JPH0749793B2 - Thermal drive - Google Patents

Thermal drive

Info

Publication number
JPH0749793B2
JPH0749793B2 JP21909987A JP21909987A JPH0749793B2 JP H0749793 B2 JPH0749793 B2 JP H0749793B2 JP 21909987 A JP21909987 A JP 21909987A JP 21909987 A JP21909987 A JP 21909987A JP H0749793 B2 JPH0749793 B2 JP H0749793B2
Authority
JP
Japan
Prior art keywords
gear
operating shaft
shape memory
memory alloy
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21909987A
Other languages
Japanese (ja)
Other versions
JPS6463661A (en
Inventor
勉 加藤
平八郎 飯田
Original Assignee
加藤発条株式会社
平八郎 飯田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加藤発条株式会社, 平八郎 飯田 filed Critical 加藤発条株式会社
Priority to JP21909987A priority Critical patent/JPH0749793B2/en
Publication of JPS6463661A publication Critical patent/JPS6463661A/en
Publication of JPH0749793B2 publication Critical patent/JPH0749793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば発電機或いはその他の機器類を、回転
駆動させるために使用される熱駆動装置の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention relates to an improvement of a thermal drive device used for rotationally driving, for example, a generator or other devices.

「従来の技術」 従来のこの種駆動装置として、例えば実開昭61−第3398
1号公報に示す斜板式熱駆動装置が存在する。
"Prior Art" As a conventional drive device of this type, for example, the actual development Sho 61-No. 3398
There is a swash plate type thermal drive device disclosed in Japanese Patent Laid-Open No.

該従来熱駆動装置の原理構造は、第4図に示す如く、所
定高温の湯Wが満たされたボックス1に対して、出力軸
2を回転可能に支承し、該出力軸2の一端部側に一方の
円板3を該軸2の軸線と直交する状態に固定すると共
に、他端部側に他方の円板4を出力軸2の軸線に対して
所定角度に傾斜できる状態に軸支し、且つ該両円板3・
4の対向する周縁部間に、多数の形状記憶合金コイルば
ね5を装着する構成となっている。
As shown in FIG. 4, the principle structure of the conventional heat driving device is that the output shaft 2 is rotatably supported on the box 1 filled with hot water W of a predetermined high temperature, and one end side of the output shaft 2 is supported. While fixing one disc 3 in a state orthogonal to the axis of the shaft 2, the other disc 4 is pivotally supported on the other end side in a state in which it can be inclined at a predetermined angle with respect to the axis of the output shaft 2. , And both discs 3
A large number of shape memory alloy coil springs 5 are mounted between the opposing peripheral edge portions of 4.

そして、実際の熱駆動に際しては、上記ボックス1の湯
W内に浸漬されて加熱されると、上記各形状記憶合金コ
イルばね5が収縮し、逆に湯Wから開放されて冷却され
ると、各形状記憶合金コイルばね5が伸長する伸縮現象
を利用して、他方の円板4を出力軸2に対して順次連続
して傾斜運動させることにより、出力軸2を強制的に回
転させて、所望の回転出力を得ようとするものである。
Then, in the actual heat driving, when each of the shape memory alloy coil springs 5 is contracted when immersed in the hot water W of the box 1 and heated, conversely, when the hot water W is released and cooled. Utilizing the expansion and contraction phenomenon in which each shape memory alloy coil spring 5 expands, the other disk 4 is sequentially and continuously tilted with respect to the output shaft 2 to forcibly rotate the output shaft 2, It is intended to obtain a desired rotation output.

「発明が解決しようとする問題点」 然し乍ら、斯る構成の斜板式熱駆動装置にあっては、形
状記憶合金コイルばね5を多数必要とするばかりか、仮
に多数の形状記憶合金コイルばね5を使用したとして
も、その構造上希望する高出力を得ることができなかっ
た。
"Problems to be Solved by the Invention" However, in the swash plate type thermal drive device having such a configuration, not only a large number of shape memory alloy coil springs 5 are required, but also a large number of shape memory alloy coil springs 5 are provisionally provided. Even if it was used, the desired high output could not be obtained due to its structure.

しかも、従来の熱駆動装置における各形状記憶合金コイ
ルばね5は、出力軸2の回転数と同じ数だけ、加熱と冷
却サイクルを受けるので、形状記憶合金コイルばね5自
体の寿命が自ずと短命となる問題点をも併せて有してい
た。
Moreover, each shape memory alloy coil spring 5 in the conventional thermal drive device undergoes heating and cooling cycles by the same number as the number of rotations of the output shaft 2, so that the shape memory alloy coil spring 5 itself has a short life. It also had problems.

「問題点を解決するための手段」 而して、本発明は、斯る従来熱駆動装置の問題点を有効
に解決するために開発されたもので、基台に左右動可能
に支承される作動軸の一端部に、温度変化に応じて伸縮
する形状記憶合金コイルばねを装着し、作動軸の他端部
にバイアスばねを装着して、形状記憶合金コイルばねの
伸縮で作動軸を左右方向に直線往復移動させる構成とな
す一方、該作動軸の一端部側と他端部側の外周面夫々
に、互いに逆向きの螺旋ガイド溝を形成すると共に、作
動軸の両端部に該各螺旋ガイド溝内に係入する突起部を
有する一対の回転筒体を回転可能に外嵌し、且つ該各回
転筒体の外周部にワンウエイクラッチを介して第一歯車
を夫々嵌装し、更に出力軸に減速歯車を介して連結され
る連結軸に一対の第二歯車を設け、該一対の第二歯車と
上記各第一歯車とを個々に咬合させる構成を採用した。
"Means for Solving Problems" The present invention was developed in order to effectively solve the problems of the conventional thermal drive device, and is movably supported by the base. A shape memory alloy coil spring that expands and contracts according to temperature changes is attached to one end of the operating shaft, and a bias spring is installed to the other end of the operating shaft, and the operating shaft is moved left and right by expanding and contracting the shape memory alloy coil spring. While the linear guides are configured to reciprocate linearly, the spiral guide grooves opposite to each other are formed on the outer peripheral surfaces of the one end side and the other end side of the operating shaft, and the spiral guide grooves are formed on both ends of the operating shaft. A pair of rotary cylinders having protrusions that engage in the grooves are rotatably fitted on the outer circumferences of the rotary cylinders, and the first gears are fitted on the outer circumferences of the rotary cylinders via a one-way clutch. A pair of second gears is provided on the connecting shaft that is connected to the The second gear and the first gear are individually engaged with each other.

「作用」 依って、本発明にあっては、形状記憶合金コイルばねを
加熱すると、該形状記憶合金コイルばねがバイアスばね
のばね圧に打ち勝って収縮して、作動軸を一方向に直線
移動させる結果、作動軸の各螺旋ガイド溝に対する突起
部の案内で、各回転筒体が夫々逆方向に回転するが、該
各回転筒体の回転は、ワンウエイクラッチの作用で、一
方の回転筒体の回転力は第一歯車に伝達されて、該第一
歯車を回転させるが、他方の回転筒体の回転力は、第一
歯車には伝達されないため、一方の回転筒体側の第一歯
車のみで第二歯車を回転させ、該回転力を減速歯車を介
して出力軸に伝達して、出力軸を回転させることとな
る。
"Operation" Therefore, in the present invention, when the shape memory alloy coil spring is heated, the shape memory alloy coil spring overcomes the spring pressure of the bias spring and contracts to linearly move the operating shaft in one direction. As a result, each of the rotary cylinders rotates in the opposite direction by the guide of the protrusion to each spiral guide groove of the operating shaft, but the rotation of each rotary cylinder is caused by the action of the one-way clutch. The rotational force is transmitted to the first gear to rotate the first gear, but the rotational force of the other rotary cylinder is not transmitted to the first gear, so that only the first gear on the one rotary cylinder side is used. The second gear is rotated, the rotational force is transmitted to the output shaft via the reduction gear, and the output shaft is rotated.

逆に、形状記憶合金コイルばねを冷却すると、今度は形
状記憶合金コイルばねが伸長して、バイアスばねのばね
圧が打ち勝って、作動軸を他方向に直線移動させる結
果、今度も各回転筒体は夫々逆方向に回転するが、該各
回転筒体の回転は、ワンウエイクラッチの作用で、今度
は他方の回転筒体の回転力が第一歯車に伝達されて、該
第一歯車を回転させるが、一方の回転筒体の回転力は、
第一歯車には伝達されないため、他方の回転筒体側の第
一歯車のみで第二歯車を回転させ、該回転力を減速歯車
を介して出力軸に伝達して、出力軸を回転させることと
なる。
On the contrary, when the shape memory alloy coil spring is cooled, this time the shape memory alloy coil spring expands, the spring pressure of the bias spring overcomes, and the operating shaft moves linearly in the other direction. Rotate in opposite directions, respectively, but the rotation of each rotary cylinder is caused by the action of the one-way clutch, and the rotational force of the other rotary cylinder is transmitted to the first gear to rotate the first gear. However, the rotating force of one rotating cylinder is
Since it is not transmitted to the first gear, the second gear is rotated only by the first gear on the other rotary cylinder side, and the rotational force is transmitted to the output shaft via the reduction gear, thereby rotating the output shaft. Become.

「実施例」 以下、本発明を図示する一実施例に基づいで詳述すれ
ば、本実施例に係る熱駆動装置は、第1図に示す如く、
基台11に作動軸12を左右動可能に支承する一方、該作動
軸12の一端部に取付板13aを固設して、該取付板13aと対
向する他所間に、温度変化によって伸縮する複数の形状
記憶合金コイルばね14を装着し、作動軸12の他端部に取
付板13bを固設して、該取付板13bと対向する他所間に、
複数のバイアスばね15を夫々装着して、形状記憶合金コ
イルばね14がバイアスばね15のばね圧に打ち勝って収縮
することにより、上記作動軸12を図中右方向に直線移動
させ、逆にバイアスばね15が形状記憶合金コイルばね14
のばね圧に打ち勝って収縮すると、今度は作動軸12を図
中左方向に直線移動させる構成となす。
[Examples] Hereinafter, the present invention will be described in detail with reference to an illustrated example. The thermal drive device according to the present example is as shown in FIG.
While supporting the operating shaft 12 on the base 11 so that the operating shaft 12 can be moved left and right, a plurality of fixing plates 13a are fixedly mounted on one end of the operating shaft 12 and expand and contract between other places facing the mounting plate 13a due to temperature changes. The shape memory alloy coil spring 14 is attached, and the mounting plate 13b is fixed to the other end of the operating shaft 12, and between the other positions facing the mounting plate 13b,
By mounting a plurality of bias springs 15 respectively, the shape memory alloy coil spring 14 overcomes the spring pressure of the bias springs 15 and contracts, thereby linearly moving the operating shaft 12 in the right direction in the drawing, and conversely. 15 is a shape memory alloy coil spring 14
When the spring pressure is overcome and contracts, the operating shaft 12 is moved linearly to the left in the drawing.

尚、上記形状記憶合金コイルばね14は、変態温度以上に
加熱されると収縮し、冷却されると伸長するように熱処
理されたものを使用するものとする。
The shape memory alloy coil spring 14 is used after being heat-treated so as to shrink when heated to a transformation temperature or higher and to expand when cooled.

更に、本実施例にあっては、上記作動軸12の中央部に除
く一端部側の外周面に、例えば右向きの螺旋ガイド溝16
aを二条形成し、他端部側の外周面に、該螺旋ガイド溝1
6aの逆の左向きの螺旋ガイド溝16bを二条形成する一
方、該作動軸12の両端部に、各自の二条螺旋ガイド溝16
a.16b内に係入する突起部18を一体に有する一対の回転
筒体17a・17bを回転可能に外嵌し、且つ該各回転筒体17
a・17bを上記基台11に回転可能に支承する。
Further, in the present embodiment, for example, the spiral guide groove 16 facing right is provided on the outer peripheral surface on the one end side excluding the central part of the operating shaft 12.
a is formed in two lines, and the spiral guide groove 1 is formed on the outer peripheral surface on the other end side.
The left-hand spiral guide groove 16b opposite to 6a is formed in two lines, while the two double-sided spiral guide grooves 16 are formed at both ends of the operating shaft 12.
a. A pair of rotating cylinders 17a and 17b integrally having a protrusion 18 that is engaged in the inside of a.
A and 17b are rotatably supported on the base 11.

そして、各回転筒体17a・17bの外周に、下記のワンウエ
イクラッチ19a・19bを介して、第一歯車20a・20bを夫々
嵌装する構成となっている。
Then, the first gears 20a, 20b are respectively fitted on the outer circumferences of the respective rotary cylinders 17a, 17b via the following one-way clutches 19a, 19b.

上記ワンウエイクラッチ19a・19bは、第3図に示す如
く、インナリング25とアウタリング26に穿設された孔内
に、スプリング27を介して多数のスプラッグ28を装着し
て、回転筒体が所望の一方向に回転すると、同図Aに示
す如く、各スプラッグ28が回転筒体と第一歯車間で起立
して、回転筒体の回転力を第一歯車に確実に伝達し、回
転筒体が逆方向に回転すると、同図Bに示す如く、今度
は各スプラッグ28が倒れて、回転筒体の回転力を第一歯
車には伝えずに、第一歯車を空転させるものである。
As shown in FIG. 3, the one-way clutches 19a and 19b have a plurality of slugs 28 mounted through the springs 27 in the holes formed in the inner ring 25 and the outer ring 26 to have a desired rotary cylinder. When rotated in one direction, each slug 28 stands up between the rotary cylinder and the first gear, as shown in FIG. A, to reliably transmit the rotational force of the rotary cylinder to the first gear, When is rotated in the opposite direction, each slug 28 is tilted this time, and the first gear is made to idle without transmitting the rotational force of the rotary cylinder to the first gear, as shown in FIG.

但し、斯る構成のワンウエイクラッチに限定されるもの
ではなく、その他機構のものを使用することも実施に応
じ任意であるが、少なくとも一方のワンウエイクラッチ
19aと他方のワンウエイクラッチ19bとは、作動の方向性
が逆に設定されて、且つ一方19aが作動するときは他方1
9bが作動せず、他方19bが作動するときは一方19aが作動
しないように設定するものとする。
However, it is not limited to the one-way clutch having such a configuration, and it is optional to use one having another mechanism depending on the implementation, but at least one one-way clutch is used.
The one-way clutch 19b and the other one-way clutch 19b are set so that the operating directions are set opposite to each other, and when one of the one-way clutch 19a operates, the other one
When 9b does not operate and the other 19b operates, one 19a shall be set not to operate.

従って、上記形状記憶合金コイルばね14の伸縮により、
作動軸12が左右方向に直線往復移動すると、該作動軸12
の移動に伴って各回転筒体17a・17bの突起部18が対応す
る螺旋ガイド溝16a・16b内を移動して、各回転筒体17a
・17bを互いに逆方向に回転させることとなるが、一方
の回転筒体17aの回転がワンウエイクラッチ19aにより第
一歯車20aに伝達されている時は、他方の回転筒体17bの
回転が第一歯車20bには伝達されず、逆に他方の回転筒
体17bの回転がワンウエイクラッチ19bにより、第一歯車
20bに伝達されている時は、一方の回転筒体17aの回転が
第一歯車20aには伝達されることはない。
Therefore, due to the expansion and contraction of the shape memory alloy coil spring 14,
When the operating shaft 12 moves linearly back and forth in the left-right direction, the operating shaft 12
The protrusions 18 of the rotary cylinders 17a and 17b move in the corresponding spiral guide grooves 16a and 16b in accordance with the movement of
-While rotating 17b in mutually opposite directions, when the rotation of one rotating cylinder 17a is transmitted to the first gear 20a by the one-way clutch 19a, the rotation of the other rotating cylinder 17b is the first. On the contrary, the rotation of the other rotary cylinder 17b is not transmitted to the gear 20b, and the one-way clutch 19b causes the first gear to rotate.
While being transmitted to 20b, the rotation of the one rotary cylinder 17a is not transmitted to the first gear 20a.

又、本実施例にあっては、出力軸21に減速歯車22を介し
て連結される連結軸23に、一対の第二歯車24a・24bを設
けて、該一対の第二歯車24a・24bと上記各第一歯車20a
・20bとを個々に咬合させて、第一歯車20a・20bの回転
力を第二歯車と減速歯車を経て、出力軸21に効果的に伝
達する構成を採用している。
Further, in the present embodiment, a pair of second gears 24a and 24b are provided on the coupling shaft 23 coupled to the output shaft 21 via the reduction gear 22, and the pair of second gears 24a and 24b are provided. Each of the above first gear 20a
The structure in which 20b and 20b are individually engaged and the rotational force of the first gears 20a and 20b is effectively transmitted to the output shaft 21 via the second gear and the reduction gear is adopted.

依って、斯る構成の熱駆動装置により、所望の回転出力
を得ようとする場合には、まず形状記憶合金コイルばね
14に高温湯又は熱風を供給して、該形状記憶合金コイル
ばね14を強制的に加熱すると、第2図Aに示す如く、形
状記憶合金コイルばね14がバイアスばね15のばね圧に打
ち勝って収縮して、作動軸12を図中右方向に直線移動さ
せる。
Therefore, when the desired rotational output is to be obtained by the thermal drive device having such a configuration, first, the shape memory alloy coil spring is used.
When hot water or hot air is supplied to 14 to forcefully heat the shape memory alloy coil spring 14, the shape memory alloy coil spring 14 overcomes the spring pressure of the bias spring 15 and contracts, as shown in FIG. 2A. Then, the operating shaft 12 is linearly moved to the right in the figure.

すると、作動軸12の直線移動により、各螺旋ガイド溝16
a・16bに対する突起部18の案内で、各回転筒体17a・17b
は夫々互いに逆方向に回転するが、斯る回転筒体17a・1
7bの回転は、既述したワンウエイクラッチ19a・19bの作
用で、一方の回転筒体17aの回転力は第一歯車20aに伝達
されて、該第一歯車20aを回転させるが、他方の回転筒
体17bの回転力は第一歯車20bには伝達されないため、一
方の回転筒体17a側の第一歯車20aのみで第二歯車24aを
回転させて、該回転力を減速歯車22を介して出力軸21に
伝達して、出力軸21を回転させることとなる。
Then, the linear movement of the operating shaft 12 causes each spiral guide groove 16 to move.
Guide the protrusions 18 to the a and 16b to rotate the rotating cylinders 17a and 17b.
Rotate in opposite directions to each other, but such rotating cylinders 17a.1
The rotation of 7b is the action of the one-way clutches 19a and 19b described above, and the rotational force of one rotary cylinder 17a is transmitted to the first gear 20a to rotate the first gear 20a, while the other rotary cylinder is rotated. Since the rotational force of the body 17b is not transmitted to the first gear 20b, the second gear 24a is rotated only by the first gear 20a on the one rotating cylinder 17a side, and the rotational force is output via the reduction gear 22. The power is transmitted to the shaft 21 to rotate the output shaft 21.

次いで、形状記憶合金コイルばね14の加熱を解除して強
制冷却すると、第2図Bに示す如く、今度は形状記憶合
金コイルばね14が伸長して、バイアスばね15のばね圧が
打ち勝って収縮するので、作動軸12が図中左方向に直線
移動する。
Next, when the heating of the shape memory alloy coil spring 14 is released and forced cooling is performed, as shown in FIG. 2B, the shape memory alloy coil spring 14 expands this time, and the spring pressure of the bias spring 15 overcomes and contracts. Therefore, the operating shaft 12 linearly moves to the left in the drawing.

すると、今度も螺旋ガイド溝16a・16bに対する突起部18
の案内作用により、各回転筒体17a・17bは夫々互いに逆
方向に回転するが、該各回転筒体17a・17bの回転は、ワ
ンウエイクラッチ19a・19bの作用で、今度は他方の回転
筒体17bの回転力が第一歯車20bに伝達されて、該第一歯
車20bを回転させるが、一方の回転筒体17aの回転力は第
一歯車20aには伝達されないため、他方の回転筒体17b側
の第一歯車20bのみで第二歯車24bを回転させて、該回転
力を減速歯車22を介して出力軸21に伝達して、加熱の場
合と同一方向に出力軸21を回転させることとなる。
Then, again, the protrusion 18 with respect to the spiral guide grooves 16a and 16b is formed.
The rotating cylinders 17a and 17b rotate in mutually opposite directions by the guiding action of the rotating cylinders 17a and 17b, but the rotation of the rotating cylinders 17a and 17b is caused by the action of the one-way clutches 19a and 19b. The rotating force of 17b is transmitted to the first gear 20b to rotate the first gear 20b, but the rotating force of one rotating cylinder 17a is not transmitted to the first gear 20a, so the other rotating cylinder 17b. The second gear 24b is rotated only by the first gear 20b on the side, the rotational force is transmitted to the output shaft 21 via the reduction gear 22, and the output shaft 21 is rotated in the same direction as in the case of heating. Become.

従って、本実施例にあっては、形状記憶合金コイルばね
14のゆっくりとした伸縮現象で、作動軸12を左右方向に
直線往復移動させるだけで、必ずいずれか一方の回転筒
体17a又は17bの回転力が、ワンウエイクラッチ19a・19b
を介して第一歯車20a又は20bに伝達されて、該伝達回転
力が第二歯車から減速歯車22を経て、出力軸21に伝達さ
れるので、従来の斜板式熱駆動装置と比し、高回転出力
が得られることとなると共に、出力軸21の回転数と同じ
数だけ、形状記憶合金コイルばね14に対する加熱と冷却
サイクルを行う必要がないので、形状記憶合金コイルば
ね14自体の耐久性も向上できることとなる。
Therefore, in this embodiment, the shape memory alloy coil spring is used.
Due to the slow expansion and contraction phenomenon of 14, the rotary force of either one of the rotary cylinders 17a or 17b is always applied to the one-way clutches 19a and 19b only by linearly reciprocating the operating shaft 12 in the left-right direction.
Is transmitted to the first gear 20a or 20b via the, and the transmitted rotational force is transmitted from the second gear to the output shaft 21 via the reduction gear 22. The rotation output is obtained, and since it is not necessary to perform the heating and cooling cycles for the shape memory alloy coil spring 14 by the same number as the number of rotations of the output shaft 21, the durability of the shape memory alloy coil spring 14 itself is also increased. It can be improved.

尚、上記の実施例にあっては、バイアスばね15を通常の
ばね線材で構成しているが、該バイアスばね15にも温度
変化に応じて伸縮する形状記憶合金コイルばねを使用す
ることも実施に応じ任意である。
In the above embodiment, the bias spring 15 is made of a normal spring wire material, but it is also possible to use a shape memory alloy coil spring that expands and contracts according to the temperature change for the bias spring 15. Is optional.

「発明の効果」 以上の如く、本発明にあっては、作動軸の一端部に装着
された形状記憶合金コイルばねの伸縮で、基台上の作動
軸を左右方向に直線往復移動させるだけで、互いに逆方
向に回転する一対の回転筒体のいずれか一方の回転力
を、必ずワンウエイクラッチを介して対応する第一歯車
に伝達して、該伝達回転力を第二歯車から減速歯車を経
て、出力軸に効率良く確実に伝達できるので、従来の斜
板式熱駆動装置と比し、極めて高い回転出力が容易に得
られるばかりか、形状記憶合金コイルばねに対する加熱
と冷却サイクルもゆっくりで良いので、形状記憶合金コ
イルばね自体の耐久性の向上にも大いに貢献できること
となった。
[Advantages of the Invention] As described above, according to the present invention, the expansion and contraction of the shape memory alloy coil spring attached to one end of the operating shaft is sufficient for linearly reciprocating the operating shaft on the base in the left-right direction. , The rotational force of either one of the pair of rotary cylinders that rotate in mutually opposite directions must be transmitted to the corresponding first gear through the one-way clutch, and the transmitted rotational force is transmitted from the second gear to the reduction gear. Since it can be efficiently and reliably transmitted to the output shaft, compared to the conventional swash plate type heat drive device, not only a very high rotation output can be easily obtained, but also the heating and cooling cycle for the shape memory alloy coil spring can be slow. The shape memory alloy coil spring can contribute greatly to improving the durability of the coil spring itself.

従って、本発明は斯る効果により、従来の斜板式熱駆動
装置の問題点を一掃することが可能となる。
Therefore, the present invention makes it possible to eliminate the problems of the conventional swash plate type thermal drive device by such effects.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る熱駆動装置の概略を説明
する断面図、第2図A・Bは同熱駆動装置の作動状態を
示す断面図、第3図A・Bはワンウエイクラッチの一例
を示す要部断面図、第4図は従来の斜板式熱駆動装置の
概略を説明する断面図である。 11……基台、12……作動軸、14……形状記憶合金コイル
ばね、15……バイアスばね、16a・16b……螺旋ガイド
溝、17a・17b……回転筒体、19a・19b……ワンウエイク
ラッチ、20a・20b……第一歯車、21……出力軸、22……
減速歯車、23……連結軸、24a・24b……第二歯車。
FIG. 1 is a cross-sectional view for explaining an outline of a heat driving device according to an embodiment of the present invention, FIGS. 2A and 2B are cross-sectional views showing an operating state of the heat driving device, and FIGS. 3A and 3B are one-way clutches. FIG. 4 is a cross-sectional view for explaining the outline of a conventional swash plate type heat driving device, which is an example of a main part. 11 …… Base, 12 …… Actuating shaft, 14 …… Shape memory alloy coil spring, 15 …… Bias spring, 16a ・ 16b …… Spiral guide groove, 17a ・ 17b …… Rotating cylinder, 19a ・ 19b …… One-way clutch, 20a ・ 20b …… First gear, 21 …… Output shaft, 22 ……
Reduction gear, 23 …… Coupling shaft, 24a ・ 24b …… Second gear.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基台に左右動可能に支承される作動軸の一
端部に、温度変化に応じて伸縮する形状記憶合金コイル
ばねを装着し、作動軸の他端部にバイアスばねを装着し
て、形状記憶合金コイルばねの伸縮で作動軸を左右方向
に直線往復移動させる構成となす一方、該作動軸の一端
部側と他端部側の外周面夫々に、互いに逆向きの螺旋ガ
イド溝を形成すると共に、作動軸の両端部に該各螺旋ガ
イド溝内に係入する突起部を有する一対の回転筒体を回
転可能に外嵌し、且つ該各回転筒体の外周部にワンウエ
イクラッチを介して第一歯車を夫々嵌装し、更に出力軸
に減速歯車を介して連結される連結軸に一対の第二歯車
を設け、該一対の第二歯車と上記各第一歯車とを個々に
咬合させるように構成したことを特徴とする熱駆動装
置。
1. A shape memory alloy coil spring, which expands and contracts according to temperature changes, is attached to one end of an operating shaft that is movably supported on a base, and a bias spring is attached to the other end of the operating shaft. While the shape memory alloy coil spring is expanded and contracted to linearly reciprocate the operating shaft in the left-right direction, spiral guide grooves opposite to each other are formed on the outer peripheral surfaces of the operating shaft on one end side and the other end side, respectively. And a pair of rotary cylinders having protrusions that engage with the respective spiral guide grooves are rotatably fitted to both ends of the operating shaft, and a one-way clutch is provided on the outer periphery of each rotary cylinder. The first gears are respectively fitted via the, and a pair of second gears is further provided on the connecting shaft connected to the output shaft via the reduction gear, and the pair of second gears and the respective first gears are individually provided. A heat-driving device characterized in that it is configured to be occluded.
JP21909987A 1987-09-03 1987-09-03 Thermal drive Expired - Lifetime JPH0749793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21909987A JPH0749793B2 (en) 1987-09-03 1987-09-03 Thermal drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21909987A JPH0749793B2 (en) 1987-09-03 1987-09-03 Thermal drive

Publications (2)

Publication Number Publication Date
JPS6463661A JPS6463661A (en) 1989-03-09
JPH0749793B2 true JPH0749793B2 (en) 1995-05-31

Family

ID=16730240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21909987A Expired - Lifetime JPH0749793B2 (en) 1987-09-03 1987-09-03 Thermal drive

Country Status (1)

Country Link
JP (1) JPH0749793B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960296B2 (en) * 1994-01-14 1999-10-06 株式会社三洲機械 Rotational motion-linear reciprocating motion conversion device and hydraulic pressure generating device using this device
JP5342080B1 (en) * 2013-03-28 2013-11-13 好彦 原 Output stable power generator suitable for reciprocating motion
CN112096583A (en) * 2020-09-16 2020-12-18 电子科技大学 SMA electric excitation type two-way rotary actuator

Also Published As

Publication number Publication date
JPS6463661A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
US8312977B2 (en) Apparatus for producing a frictional and/or form-fitting connection between two components which are arranged such that they can be moved linearly or rotated relative to one another
US5876316A (en) Automatic tool changer
US6701709B2 (en) Cylindrical cam stirling engine drive
JPH0749793B2 (en) Thermal drive
WO2005083255A1 (en) Rotary type stirling engine
US5967016A (en) Anti-backlash sprag
KR20230135000A (en) Cam clutch
WO2000068545A1 (en) Drive mechanism and rotary displacer for hot air engines
JP7181007B2 (en) Rotating machine with electromagnetically driven piston
US2401179A (en) Coupling device and control means therefor
KR101893164B1 (en) Magnetic cooling system
JPH06264864A (en) Compression device
CN114770472B (en) Bidirectional self-locking non-rear-drive clutch based on wedge cam and application thereof
JP7386566B2 (en) Roller cam transmission
SU1252578A1 (en) Three-dimentional cam mechanism
KR101904947B1 (en) Magnetic cooling system
CA2388368A1 (en) Anti-backlash sprag
SU1506164A1 (en) Power drive
JPH048261Y2 (en)
CN116951813A (en) Temperature control system, method and device combining magnetocaloric effect and elasto-caloric effect
JP2008223484A (en) Thermo-dynamic engine
RU2037646C1 (en) Heat engine
SU1377450A1 (en) Thermal drive and method of its operation
KR100419112B1 (en) Cam device
RU2091598C1 (en) Engine with external heat supply