JPH0747823B2 - Plasma CVD method and apparatus - Google Patents

Plasma CVD method and apparatus

Info

Publication number
JPH0747823B2
JPH0747823B2 JP3323325A JP32332591A JPH0747823B2 JP H0747823 B2 JPH0747823 B2 JP H0747823B2 JP 3323325 A JP3323325 A JP 3323325A JP 32332591 A JP32332591 A JP 32332591A JP H0747823 B2 JPH0747823 B2 JP H0747823B2
Authority
JP
Japan
Prior art keywords
pulse modulation
μsec
plasma
high frequency
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3323325A
Other languages
Japanese (ja)
Other versions
JPH05156451A (en
Inventor
征夫 渡辺
創 桑原
孝浩 中東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3323325A priority Critical patent/JPH0747823B2/en
Publication of JPH05156451A publication Critical patent/JPH05156451A/en
Publication of JPH0747823B2 publication Critical patent/JPH0747823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料ガスをプラズマ化
し、基板上に薄膜を形成するプラズマCVD法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD method and apparatus for forming a thin film on a substrate by converting a source gas into plasma.

【0002】[0002]

【従来の技術】プラズマCVDは、アモルファスシリコ
ン(a−Si)太陽電池、液晶表示装置等の各種薄膜デ
バイスの形成に広く利用されている。プラズマCVD装
置は代表的には、真空成膜室、該室中に設けた高周波電
極及びこれに対向する接地電極を備えており、この成膜
室に原料ガスを導入するとともに所定の成膜真空度を維
持しつつ、前記両電極間に高周波電圧を印加して原料ガ
スをプラズマ化させることで、接地電極上の基板に所望
の薄膜を形成するものである。
2. Description of the Related Art Plasma CVD is widely used for forming various thin film devices such as amorphous silicon (a-Si) solar cells and liquid crystal display devices. A plasma CVD apparatus is typically equipped with a vacuum film forming chamber, a high-frequency electrode provided in the chamber, and a ground electrode facing the high-frequency electrode. A desired thin film is formed on the substrate on the ground electrode by applying a high-frequency voltage between the both electrodes and turning the source gas into plasma while maintaining the temperature.

【0003】このようなプラズマCVD方法及び装置で
は、基板にダストが付着することを防止するため、成膜
室への基板搬送系や成膜室における基板の各配置を、ダ
スト発生が少なくなるように工夫している。また、ダス
ト発生を抑制するため、成膜条件を工夫したり、成膜室
への基板の設置時や装置の運転の合間に成膜室内電極や
基板搬送系等を清掃することも行われており、これらに
よって例えば液晶表示基板上の成膜ではかなりの効果が
あがっている。
In such a plasma CVD method and apparatus, in order to prevent dust from adhering to the substrate, the substrate transportation system to the film forming chamber and the respective arrangements of the substrate in the film forming chamber are designed to reduce dust generation. I am devising. In addition, in order to suppress dust generation, the film forming conditions are devised and the electrodes in the film forming chamber and the substrate transfer system are cleaned during the installation of the substrate in the film forming chamber and the operation of the apparatus. However, these have significantly improved the effect of film formation on a liquid crystal display substrate, for example.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、プラズ
マCVDにより、例えば原料ガスにSiH4 を使ってガ
ラス等の基板上に(a−Si)膜を形成すると、たとえ
前述の如く、ダスト発生の少ない条件を設定しても、形
成される膜にダストが付着したり、混入したりする。
However, when an (a-Si) film is formed on a substrate such as glass by plasma CVD using, for example, SiH 4 as a raw material gas, as described above, dust generation is reduced. Even if is set, dust adheres to or mixes with the formed film.

【0005】これは、本発明者の研究によると、たと
え、ダストが生成される最低のミニマムダストの条件で
成膜しても、その成膜時に、なお、基板に近い領域のプ
ラズマにダストが蓄積されるからである。前記原料ガス
SiH4 を例にとると、これがプラズマ化されることに
よりSiH3 ラジカル、SiH2 ラジカル、SiHラジ
カルが生成されるが、(a−Si)膜の形成には主とし
てSiH3 ラジカルが寄与し、SiH2 ラジカルやSi
Hラジカルといった低シラン系ラジカルはSiH4 と反
応して高次シランSixHyが生成され、これがダスト
パーティクルになると考えられる。
According to the research conducted by the inventor of the present invention, even if a film is formed under the condition of the minimum minimum dust in which dust is generated, the dust is still present in the plasma near the substrate during the film formation. Because it is accumulated. Taking the source gas SiH 4 as an example, when it is turned into plasma, SiH 3 radicals, SiH 2 radicals, and SiH radicals are generated, but the SiH 3 radicals mainly contribute to the formation of the (a-Si) film. SiH 2 radicals and Si
It is considered that low silane-based radicals such as H radicals react with SiH 4 to generate higher-order silane SixHy, which becomes dust particles.

【0006】そこで本発明は、原料ガスをプラズマ化
し、基板上に薄膜を形成するプラズマCVD法及び装置
において、成膜反応に寄与するラジカル種の生成を妨げ
ず、しかもダストパーティクル発生の原因となるラジカ
ル種の発生を選択的に抑制して、ダストの基板上成膜部
への付着、混入を抑制し、また、成膜速度を向上させる
ことを目的とする。
Therefore, the present invention does not prevent the generation of radical species that contribute to the film formation reaction in a plasma CVD method and apparatus for forming a thin film on a substrate by converting a source gas into a plasma, and causes dust particles. It is an object of the present invention to selectively suppress generation of radical species, suppress adhesion and mixing of dust to a film forming portion on a substrate, and improve a film forming rate.

【0007】[0007]

【課題を解決するための手段】プラズマは、前述のよう
に高周波電極に高周波電力を印加し、成膜室内を例えば
数100mTorr程度にすると、高周波電極及び接地
電極間で発生する。その際、一般的には、高周波電極側
に、ブロッキングコンデンサが設置されており、ここ
に、電子が溜まり、高周波電極は、負に帯電する。する
と、プラズマ中の正イオンが高周波電極にむかって加速
され、衝突し、電子が生成され、この電子がプラズマを
持続する。従って、プラズマをコントロールするために
は、電子(エネルギーや密度)を制御する必要がある。
As described above, plasma is generated between the high frequency electrode and the ground electrode when high frequency power is applied to the high frequency electrode as described above and the inside of the film forming chamber is set to, for example, several hundred mTorr. At that time, generally, a blocking capacitor is installed on the high frequency electrode side, where electrons are accumulated and the high frequency electrode is negatively charged. Then, the positive ions in the plasma are accelerated toward the high-frequency electrode and collide with each other to generate electrons, which sustain the plasma. Therefore, in order to control the plasma, it is necessary to control the electrons (energy and density).

【0008】つまり、プラズマCVD法及び装置におい
ては、イオン、ラジカル制御は電子(エネルギー及び密
度)制御により制御でき、これを制御することで、生成
される各種ラジカルのうち、成膜反応に不必要なラジカ
ル種の発生を抑制し、成膜反応に必要なラジカル種のみ
を増加させ得ると考えられる。そこで本発明者はさらに
研究を重ね、プラズマ中における電子温度及び密度は生
成される各種ラジカルの密度の空間分布により決定され
ること、換言すると、プラズマ中における電子温度が各
種イオン、ラジカルの生成に関係することに着目すると
ともに、各種ラジカル密度の比はプラズマ発生のための
高周波入力(RF入力)のオン時、オフ時からの時間遷
移を持つこと、すなわち、例えば原料ガスがSiH4
場合、成膜反応に利用すべきSiH3 ラジカルは、プラ
ズマ発生のための高周波入力オンにより、ダスト発生の
原因となるSiH2ラジカルやSiHラジカルとともに
増加するが、高周波入力オフ後、SiH3 ラジカルは寿
命が比較的長いのに対し、SiH2 ラジカルやSiHラ
ジカルは寿命が短いことに着目した。さらに、電子温度
及び密度は、図3に示すように、高周波入力オンにとも
ない急速に立ち上がり、再び急速に降下して一定となる
ことに着目し、結論として、原料ガスへの高周波電力印
加の時間間隔を制御することで成膜反応に不必要なラジ
カルの発生を選択的に抑制し、成膜反応に必要なラジカ
ルのみを選択的に増加させ得ることを見出し、本発明を
完成した。
That is, in the plasma CVD method and apparatus, ion and radical control can be controlled by electron (energy and density) control, and by controlling this, it is unnecessary for film formation reaction among various radicals generated. It is considered that the generation of various radical species can be suppressed and only the radical species necessary for the film formation reaction can be increased. Therefore, the present inventor has conducted further research, and that the electron temperature and density in plasma are determined by the spatial distribution of the density of various radicals generated, in other words, the electron temperature in plasma determines the generation of various ions and radicals. Focusing on the relationship, the ratio of various radical densities has a time transition from the time of turning on and off the high frequency input (RF input) for plasma generation, that is, when the source gas is SiH 4 , for example, SiH 3 radicals to be utilized in the deposition reaction, by high-frequency input on for plasma generation, increases with SiH 2 radicals and SiH radicals that cause dust generation, after high-frequency input off, the SiH 3 radical life We paid attention to the fact that SiH 2 radicals and SiH radicals have relatively short lifetimes, while they are relatively long. Further, as shown in FIG. 3, the electron temperature and the density rise rapidly with the high-frequency input turned on, and then rapidly fall again to become constant, and in conclusion, the time of applying the high-frequency power to the source gas is concluded. The present invention has been completed by finding that radicals unnecessary for film formation reaction can be selectively suppressed by controlling the interval and only radicals necessary for film formation reaction can be selectively increased.

【0009】すなわち、本発明は、原料ガスをプラズマ
化し、基板上に薄膜を形成するプラズマCVD法におい
て、前記原料ガスのプラズマ化を、所定周波数の高周波
電力に1KHz以下の第1のパルス変調、該第1パルス
変調より短い周期をもつ第2パルス変調及び該第2パル
ス変調より短い周期をもつ第3パルス変調を重畳させた
高周波電力の印加により行うことを特徴とするプラズマ
CVD法、及び原料ガスをプラズマ化し、基板上に薄膜
を形成するプラズマCVD装置において、前記原料ガス
のプラズマ化のための高周波電力印加手段が、所定周波
数の高周波電力に1KHz以下の第1のパルス変調、該
第1パルス変調より短い周期をもつ第2パルス変調及び
該第2パルス変調より短い周期をもつ第3パルス変調を
重畳させた高周波電力を出力するものであることを特徴
とするプラズマCVD装置を提供するものである。
That is, according to the present invention, in the plasma CVD method in which a raw material gas is made into plasma to form a thin film on a substrate, the raw material gas is made into plasma by a first pulse modulation of 1 KHz or less to high frequency power of a predetermined frequency, Plasma CVD method and raw material, characterized in that high frequency power is applied by superimposing a second pulse modulation having a cycle shorter than the first pulse modulation and a third pulse modulation having a cycle shorter than the second pulse modulation. In a plasma CVD apparatus for converting a gas into a plasma to form a thin film on a substrate, a high frequency power applying means for converting the source gas into a plasma has a first pulse modulation of 1 KHz or less for a high frequency power of a predetermined frequency. High frequency wave obtained by superimposing a second pulse modulation having a shorter period than the pulse modulation and a third pulse modulation having a shorter period than the second pulse modulation It is to provide a plasma CVD apparatus which is characterized in that outputs a force.

【0010】前記変調条件は、原料ガス流量、成膜室、
基板温度、原料ガス種等の多くのパラメーターにより、
随時変化させる必要があるが、一般的には、前記第1の
パルス変調は1KHz以下の条件とすることが考えられ
る。周期が1KHzより短いと、不必要なラジカル種発
生を抑制し難い。一方、必要なラジカル種を十分増加さ
せる上で、例えば400Hz以上とすることが考えられ
る。また、必要なラジカル種を選択的に増加させ、不必
要なラジカル種の発生、残存を選択的に抑制するうえ
で、前記第2のパルス変調におけるオンタイムt1は
0.5μsec<t1<100μsec、オフタイムt
2は3μsec<t2<100μsecの範囲から選択
決定し、前記第3パルス変調におけるオンタイムt3は
0.05μsec<t3<50μsec、オフタイムt
4は0.05μsec<t4<50μsecの範囲から
選択決定することが代表的な例として考えられる。
The modulation conditions are the raw material gas flow rate, the film forming chamber,
With many parameters such as substrate temperature and source gas species,
Although it is necessary to change it at any time, it is generally considered that the first pulse modulation is under the condition of 1 KHz or less. If the cycle is shorter than 1 KHz, it is difficult to suppress the generation of unnecessary radical species. On the other hand, in order to sufficiently increase the necessary radical species, it is possible to set the frequency to 400 Hz or higher, for example. Further, the on-time t1 in the second pulse modulation is 0.5 μsec <t1 <100 μsec in order to selectively increase the necessary radical species and selectively suppress the generation and remaining of the unnecessary radical species. Off time t
2 is selected and determined from the range of 3 μsec <t2 <100 μsec, and the on-time t3 in the third pulse modulation is 0.05 μsec <t3 <50 μsec and the off-time t.
As a typical example, it is considered that 4 is selectively determined from the range of 0.05 μsec <t4 <50 μsec.

【0011】[0011]

【作用】本発明のプラズマCVD法及び装置によると、
所定周波数の高周波電力に1KHz以下の第1のパルス
変調、該第1パルス変調より短い周期をもつ第2のパル
ス変調及び該第2パルス変調より短い周期をもつ第3の
パルス変調を重畳させた高周波電力が原料ガスに印加さ
れることで、成膜反応に必要なラジカル種が選択的に発
生、増加する一方、成膜反応に不必要なラジカル種の発
生が抑制された状態で、基板上に所望の薄膜が形成され
る。成膜中、成膜反応に不必要なラジカル種の発生が抑
制されることでダストパーティクルの発生率は激減し、
且つ、成膜反応に必要なラジカル種は選択的に発生、増
加することで所望の成膜速度が得られる。
According to the plasma CVD method and apparatus of the present invention,
A first pulse modulation of 1 KHz or less, a second pulse modulation having a cycle shorter than the first pulse modulation, and a third pulse modulation having a cycle shorter than the second pulse modulation were superimposed on high frequency power of a predetermined frequency. By applying high-frequency power to the source gas, the radical species necessary for the film formation reaction are selectively generated and increased, while the generation of unnecessary radical species for the film formation reaction is suppressed, Then, a desired thin film is formed. During film formation, the generation of dust species unnecessary for film formation reaction is suppressed, and the generation rate of dust particles is drastically reduced.
Moreover, a desired film forming rate can be obtained by selectively generating and increasing the radical species necessary for the film forming reaction.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明方法の実施に使用するプラズマCV
D装置の一例の概略断面を示している。図示の装置は、
真空チャンバ1、該チャンバに電磁弁21を介して接続
した真空ポンプ2、チャンバ1内に設置した電極3、
4、チャンバ1に接続した成膜用ガス源5及び電磁弁6
1を介して接続したベント用ガス源6を備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a plasma CV used for carrying out the method of the present invention.
The schematic cross section of an example of D apparatus is shown. The device shown is
A vacuum chamber 1, a vacuum pump 2 connected to the chamber via a solenoid valve 21, an electrode 3 installed in the chamber 1,
4, deposition gas source 5 and solenoid valve 6 connected to chamber 1
A vent gas source 6 connected via 1 is provided.

【0013】電極3は接地電極であり、これには成膜温
度調節用のヒータ31が付設されている。電極4にはそ
れ自体既に知られているマッチングボックス8を介して
高周波電源7から高周波電圧が印加される。高周波電源
7は、任意の高周波パルス変調が可能な高周波信号発生
器71及び高周波増幅器(RFパワーアンプ)72を有
しており、所定周波数の高周波に400Hz〜1KHz
の第1のパルス変調及び該変調より短い周期をもつ第2
のパルス変調、さらに第2パルス変調より短い周期をも
つ第3のパルス変調を重畳させた高周波電力を印加でき
るように構成してある。
The electrode 3 is a ground electrode, and a heater 31 for adjusting the film formation temperature is attached to the ground electrode. A high frequency voltage is applied to the electrode 4 from a high frequency power supply 7 via a matching box 8 which is already known. The high frequency power supply 7 has a high frequency signal generator 71 and a high frequency amplifier (RF power amplifier) 72 capable of performing arbitrary high frequency pulse modulation, and 400 Hz to 1 KHz at a high frequency of a predetermined frequency.
A first pulse modulation of the second and a second pulse having a shorter period than the modulation
And the third pulse modulation having a shorter period than the second pulse modulation are superimposed, and high frequency power can be applied.

【0014】第2のパルス変調では、第1パルス変調に
よるオン時においてμsecオーダ(オンタイムt1=
0.5〜100μsec、オフタイムt2=3〜100
μsec)のパルス変調を行い、第3のパルス変調では
第2パルス変調によるオン時t1内をさらにオンタイム
t3=0.05〜50μsec、オフタイムt4=0.
05〜50μsecでパルス変調する。
In the second pulse modulation, when the first pulse modulation is on, the time is on the order of μsec (on time t1 =
0.5 to 100 μsec, off time t2 = 3 to 100
μsec) pulse modulation, and in the third pulse modulation, the on-time t1 by the second pulse modulation is further on-time t3 = 0.05 to 50 μsec and off-time t4 = 0.
Pulse modulation is performed at 05 to 50 μsec.

【0015】第1パルス変調による高周波入力のオン、
オフ状態は図2の(A)に示すようになり、第2パルス
変調による高周波入力のオン、オフ状態は図2の(B)
の中段に示すようになり、第3パルス変調による高周波
入力のオン、オフ状態は図2の(B)の下段に示すよう
になる。以上説明した装置によると、本発明方法は次の
ように実施される。
Turning on the high frequency input by the first pulse modulation,
The off state is as shown in FIG. 2 (A), and the on / off state of the high frequency input by the second pulse modulation is shown in FIG. 2 (B).
2B, and the on / off state of the high frequency input by the third pulse modulation is as shown in the lower part of FIG. According to the apparatus described above, the method of the present invention is carried out as follows.

【0016】先ず、成膜すべき基板9を装着したトレー
10を電極3上に設置する。しかるのち、チャンバ1内
を電磁弁21の開成とポンプ2の運転にて所定圧まで真
空引きし、成膜用ガス源5から成膜用原料ガスをチャン
バ内に導入し、且つ、チャンバ内を成膜真空度に維持す
る。次いで、電源7にてこのガスに第1、第2及び第3
パルス変調された高周波電圧を印加して該ガスをプラズ
マ化させ、基板9上に成膜させる。成膜後、電磁弁61
を開いてベントガス源6からチャンバ内へベントガス
(例えばN2 ガス)を導入してベント処理したのち、基
板9をチャンバ1から取り出す。或いは、チャンバ1内
の真空を維持したまま、基板9をトレー10ごと、次の
プロセスチャンバへ移動させることも考えられる。
First, the tray 10 on which the substrate 9 to be deposited is mounted is set on the electrode 3. Then, the inside of the chamber 1 is evacuated to a predetermined pressure by opening the solenoid valve 21 and operating the pump 2, the film-forming source gas is introduced from the film-forming gas source 5 into the chamber, and the inside of the chamber is changed. The film forming vacuum is maintained. Then, the first, second and third gas are supplied to this gas by the power supply 7.
A pulse-modulated high-frequency voltage is applied to turn the gas into plasma, and a film is formed on the substrate 9. After film formation, solenoid valve 61
Is opened and a vent gas (for example, N 2 gas) is introduced from the vent gas source 6 into the chamber to perform a vent process, and then the substrate 9 is taken out from the chamber 1. Alternatively, it is possible to move the substrate 9 together with the tray 10 to the next process chamber while maintaining the vacuum in the chamber 1.

【0017】前記成膜中、原料ガスには、第1、第2及
び第3パルス変調された高周波電力が印加されるので、
成膜反応に必要なラジカル種が選択的に発生、増加する
一方、成膜反応に不必要なラジカル種の発生が抑制され
た状態で、基板上に所望の薄膜が形成される。成膜中、
成膜反応に不必要なラジカル種の発生が抑制されること
でダストパーティクルの発生率は激減し、且つ、成膜反
応に必要なラジカル種は選択的に発生、増加することで
成膜速度が向上し、また、プラズマ温度や密度の制御に
より良質な成膜を行える。
During the film formation, the first, second and third pulse modulated high frequency power is applied to the source gas,
A desired thin film is formed on the substrate while the radical species required for the film formation reaction are selectively generated and increased, while the generation of radical species unnecessary for the film formation reaction is suppressed. During film formation,
The generation rate of dust particles is drastically reduced by suppressing the generation of radical species unnecessary for the film formation reaction, and the film formation rate is increased by selectively generating and increasing the radical species necessary for the film formation reaction. Further, it is possible to improve the quality of the film and control the plasma temperature and the density.

【0018】なお、第1パルス変調のみを行うときは、
ダストパーティクルの発生率は未だ高いが、第2パルス
変調、さらに第3パルス変調も重畳するので、ダストパ
ーティクルの発生率は著しく低下する。また、前記実施
例によると、原料ガス流量やプラズマ発生のための投入
パワーを増加させても、ダスト発生増加を引き起こさな
いので、それだけ成膜速度を向上させることができる。
When only the first pulse modulation is performed,
Although the dust particle generation rate is still high, the second particle modulation and the third pulse modulation are also superimposed, so that the dust particle generation rate is significantly reduced. In addition, according to the above-described embodiment, even if the flow rate of the raw material gas and the input power for plasma generation are increased, the dust generation is not increased, so that the film formation rate can be improved accordingly.

【0019】前記パルス変調におけるパルスオン−オフ
時間(即ち、電子温度)の最適条件で成膜した膜は、物
理的特性(バンドギャップ、キャリア移動度等)の安定
した特性が得られる。以上説明した方法及び装置に基づ
き、次の具体的条件でガラス基板上にアモルファスシリ
コン(a−Si)膜を、シリコンウェハにSiNx膜を
形成したところ、該膜上に実用上問題となるダストの付
着は見られず、成膜時間もパルス変調無しで、他の条件
を同一とした成膜時より短縮された。 実施例1 (成膜条件) 1)基板:ガラス 2)基板サイズ:10cm角 3)高周波電力:13.56MHz 1000W 4)第1パルス変調の周期:1000Hz 第2パルス変調 :オンタイムt1=50μsec オフタイムt2=50μsec 第3パルス変調 :オンタイムt3=10μsec オフタイムt4=10μsec 5)原料ガス:SiH4 (10%)/H2 (90%) 200CCM 6)基板温度:300℃ (成膜結果) 1)成膜速度:(a−Si)膜400Å/min(従来 250Å/min) 2)ダスト :30個/基板(従来 150個/基板) 実施例2 (成膜条件) 1)基板:Siウェハ 2)基板サイズ:4インチ 3)高周波電力:13.56MHz 1000W 4)第1パルス変調の周期:1000Hz 第2パルス変調 :オンタイムt1=50μsec オフタイムt2=50μsec 第3パルス変調 :オンタイムt3=10μsec オフタイムt4=10μsec 5)原料ガス:SiH4 100CCM NH3 200CCM 6)基板温度:350℃ (成膜結果) 1)成膜速度:SiNx膜500Å/min(従来 350Å/min) 2)ダスト :50個/ウェハ(従来 200個/ウェハ)
The film formed under the optimum condition of the pulse on-off time (that is, electron temperature) in the pulse modulation has stable physical properties (band gap, carrier mobility, etc.). Based on the method and apparatus described above, an amorphous silicon (a-Si) film was formed on a glass substrate and a SiNx film was formed on a silicon wafer under the following specific conditions. No adhesion was observed, and the film formation time was shorter than that during film formation under the same conditions without pulse modulation. Example 1 (Film forming conditions) 1) Substrate: glass 2) Substrate size: 10 cm square 3) High frequency power: 13.56 MHz 1000 W 4) First pulse modulation period: 1000 Hz Second pulse modulation: On time t1 = 50 μsec Off Time t2 = 50 μsec Third pulse modulation: On-time t3 = 10 μsec Off-time t4 = 10 μsec 5) Source gas: SiH 4 (10%) / H 2 (90%) 200 CCM 6) Substrate temperature: 300 ° C. (film formation result) 1) Film formation rate: (a-Si) film 400 Å / min (conventional 250 Å / min) 2) Dust: 30 pieces / substrate (conventional 150 pieces / substrate) Example 2 (deposition conditions) 1) Substrate: Si wafer 2) Substrate size: 4 inches 3) High frequency power: 13.56MHz 1000W 4) 1st pulse modulation cycle: 1000Hz 2nd pulse variation Adjustment: on-time t1 = 50 μsec off-time t2 = 50 μsec Third pulse modulation: on-time t3 = 10 μsec off-time t4 = 10 μsec 5) Source gas: SiH 4 100 CCM NH 3 200 CCM 6) Substrate temperature: 350 ° C. (deposition result) 1) Deposition rate: SiNx film 500Å / min (conventional 350Å / min) 2) Dust: 50 / wafer (conventional 200 / wafer)

【0020】[0020]

【発明の効果】以上説明したように本発明プラズマCV
D法及び装置には次のような利点がある。 ダスト発生を大幅に低減できる。 成膜に不必要なラジカルを抑制できることで、成膜
速度の向上が可能になる。 ガス流量、高周波電力を増加しても、ダストの発生
を抑えたまま、高速成膜が可能になる。 電子温度、密度の制御性が大幅に向上する。
As described above, the plasma CV of the present invention
The D method and apparatus have the following advantages. Dust generation can be greatly reduced. Since the radicals unnecessary for film formation can be suppressed, the film formation speed can be improved. Even if the gas flow rate and the high frequency power are increased, high-speed film formation can be performed while suppressing the generation of dust. The controllability of electron temperature and density is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法の実施に使用するプラズマC
VD装置の一例の概略断面図である。
1 is a plasma C used for carrying out the method according to the invention, FIG.
It is a schematic sectional drawing of an example of a VD apparatus.

【図2】高周波電力のパルス変調の様子を示す図であ
る。
FIG. 2 is a diagram showing a state of pulse modulation of high frequency power.

【図3】高周波入力オン後の電子温度(密度)の時間的
変化を示すグラフである。
FIG. 3 is a graph showing a temporal change in electron temperature (density) after turning on a high frequency input.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 真空ポンプ 21 電磁弁 3 接地電極 31 ヒータ 4 高周波電極 5 成膜用原料ガス源 6 ベントガス源 61 電磁弁 7 高周波電源 71 高周波信号発生器 72 RFパワーアンプ 8 マッチングボックス 1 Vacuum Chamber 2 Vacuum Pump 21 Solenoid Valve 3 Ground Electrode 31 Heater 4 High Frequency Electrode 5 Raw Material Gas Source for Film Formation 6 Vent Gas Source 61 Solenoid Valve 7 High Frequency Power Supply 71 High Frequency Signal Generator 72 RF Power Amplifier 8 Matching Box

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスをプラズマ化し、基板上に薄膜
を形成するプラズマCVD法において、前記原料ガスの
プラズマ化を、所定周波数の高周波電力に1KHz以下
の第1のパルス変調、該第1パルス変調より短い周期を
もつ第2パルス変調及び該第2パルス変調より短い周期
をもつ第3パルス変調を重畳させた高周波電力の印加に
より行うことを特徴とするプラズマCVD法。
1. A plasma CVD method for forming a thin film on a substrate by converting a source gas into a plasma, and converting the source gas into a high frequency power of a predetermined frequency by a first pulse modulation of 1 kHz or less, the first pulse. A plasma CVD method, characterized in that high-frequency power is applied by superimposing a second pulse modulation having a shorter period than the modulation and a third pulse modulation having a shorter period than the second pulse modulation.
【請求項2】 前記第2のパルス変調におけるオンタイ
ムt1が0.5μsec<t1<100μsec、オフ
タイムt2が3μsec<t2<100μsecの範囲
にあり、前記第3パルス変調におけるオンタイムt3が
0.05μsec<t3<50μsec、オフタイムt
4が0.05μsec<t4<50μsecの範囲にあ
る請求項1記載のプラズマCVD法。
2. The on-time t1 in the second pulse modulation is in the range of 0.5 μsec <t1 <100 μsec, the off-time t2 is in the range of 3 μsec <t2 <100 μsec, and the on-time t3 in the third pulse modulation is 0. 05 μsec <t3 <50 μsec, off-time t
4. The plasma CVD method according to claim 1, wherein 4 is in the range of 0.05 μsec <t4 <50 μsec.
【請求項3】 原料ガスをプラズマ化し、基板上に薄膜
を形成するプラズマCVD装置において、前記原料ガス
のプラズマ化のための高周波電力印加手段が、所定周波
数の高周波電力に1KHz以下の第1のパルス変調、該
第1パルス変調より短い周期をもつ第2パルス変調及び
該第2パルス変調より短い周期をもつ第3パルス変調を
重畳させた高周波電力を出力するものであることを特徴
とするプラズマCVD装置。
3. In a plasma CVD apparatus for forming a thin film on a substrate by converting a source gas into plasma, a high frequency power applying means for converting the source gas into a plasma has a first high frequency power of 1 KHz or less for a high frequency power of a predetermined frequency. A plasma for outputting a high-frequency power obtained by superimposing pulse modulation, a second pulse modulation having a shorter period than the first pulse modulation, and a third pulse modulation having a shorter period than the second pulse modulation. CVD equipment.
JP3323325A 1991-12-06 1991-12-06 Plasma CVD method and apparatus Expired - Fee Related JPH0747823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323325A JPH0747823B2 (en) 1991-12-06 1991-12-06 Plasma CVD method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323325A JPH0747823B2 (en) 1991-12-06 1991-12-06 Plasma CVD method and apparatus

Publications (2)

Publication Number Publication Date
JPH05156451A JPH05156451A (en) 1993-06-22
JPH0747823B2 true JPH0747823B2 (en) 1995-05-24

Family

ID=18153534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323325A Expired - Fee Related JPH0747823B2 (en) 1991-12-06 1991-12-06 Plasma CVD method and apparatus

Country Status (1)

Country Link
JP (1) JPH0747823B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794421A (en) * 1993-09-21 1995-04-07 Anelva Corp Manufacture of amorphous silicon thin film
DE69408405T2 (en) * 1993-11-11 1998-08-20 Nissin Electric Co Ltd Plasma CVD method and device
JP3377773B2 (en) * 2000-03-24 2003-02-17 三菱重工業株式会社 Power supply method to discharge electrode, high-frequency plasma generation method, and semiconductor manufacturing method
TW507256B (en) 2000-03-13 2002-10-21 Mitsubishi Heavy Ind Ltd Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus
JP2005050905A (en) * 2003-07-30 2005-02-24 Sharp Corp Method for manufacturing silicon thin film solar cell
JP2008004813A (en) * 2006-06-23 2008-01-10 Sharp Corp Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
JP4761322B2 (en) 2009-04-30 2011-08-31 シャープ株式会社 Method for forming semiconductor film and method for manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
JPH05156451A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US4808258A (en) Plasma processing method and apparatus for carrying out the same
US7569256B2 (en) Plasma CVD apparatus and dry cleaning method of the same
CN103168337B (en) By the plasma process of trapezoidal waveform excitation in capacitive coupling reactor
US20080053818A1 (en) Plasma processing apparatus of substrate and plasma processing method thereof
JP4714166B2 (en) Substrate plasma processing apparatus and plasma processing method
US7851367B2 (en) Method for plasma processing a substrate
JPH0551753A (en) Method and device for plasma cvd
JP2764575B2 (en) Radical control method
JPH0747823B2 (en) Plasma CVD method and apparatus
JP2646941B2 (en) Thin film formation method
JPH06318552A (en) Plasma processing and its apparatus
JP3227949B2 (en) Plasma processing method and apparatus
JPH05156452A (en) Plasma cvd method and device therefor
JP3019563B2 (en) Plasma CVD method and apparatus
JPH0793272B2 (en) Plasma CVD method and apparatus
US20020056415A1 (en) Apparatus and method for production of solar cells
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
JP3615919B2 (en) Plasma CVD equipment
JP3007579B2 (en) Manufacturing method of silicon thin film
JP2536367B2 (en) Method for forming silicon oxide film
JP2697501B2 (en) Thin film formation method
JP3836032B2 (en) Plasma CVD equipment
JP2748781B2 (en) Method of forming silicon film
JP2974512B2 (en) Etching method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees