さらに以下に説明
する内容は何ら変ることはない。
{However, n = 0,1,2 or a, b, c and L = la lb + lb lc + la lc} ... [III] According to the above [III] formula, between the terminal A and the two-line branch point. Therefore, in the case where a fault occurs over two lines at the same distance from the terminal (for example, FIG. 4A), the fault differential currents Δnfy, Δ′nfx, Δ′nfy, Δ at points other than the x point. ″
It is sufficient to set nfx, Δ ″ nfy to O. The above is terminal B
This also applies to the case where a fault that spans two lines at the same point occurs between the line and the two-line branch point, or between the terminal C and the two-line branch point (see FIGS. 4B and 4C). In addition, even if a failure occurs in one line at one point, the contents described above and the contents described below will not change at all, as long as they are discussed using the difference current between the two lines.

そして、上記〔III〕式を第4図A,B,Cの場合に適用し
て、各端子の差電流を求めた結果を表1に示す。
Table 1 shows the results obtained by applying the above formula [III] to the cases of FIGS.

表1により、故障差電流Δnf,Δ′nf,Δ″nfは順
序よく並び、各端子の差電流Δn,Δ′n,Δ″nは
同位相となることが分る。このことにより、故障点の差
電流Δnfの大きさは、|Δnf|=|Δn+Δ′
n+Δ″n|=|Δn|+|Δ′n|+|Δ″n| として求められる。
From Table 1, it can be seen that the fault differential currents Δnf, Δ′nf, Δ ″ nf are arranged in order, and the differential currents Δn, Δ′n, Δ ″ n of the respective terminals have the same phase. As a result, the magnitude of the difference current Δnf at the failure point becomes | Δnf | = | Δn + Δ ′
It is calculated as n + Δ ″ n | = | Δn | + | Δ′n | + | Δ ″ n |.

従って、表1のケース1の場合については、 (|Δ′n|+|Δ″n|)/(|Δn|+|Δ′n|
+|Δ″n|)=x(lb+lc)/L となり、自端の差電流の大きさ、及び他端から供給され
る差電流の大きさのみに基いて、一地点で一回線が故障
が発生した場合、或は端子から等距離の地点で両回線が
故障が発生した場合における端子Aから故障点までの距
離を求めることができる。そして、表1の上欄に示され
たケース1,ケース2、ケース3の標定演算を行なった結
果が表2である。
Therefore, in case 1 of Table 1, (| Δ′n | + | Δ ″ n |) / (| Δn | + | Δ′n |
+ | Δ ″ n |) = x (lb + lc) / L, and one line fails at one point based only on the magnitude of the difference current at its own end and the magnitude of the difference current supplied from the other end. The distance from the terminal A to the failure point can be calculated when it occurs, or when both lines fail at the same distance from the terminal. Table 2 shows the results of the orientation calculation for Case 2 and Case 3.

即ち、課題を解決するための手段で示したように、各端
子で検出される電流の差を、入力として、x={L/(lb
+lc)}(|Δ′n|+|Δ″n|)/(|Δn|+|
Δ′n|+|Δ″n|) x′={L/(lc+la)}(|Δ″n|+|Δ′n|)/
(|Δn|+|Δ′n|+|Δ″n|) x″={L/(la+lb)}(|Δn|+|Δ′n|)/
(|Δn|+|Δ′n|+|Δ″n|) なる演算により、x,x′,x″を求め、それぞれla,lb,lc
と比較することにより、端子から故障点の距離を求める
ことができる。
That is, as shown in the means for solving the problems, x = {L / (lb
+ Lc)} (| Δ'n | + | Δ ″ n |) / (| Δn | + |
Δ′n | + | Δ ″ n |) x ′ = {L / (lc + la)} (| Δ ″ n | + | Δ′n |) /
(| Δn | + | Δ′n | + | Δ ″ n |) x ″ = {L / (la + lb)} (| Δn | + | Δ′n |) /
(| Δn | + | Δ′n | + | Δ ″ n |) is calculated to obtain x, x ′, x ″, and la, lb, lc
By comparing with, the distance of the failure point from the terminal can be obtained.

以上、2端子系、および3端子系平行2回線の一地点で
一回線が故障した場合、または端子から等距離の地点で
両回線が故障が発生した場合における故障点標定方法を
詳細に説明した。そして、零相電圧が発生している故障
に対しては、n=0を用いればよく、零相電圧が発生し
ていない故障(例えば、短絡故障や3相の地絡故障)に
対しては、n=1またはn=2を用いてもよい。さらに
は、故障相(A相またはB相またはC相)の何れかをn
として用いてもよい。
The failure point locating method in the case where one circuit fails at one point of the two-terminal system and two parallel circuits of the three-terminal system or both circuits fail at the point equidistant from the terminal has been described in detail. . Then, n = 0 may be used for a fault in which a zero-phase voltage is generated, and for a fault in which a zero-phase voltage is not generated (for example, a short circuit fault or a three-phase ground fault). , N = 1 or n = 2 may be used. Furthermore, the failure phase (A phase, B phase, or C phase) is set to n.
You may use as.

<実施例> 以下、この発明の平行2回線送電線おける故障点標定方
法の実施例を添付図面に基いて詳細に説明する。
<Embodiment> An embodiment of a fault point locating method in a parallel two-line power transmission line of the present invention will be described below in detail with reference to the accompanying drawings.

第6図は、既に第1図で示した一般的な2端子平行2回
線送電線に、この発明に係る故障点標定方法に適用され
る故障点算出装置を接続した図であり、端子A側は、端
子A側回線(1)のA相,B相,C相の電流1a,1b,1c
を検出するCT(3a)と、端子A側回線(2)のA相,B
相,C相の電流2a,2b,2cを検出するCT(3b)と、CT
(3a)(3b)により検出された各相の電流1a,1b,
1c,2a,2b,2cを入力とし、図示しない補助CTによ
り絶縁するとともに、所定のレベルの電流信号に変換す
る入力部(4)と、入力部(4)からの所定レベルの電
流信号を所定のサンプリング周期でディジタルデータに
変換するA/D変換部(5)と、A/D変換部(5)により変
換されたディジタルデータを格納するデータメモリ
(6)と、該データメモリ(6)に格納されている回線
(1)(2)の電流データに基づいて所定の演算(後
述)を行ない、平行2回線に故障が発生していることを
検出し、さらに、自端側で検出した上記電流データと端
子B側から伝送される電流データとに基づいて端子Aか
ら故障点までの距離を算出するCPU(7)と、端子B側
と電流データの交換を行なう伝送部(8)と、CPU
(7)により算出された端子Aから故障点までの距離等
の情報を表示する表示部(9)とを有する。
FIG. 6 is a diagram in which the fault point calculating device applied to the fault point locating method according to the present invention is connected to the general two-terminal parallel two-line transmission line already shown in FIG. Is the current 1a, 1b, 1c of A phase, B phase, C phase of terminal A side line (1)
CT (3a) for detecting the A and phase A, B of terminal A side line (2)
CT (3b) that detects the currents 2a, 2b, 2c of phase C and phase C, and CT
(3a) (3b) detected current of each phase 1a, 1b,
Inputs 1c, 2a, 2b, 2c are insulated by an auxiliary CT (not shown), and an input section (4) for converting into a current signal of a predetermined level and a current signal of a predetermined level from the input section (4) are predetermined. An A / D converter (5) for converting into digital data at a sampling cycle of, a data memory (6) for storing the digital data converted by the A / D converter (5), and the data memory (6) A predetermined calculation (described later) is performed based on the stored current data of the lines (1) and (2) to detect that a failure has occurred in the parallel two lines, and further, it is detected at the self-end side. A CPU (7) for calculating the distance from the terminal A to the failure point based on the current data and the current data transmitted from the terminal B side; and a transmission section (8) for exchanging the current data with the terminal B side. CPU
The display unit (9) displays information such as the distance from the terminal A to the failure point calculated by (7).

また、端子B側は、端子B側の回線(1)に流れるA
相,B相,C相の電流′1a,′1b,′1cを検出するCT
(3a′)と、端子B側の回線(2)に流れるA相,B相,C
相の電流′2a,′2b,′2cを検出するCT(3b′)
と、入力部(4′)と、A/D変換部(5′)と、データ
メモリ(6′)と、CPU(7′)と、伝送部(8′)と
を有する。
In addition, the terminal B side is A that flows to the line (1) on the terminal B side.
CT for detecting currents ′ 1a, ′ 1b, ′ 1c of phase 1, B, C
(3a ') and A-phase, B-phase, C flowing through the line (2) on the terminal B side
CT (3b ') for detecting phase currents'2a,' 2b, '2c
It has an input section (4 '), an A / D conversion section (5'), a data memory (6 '), a CPU (7') and a transmission section (8 ').

上記構成の故障点算出装置の動作を、第7図の故障例に
基づいて説明する。尚、第7図は、故障が両回線の両地
点で発生し、その地点が端子Aからxの距離である場合
を示す。
The operation of the fault point calculating device having the above configuration will be described based on the fault example of FIG. It should be noted that FIG. 7 shows a case where a failure occurs at both points of both lines and the point is the distance x from the terminal A.

CT(3a)(3b)により、検出された端子A側の回線
(1)(2)の各相電流1a,1b,1c、2a,2b,
2cは、入力部(4)において、所定のレベルの電流信号
に変換される。該所定のレベルの電流信号は、A/D変換
部(5)において、所定のサンプリング周期でディジタ
ルデータに変換され、データメモリ(6)に供給され
る。
Each phase current 1a, 1b, 1c, 2a, 2b, of the line (1) (2) on the terminal A side detected by CT (3a) (3b)
2c is converted into a current signal of a predetermined level in the input section (4). The current signal of the predetermined level is converted into digital data by the A / D converter (5) at a predetermined sampling period and supplied to the data memory (6).

そして、該データメモリ(6)に格納されている回線
(1)(2)の電流1a,1b,1c,2a,2b,2cの
データは、CPU(7)に取込まれる。
Then, the data of the currents 1a, 1b, 1c, 2a, 2b, 2c of the lines (1) and (2) stored in the data memory (6) is taken in by the CPU (7).

一方、端子B側においても、CT(3a′)(3b′)により
検出された端子B側の回線(1)(2)の各相電流′
1a,′1b,′1c、′2a,′2b,′2cは、上記端子
A側と同様に、入力部(4′)、A/D変換部(5′)を
介してデータメモリ(6′)に供給され、さらに、CPU
(7′)に取込まれている。
On the other hand, also on the terminal B side, each phase current 'of the lines (1) and (2) on the terminal B side detected by CT (3a') (3b ')
1a, ′ 1b, ′ 1c, ′ 2a, ′ 2b and ′ 2c are connected to the data memory (6 ′) via the input section (4 ′) and the A / D conversion section (5 ′) as in the terminal A side. ), And further CPU
It has been captured in (7 ').

端子A側のCPU(7)は、以下の手順で故障点標定を行
なう。
The CPU (7) on the terminal A side locates the fault point in the following procedure.

下式に基づいて零相電流10,20、或は正相電流1
1,21を算出する。
Zero phase current 10,20 or positive phase current 1 based on the following formula
Calculate 1,21.

10=(1a+1b+1c)/3 20=(2a+2b+2c)/3 11=(1a+α1b+α1c)/3 21=(2a+α2b+α2c)/3 |Δ0|=|10−20|,或は|Δ1|=|11−
21|なる演算を行なって、両回線(1)(2)の零相電
流の差の大きさ|Δ0|、或は正相電流の差の大きさ|
Δ1|を求め、|Δ0|,或は|Δ1|が所定値を越え
た場合に故障が発生したと判定し、伝送部(8)に端子
B側において検出される両回線(1)(2)の零相電流
の差の大きさ|Δ′0|、或は正相電流の差の大きさ |Δ′1|を要求する。
10 = (1a + 1b + 1c ) / 3 20 = (2a + 2b + 2c) / 3 11 = (1a + α1b + α 2 1c) / 3 21 = (2a + α2b + α 2 2c) / 3 | Δ0 | = | 10-20 |, or | Δ1 | = | 11 −
21 | is performed, and the magnitude of the difference between the zero-phase currents of both lines (1) and (2) | Δ0 | or the magnitude of the difference between the positive-phase currents |
Δ1 | is obtained, and if | Δ0 | or | Δ1 | exceeds a predetermined value, it is determined that a failure has occurred, and both lines (1) (2) detected at the terminal B side in the transmission section (8). ), The magnitude | Δ′0 | of the zero-phase current or the magnitude | Δ′1 | of the positive-phase current is required.

一方、端子B側のCPU(7′)においても、下式に基
づいて零相電流′10,′20、及び正相電流′11,
′21が算出されており、 ′10=(′1a+′1b+′1c)/3 ′20=(′2a+′2b+′2c)/3 ′11=(′1a+α′1b+α′1c)/3 ′21=(′2a+α′2b+α′2c)/3 さらに、|Δ′0|=|′10−′20|, |Δ′1|=|′11−′21|なる演算を行なって、
両回線(1)(2)の零相電流の差の大きさ|Δ′0
|、或は正相電流の差の大きさ|Δ′1|を求めてい
る。そして、端子A側のCPU(7)からの要求に応じ
て、|Δ′0|、或は|Δ′1|が、伝送部(8′)
(8)を介してCPU(7)の順番で送られる。
On the other hand, in the CPU (7 ') on the terminal B side, the zero-phase currents '10, '20 and the positive-phase currents '11,
'21 are calculated, '10 = ( '1a +' 1b + '1c) / 3 '20 = (' 2a + '2b +' 2c) / 3 '11 = ( '1a + α'1b + α 2' 1c) / 3 '21 = ( '2a + α'2b + α 2' 2c) / 3 Furthermore, | Δ'0 | = | '10 -'20 |, | Δ'1 | = | '11 -'21 | made by performing a calculation,
Magnitude of difference between zero-phase currents on both lines (1) and (2) | Δ'0
|, Or the magnitude of the difference in the positive-phase currents | Δ′1 | Then, in accordance with a request from the CPU (7) on the terminal A side, | Δ′0 | or | Δ′1 | is transferred to the transmission unit (8 ′).
It is sent in the order of the CPU (7) via (8).

CPU(7)は、自端側で算出した|Δ0|、|Δ1|
と、伝送部(8)を介して得られる端子B側の|Δ′
0|、|Δ′1|と、端子AB間の長さlとを要素として、
下式に基いて、端子Aから故障点までの距離xを求め
る。
CPU (7) calculates | Δ0 |, | Δ1 |
And | Δ 'on the terminal B side obtained via the transmission section (8)
With 0 |, | Δ′1 | and the length l between terminals AB as elements,
The distance x from the terminal A to the failure point is obtained based on the following equation.

x=l|Δ′n|/(|Δn|+|Δ′n|) {但し、nは、0(零相)または、1(正相)である} 以上の実施例によれば、端子A側の回線(1)(2)の
各相電流1a,1b,1c,2a,2b,2cに基いて算出
される零相電流の差の大きさ|Δ0|、或は正相電流の
差の大きさ|Δ1|と、端子B側の回線(1)(2)の
各相電流′1a,′1b,′1c,′2a,′2b,′2c
に基いて算出される零相電流の差の大きさ|Δ′0|、
或は正相電流の差の大きさ|Δ′1|と、送電線の長さ
lを要素として、 x=l|Δ′n|/(|Δn|+|Δ′n|) なる簡単な演算を行なうことにより、単純故障の標定ば
かりでなく、端子から等距離の地点で両回線(1)
(2)に故障が発生した場合においても、故障点標定を
正確且つ容易に行なうことができる。
x = l | Δ′n | / (| Δn | + | Δ′n |) {where n is 0 (zero phase) or 1 (positive phase)} According to the above embodiments, the terminal Difference of zero-phase current calculated based on each phase current 1a, 1b, 1c, 2a, 2b, 2c of line (1) (2) on A side | Δ0 | or difference of positive-phase current | Δ1 | and the phase currents ‘1a,‘ 1b, ‘1c,‘ 2a, ‘2b and‘ 2c of the lines (1) and (2) on the terminal B side.
The magnitude of the difference in zero-phase current calculated based on | Δ′0 |,
Alternatively, with the magnitude of the difference in the positive-phase current | Δ′1 | and the length 1 of the transmission line as an element, x = l | Δ′n | / (| Δn | + | Δ′n |) By performing calculations, not only the simple fault location but also the two lines (1) at the point equidistant from the terminal
Even when a failure occurs in (2), the failure point can be located accurately and easily.

尚、この発明は上記の実施例に限定されるものではな
く、例えば、CPU(7)により零相電流を算出するのに
替えて、CTの残留回路の電流を使用することが可能であ
り、また、故障の判定を、端子B側のCPU(7′)で行
なうことが可能であり、その他この発明の要旨を変更し
ない範囲で種々の設計変更を施すことが可能である。
The present invention is not limited to the above-described embodiment, and for example, instead of calculating the zero-phase current by the CPU (7), the current of the residual circuit of CT can be used. Further, the failure determination can be performed by the CPU (7 ') on the terminal B side, and various design changes can be made without departing from the scope of the invention.

第8図は、一般的な3端子平行2回線送電線に、この発
明に係る故障点標定方法に適用される故障点算出装置を
接続した図であり、上記第6図の故障点算出装置との相
違点は、端子C側の回線(1)の各相の電流″1a,
″1b,″1cを検出するCT(3a″)と、回線(2)の
各相の電流″2a,″2b,″2cを検出するCT(3b″)
と、入力部(4″)と、A/D変換部(5″)と、データ
メモリ(6″)と、CPU(7″)と、伝送部(8″)と
が、端子C側にも設けられている点である。
FIG. 8 is a diagram in which a fault point calculating device applied to the fault point locating method according to the present invention is connected to a general 3-terminal parallel 2-line transmission line. The difference is that the current "1a," of each phase of the line (1) on the terminal C side,
CT (3a ") to detect" 1b, "1c and CT (3b") to detect current "2a," 2b, "2c of each phase of line (2)
The input section (4 ″), the A / D conversion section (5 ″), the data memory (6 ″), the CPU (7 ″), and the transmission section (8 ″) are also connected to the terminal C side. It is a point provided.

上記構成の故障点算出装置の動作は、次の通りである。
即ち、CT(3a)(3b)、(3a′)(3b′)、(3a″)
(3b″)により検出される各端子A,B,Cの回線(1)
(2)の電流(1a,1b,1c、2a,2b,2c)、
(′1a,′1b,′1c、′2a,′2b,′2c)、
(″1a,″1b,″1c,″2a,″2b,″2c)は、
上記第6図の2端子系の場合と同様に、入力部(4)
(4′)(4″)において、所定のレベルの電流信号に
変換され、該所定のレベルの電流信号は、A/D変換部
(5)(5′)(5″)において、所定のサンプリング
周期でディジタルデータに変換され、データメモリ
(6)(6′)(6″)に供給される。
The operation of the fault point calculation device having the above configuration is as follows.
That is, CT (3a) (3b), (3a ') (3b'), (3a ")
Line of each terminal A, B, C detected by (3b ″) (1)
Current of (2) (1a, 1b, 1c, 2a, 2b, 2c),
('1a,' 1b, '1c,' 2a, '2b,' 2c),
("1a," 1b, "1c," 2a, "2b," 2c) is
As in the case of the two-terminal system in FIG. 6 above, the input section (4)
In (4 ') (4 "), it is converted into a current signal of a predetermined level, and the current signal of the predetermined level is subjected to a predetermined sampling in the A / D converters (5) (5') (5"). It is converted into digital data in a cycle and supplied to the data memories (6) (6 ') (6 ").

そして、データメモリ(6)(6′)(6″)に格納さ
れている回線(1)(2)の電流データに基づいて、CP
U(7)(7′)(7″)は、それぞれ下式に基づいて
零相電流 m0,′m0,″m0、或は正相電流m1,′m1,″m1
を算出する。
Then, based on the current data of the lines (1) and (2) stored in the data memory (6) (6 ') (6 "), the CP
U (7) (7 ') (7 ") are zero phase current m0,'m0," m0 or positive phase current m1, 'm1, "m1 based on the following formulas.
To calculate.

m0=(ma+mb+mc)/3 m1=(ma+αmb+αmc)/3 ′m0=(′ma+′mb+′mc)/3 ′m1=(′ma+α′mb+α′mc)/3 ″m0=(″ma+″mb+″mc)/3 ″m1=(″ma+α″mb+α″mc)/3 {但し、mは1または2であり、回線の添字である} さらに、各CPU(7)(7′)(7″)は、下式に基づ
いて両回線(1)(2)の零相電流の差の大きさ|Δ
0|,|Δ′0|,|Δ″0|、或は正相電流の差の大きさ|
Δ1|,|Δ′1|,|Δ″1|を求める。
m0 = (ma + mb + mc ) / 3 m1 = (ma + αmb + α 2 mc) / 3 'm0 = (' ma + 'mb +' mc) / 3 'm1 = (' ma + α'mb + α 2 'mc) / 3 "m0 = (" ma + " mb + "mc) / 3" m1 = ( "ma + α" mb + α 2 "mc) / 3 { where, m is 1 or 2, subscript line} further, the CPU (7) (7 ') (7 ″) Is the magnitude of the difference between the zero-phase currents of both lines (1) and (2) | Δ based on the following equation.
0 |, | Δ′0 |, | Δ ″ 0 |, or the magnitude of the difference between the positive-phase currents |
Calculate Δ1 |, | Δ′1 |, | Δ ″ 1 |.

|Δ0|=|10−20|、|Δ1|=|11−21| |Δ′0|=|′10−′20|、|Δ′1|=|′1
1−′21| |Δ″0|=|″10−″20|、|Δ″0|=|″1
1−″21| 次に、端子A側のCPU(7)は、|Δ0|,或は|Δ1|
が所定値を越えた場合に故障が発生したと判定し、伝送
部(8)に端子BおよびC側において検出される両回線
(1)(2)の零相電流の差の大きさ|Δ′0|,|Δ
″0|、或は正相電流の差の大きさ|Δ′1|、|Δ
″1|を要求する。
| Δ0 | = | 10-20 |, | Δ1 | = | 11-21 | | Δ'0 | = | '10 -'20 |, | Δ'1 | = | '1
1-'21 | | Δ "0 | = |" 10- "20 |, | Δ" 0 | = | "1
1− ″ 21 | Next, the CPU (7) on the terminal A side is | Δ0 |, or | Δ1 |
Is greater than a predetermined value, it is determined that a failure has occurred, and the magnitude of the difference between the zero-phase currents of both lines (1) and (2) detected at the terminals B and C of the transmission unit (8) | Δ ′ 0 |, | Δ
″ 0 |, or the magnitude of the difference between the positive-phase currents | Δ′1 |, | Δ
Request ″ 1 |.

そして、端子B側の|Δ′0|、或は|Δ′1|が伝送
部(8′)(8)を介してCPU(7)に送られ、端子C
側の|Δ″0|、或は|Δ″1|が伝送部(8″)
(8)を介してCPU(7)に送られる。
Then, | Δ′0 | or | Δ′1 | on the terminal B side is sent to the CPU (7) via the transmission units (8 ′) and (8), and the terminal C
| Δ ″ 0 | or | Δ ″ 1 | on the transmission side is the transmission part (8 ″)
It is sent to the CPU (7) via (8).

次いで、端子A側のCPU(7)は、自端側で算出した|
Δ0|或は|Δ1|と、伝送部(8)を介して得られる
端子B側の|Δ′0|或は|Δ′1|、および端子C側
の|Δ″0|或は|Δ″1|と、回線(1)(2)の長
さを要素として、第9図に示されるフローチャートに従
って、故障点標定を行なう。
Next, the CPU (7) on the terminal A side calculated on its own end |
Δ0 | or | Δ1 | and | Δ′0 | or | Δ′1 | on the terminal B side and | Δ ″ 0 | or | Δ on the terminal C side obtained via the transmission unit (8). Using "1 |" and the lengths of the lines (1) and (2) as elements, fault point localization is performed according to the flowchart shown in FIG.

第9図は一地点で一回線に故障が発生した場合、または
端子から等距離の地点で両回線に故障が発生した場合に
おける故障点標定のフローチャートであり、ステップ
において、 x ={L/(lb+lc)}(|Δn′|+|Δn″
|)/ (|Δn|+|Δn′|+|Δn″|) x′={L/(lc+la)}(|Δn″|+|Δn|)/ (|Δn|+|Δn′|+|Δn″|) x″={L/(la+lb)}(|Δn|+|Δn′|)/ (|Δn|+|Δn′|+|Δn″|) {(但し、la;端子Aと2回線分岐点との距離、lb;端子
Bと2回線分岐点との距離、lc;端子Cと2回線分岐点
との距離、L;la lb+lb lc+la lcとする}なる演算式
に基いてx,x′,x″を算出する。
FIG. 9 is a flowchart for locating a failure point when one line fails at one point or when both lines fail at a point equidistant from the terminal. At the step, x = {L / ( lb + lc)} (| Δn ′ | + | Δn ″
│) / (| Δn | + | Δn '| + | Δn ″ |) x ′ = {L / (lc + la)} (| Δn ″ | + | Δn |) / (| Δn | + | Δn ′ | + | Δn ″ |) x ″ = {L / (la + lb)} (| Δn | + | Δn ′ |) / (| Δn | + | Δn ′ | + | Δn ″ |) {(however, la; terminals A and 2 Distance from line branch point, lb; distance between terminal B and two line branch points, lc; distance between terminal C and two line branch points, L; la lb + lb lc + la lc} Calculate x ′, x ″.

ステップにおいて、xとlaの大きさを比較し、xがla
よりも小さい場合には、ステップにおいて、xを端子
Aから故障点までの距離とする。
In the step, the magnitudes of x and la are compared, and x is la
If it is smaller than x, x is the distance from the terminal A to the failure point in the step.

上記ステップにおいてxがlaよりも大きい場合には、
ステップにおいて、x′とlbとを比較し、x′がlbよ
りも小さい場合には、ステップにおいて、x′を端子
Bから故障点までの距離とする。
If x is greater than la in the above step,
In the step, x ′ is compared with lb. If x ′ is smaller than lb, in the step, x ′ is the distance from the terminal B to the fault point.

上記ステップにおいて、x′がlbよりも大きい場合に
は、ステップにおいて、x″とlcとを比較し、x′が
lcよりも小さい場合には、ステップにおいて、x″を
端子Cから故障点までの距離とする。
In the above step, if x'is greater than lb, in the step, x "is compared with lc, and x'is
When it is smaller than lc, x ″ is the distance from the terminal C to the failure point in the step.

そして、上記ステップにおいて、x″がlcよりも大き
い場合には、ステップにおいて故障点標定フローを停
止する。
Then, in the above step, when x ″ is larger than lc, the failure point locating flow is stopped in the step.

<発明の効果> 以上のこの発明によれば、端子の両側で検出される電
流、及び送電線の長さを要素として、所定の演算を行な
うことにより、端子から故障点までの距離を求めること
ができるので、一地点で一回線に故障が発生した場合、
または端子から等距離の地点で両回線にわたる故障が発
生した場合においても、正確且つ容易に故障点標定を行
なうことができるという特有の効果を奏する。
<Effects of the Invention> According to the above invention, the distance from the terminal to the failure point is obtained by performing a predetermined calculation using the current detected on both sides of the terminal and the length of the transmission line as elements. Therefore, if a failure occurs in one line at one point,
Alternatively, even when a failure occurs on both lines at a point equidistant from the terminal, there is a unique effect that the failure point can be accurately and easily located.

また、3端子系においては、各端子側で検出される電
流、及び送電線の長さを要素として、所定の演算を行な
うことにより、分岐点における分流誤差に拘わらず、各
端子から故障点の距離を正確に求めることができるの
で、従来では正しい標定を行なうことができなかった3
端子系における分岐点以後の故障の標定を行なうことが
でき、さらに、端子から等距離に故障が発生した場合に
おいても故障点標定を正確かつ容易に行なうことができ
るという特有の効果を奏する。
In addition, in the three-terminal system, a predetermined calculation is performed using the current detected at each terminal side and the length of the transmission line as an element, so that the failure point is detected from each terminal regardless of the shunt error at the branch point. Since the distance can be accurately determined, it has not been possible to perform correct orientation in the past.
It is possible to locate a failure after the branch point in the terminal system, and further, it is possible to accurately and easily locate the failure point even when a failure occurs at an equal distance from the terminal.

【図面の簡単な説明】[Brief description of drawings]

第1図は一般的な2端子平行2回線送電線において発生
し得る故障例を示す図、 第2図は第1図の回路図を単線図で表示した等価回路、 第3図は第2図を差電流で表示した差電流等価回路、 第4図は一般的な3端子平行2回線送電線を単線図で表
示した等価回路、 第5図は第4図を差電流で表示した差電流等価回路、 第6図は、一般的な2端子平行2回線送電線に、故障点
算出装置を接続した図、 第7図は、故障が両回線にまたがって同地点で発生した
場合を、単線表示等価回路で示した図、 第8図は3端子平行2回線送電線に、故障点算出装置を
接続した図、 第9図は平行2回線送電線の故障点標定フローチャー
ト、 第10図は零相電流分流比方式を説明するための零相等価
回路。 (3a)(3b)(3a′)(3b′)(3a″)(3b″)……C
T、(6)(6′)(6″)……データメモリ、(7)
(7′)(7″)……CPU、 (8)(8′)(8″)……伝送部
FIG. 1 is a diagram showing an example of a failure that can occur in a general 2-terminal parallel 2-line transmission line, FIG. 2 is an equivalent circuit showing the circuit diagram of FIG. 1 in a single line diagram, and FIG. 3 is FIG. Is shown as a differential current, a differential current equivalent circuit is shown in Fig. 4, a general 3-terminal parallel 2-line transmission line is shown in a single line diagram, and Fig. 5 is a differential current equivalent in Fig. 4 shown as a differential current. Circuit, Fig. 6 shows a general 2-terminal parallel 2-line transmission line connected to a fault point calculator, and Fig. 7 shows a single-line display when a fault occurs at the same point across both lines. Fig. 8 shows an equivalent circuit, Fig. 8 shows a three-terminal parallel two-line transmission line connected to a fault point calculation device, Fig. 9 a fault point locating flowchart for a parallel two-line transmission line, and Fig. 10 zero phase. Zero-phase equivalent circuit for explaining the current shunt ratio method. (3a) (3b) (3a ') (3b') (3a ″) (3b ″) …… C
T, (6) (6 ') (6 ") ... Data memory, (7)
(7 ') (7 ") ... CPU, (8) (8') (8") ... Transmission unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 進 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 石津 京二 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 江村 徳男 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 (72)発明者 山本 康弘 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Ito 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Kyoji Ishizu 3-chome Nakanoshima, Kita-ku, Osaka City, Osaka No.22 in Kansai Electric Power Co., Inc. Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2端子系平行2回線送電線の一地点で一回
線に故障が発生した場合、または2端子系平行2回線送
電線の端子から等距離の地点で両回線に故障が発生した
場合における端子から故障点までの距離を算出する平行
2回線送電線の故障点標定方法であって、 2端子系平行2回線送電線の両端において、それぞれ検
出される2回線の差電流Δn,Δ′n{(但し、nは
0(零相),1(正相),2(逆相)から選択される一つの
整数、またはa(A相),b(B相),c(C相)から選択
される一つの記号である}を入力とし、 x=l|Δ′n|/(|Δn|+|Δ′n|) {但し、xは一方の端子から故障点までの距離、lは送
電線の距離である}なる演算式に基いて、端子から故障
点までの距離xを求めることを特徴とする平行2回線送
電線の故障点標定方法。
1. A failure occurs in one line at one point of a two-terminal parallel two-line transmission line, or a failure occurs at both lines at a point equidistant from the terminals of the two-terminal parallel two-line transmission line. A method of locating a fault point of a parallel two-line transmission line for calculating the distance from a terminal to a fault point in a case, in which differential currents Δn, Δ of two lines detected at both ends of a parallel two-line transmission line with two terminals are respectively detected. ′ N {(where n is one integer selected from 0 (zero phase), 1 (normal phase), 2 (reverse phase), or a (A phase), b (B phase), c (C phase) , Which is one of the symbols selected from), and x = l | Δ′n | / (| Δn | + | Δ′n |) {where x is the distance from one terminal to the fault point, l is the distance of the power transmission line} Based on an arithmetic expression, the distance x from the terminal to the fault point is found
【請求項2】3端子系平行2回線送電線の一地点で一回
線に故障が発生した場合、または3端子系平行2回線送
電線の端子から等距離の地点で両回線に故障が発生した
場合における故障点を、自端側の情報と他の2つの端子
からの情報とに基いて標定する平行2回線送電線の故障
点標定方法であって、 3端子系平行2回線送電線の各端子において、それぞれ
検出される2回線の差電流Δn,Δ′n,Δ″n
{(但し、nは0(零相),1(正相),2(逆相)から選
択される一つの整数、またはa(A相),b(B相),c
(C相)から選択される一つの記号である}を入力と
し、 x ={L/(lb+lc)}(|Δ′n|+|Δ″n|)/ (|Δn|+|Δ′n|+|Δ″n|) x′={L/(lc+la)}(|Δ″n|+|Δn|)/ (|Δn|+|Δ′n|+|Δ″n|) x″={L/(la+lb)}(|Δn|+|Δ′n|)/ (|Δn|+|Δ′n|+|Δ″n|){(但し、
la;自端と2回線分岐点との距離、lb;2回線分岐点と一
方の端子との距離、lc;2回線分岐点と他方の端子との距
離、L;(la lb+lb lc+la lc)とする} なる演算式に基いてx,x′,x″を算出し、xがlaよりも
小さい場合には、xを自端から故障点までの距離とし、
xがlaよりも大きい場合には、x′とlbとを比較し、
x′がlbよりも小さい場合には、x′を一方の端子から
故障点までの距離とし、x′がlbよりも大きい場合に
は、x″を他方の端子と故障点までの距離とすることを
特徴とする平行2回線送電線の故障点標定方法。
2. A failure occurs in one line at one point of a three-terminal parallel two-line power transmission line, or a failure occurs in both lines at a point equidistant from the terminals of the three-terminal parallel two-line power transmission line. A fault point locating method for a parallel two-line power transmission line, in which a fault point in a case is located based on information on the self-end side and information from other two terminals. At the terminal, the differential currents Δn, Δ′n, Δ ″ n of the two lines detected respectively
{(However, n is one integer selected from 0 (zero phase), 1 (normal phase), 2 (negative phase), or a (A phase), b (B phase), c
The input is a symbol selected from (C phase), and x = {L / (lb + lc)} (| Δ'n | + | Δ ″ n |) / (| Δn | + | Δ′n | + | Δ ″ n |) x ′ = {L / (lc + la)} (| Δ ″ n | + | Δn |) / (| Δn | + | Δ′n | + | Δ ″ n |) x ″ = {L / (la + lb)} (| Δn | + | Δ′n |) / (| Δn | + | Δ′n | + | Δ ″ n |) {(however,
la; Distance between own line and 2-line branch point, lb; Distance between 2-line branch point and one terminal, lc; Distance between 2-line branch point and other terminal, L; (la lb + lb lc + la lc) X, x ′, x ″ is calculated based on the following formula, and when x is smaller than la, x is the distance from the self-end to the failure point,
If x is greater than la, compare x'and lb,
If x'is less than lb, x'is the distance from one terminal to the fault point, and if x'is greater than lb, x "is the distance from the other terminal to the fault point. A method for locating a fault on a parallel two-circuit transmission line, which is characterized in that
JP63307612A 1988-12-05 1988-12-05 Fault location method for parallel two-line transmission line Expired - Lifetime JPH0750145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307612A JPH0750145B2 (en) 1988-12-05 1988-12-05 Fault location method for parallel two-line transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307612A JPH0750145B2 (en) 1988-12-05 1988-12-05 Fault location method for parallel two-line transmission line

Publications (2)

Publication Number Publication Date
JPH02154168A JPH02154168A (en) 1990-06-13
JPH0750145B2 true JPH0750145B2 (en) 1995-05-31

Family

ID=17971131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307612A Expired - Lifetime JPH0750145B2 (en) 1988-12-05 1988-12-05 Fault location method for parallel two-line transmission line

Country Status (1)

Country Link
JP (1) JPH0750145B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459522B1 (en) * 1990-05-31 1995-12-20 Nissin Electric Company, Limited Fault location method for a parallel two-circuit transmission line with N terminals

Also Published As

Publication number Publication date
JPH02154168A (en) 1990-06-13

Similar Documents

Publication Publication Date Title
CN102484365B (en) A method of fault phase selection and fault type determination
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
CN108802564A (en) The unrelated Fault Location Algorithm of power distribution network T-type line parameter and system
US20160349310A1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JPH0750145B2 (en) Fault location method for parallel two-line transmission line
JPH06347503A (en) Ground fault position locating apparatus
CN111527661B (en) Fault location in multi-terminal tapped lines
JP2920981B2 (en) Fault location method for two-circuit transmission line
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JPH08101244A (en) Method for location of fault point in transmission line
JPH0373825B2 (en)
JPH0450672A (en) Fault detecting method for electric power system using two parallel circuits
JP3773020B2 (en) Fault location method using multi-terminal electric quantity
JPS6198119A (en) Device for standardizing trouble point
JPH10132890A (en) Method and device for locating failure point
JP2560994B2 (en) Short-circuit fault location method
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP2532155B2 (en) Fault location method for n-terminal parallel 2-circuit transmission line
JPS62249078A (en) Fault point locating system
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JP2532156B2 (en) Fault location method for n-terminal parallel 2-circuit transmission line
JPS6298272A (en) Fault point locating system for power transmission system
JP3391078B2 (en) Fault locating method for two parallel transmission lines

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 14