JPH0747155A - Fiber reinforced resin bat - Google Patents

Fiber reinforced resin bat

Info

Publication number
JPH0747155A
JPH0747155A JP5194672A JP19467293A JPH0747155A JP H0747155 A JPH0747155 A JP H0747155A JP 5194672 A JP5194672 A JP 5194672A JP 19467293 A JP19467293 A JP 19467293A JP H0747155 A JPH0747155 A JP H0747155A
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced
thermoplastic resin
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5194672A
Other languages
Japanese (ja)
Inventor
Kazuyuki Obara
和幸 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5194672A priority Critical patent/JPH0747155A/en
Publication of JPH0747155A publication Critical patent/JPH0747155A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fiber-reinforced resin bat which is excellent in vibration attenuation property. better in ball hitting touch and free from environmental change while keeping sufficient practical strength, rigidity and durability. CONSTITUTION:In this fiber-reinforced resin bat comprising a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin, an area where a thermosetting resin and a thermoplastic resin or the thermosetting resin, the thermoplastic resin and a reinforced fiber are mixed exists on a boundary between of the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、野球、ソフトボ−ル用
の繊維強化樹脂製バットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced resin bat for baseball and softball.

【0002】[0002]

【従来の技術】近年、バットは繊維強化樹脂製のものが
その軽量性、高剛性、高強度、耐久性等の特徴を生かし
て主流になってきている。それに用いられる強化用繊維
の形態としては、長繊維、短繊維、ウィスカ−等が、マ
トリックス樹脂としては、エポキシ樹脂等の熱硬化性樹
脂が主流であるが、一部でナイロン、ポリフェニレンエ
−テル等の熱可塑性樹脂が使用されている。
2. Description of the Related Art In recent years, bats made of fiber reinforced resin have become mainstream due to their characteristics such as light weight, high rigidity, high strength and durability. As the form of the reinforcing fibers used for it, long fibers, short fibers, whiskers, etc. are mainly used, and as the matrix resin, thermosetting resins such as epoxy resins are the mainstream, but some are nylon, polyphenylene ether. A thermoplastic resin such as is used.

【0003】通常、バットは炭素繊維の様な高強度、高
弾性率の繊維で強化された熱硬化性樹脂から一体的に成
形されている。この材料は剛性が高く優れたものである
が、衝撃を受けた時に振動が発生し易く、使用者の手に
ひびく傾向にあった。また、グランド等の地面との接触
等による摩耗に弱く、樹脂が欠け易く、さらに外表面に
傷がつくと、その部分に応力が集中し、クラックを発生
し、やがては折損となるといった欠点を有していた。
Usually, the bat is integrally molded from a thermosetting resin reinforced with fibers having high strength and high elastic modulus such as carbon fibers. Although this material has high rigidity and is excellent, it is apt to generate vibration when it receives an impact, and tends to crack the user's hand. In addition, it is vulnerable to abrasion due to contact with the ground such as the ground, the resin is easily chipped, and if the outer surface is scratched, stress concentrates on that part, cracks occur, and eventually it breaks. Had.

【0004】特開平1−201275号公報には、振動
の減衰作用の高い長繊維強化熱可塑性樹脂と前記長繊維
強化熱硬化性樹脂とからなるバットを形成する事が開示
されている。マトリックス樹脂として熱可塑性樹脂と熱
硬化性樹脂を使用する場合、必ずしも両樹脂の親和性が
高いとは限らず、両樹脂の界面における接着性が充分で
ない場合も生ずる。従って、両樹脂の界面における接着
性を確保するために、両樹脂の親和性、界面の構造を充
分に制御する必要がある。
Japanese Unexamined Patent Publication (Kokai) No. 1-2201275 discloses forming a bat composed of a long fiber reinforced thermoplastic resin having a high vibration damping effect and the long fiber reinforced thermosetting resin. When a thermoplastic resin and a thermosetting resin are used as the matrix resin, the affinity between the two resins is not always high, and the adhesiveness at the interface between the two resins may not be sufficient. Therefore, in order to secure the adhesiveness at the interface between both resins, it is necessary to sufficiently control the affinity between both resins and the structure at the interface.

【0005】しかしながら、特開平1−201275号
公報には、長繊維強化熱硬化性樹脂が硬化する際、長繊
維強化熱可塑性樹脂のマトリックス樹脂が溶融ないし軟
化するため、密着性が高くなるとの記載しかなく、衝撃
を繰り返しうけるバットの耐久性を充分に確保できる界
面の接着性が得られるとはいい難い。さらに熱可塑性樹
脂の融点ないし軟化点が熱硬化性樹脂の硬化温度より低
い場合、耐熱性に劣るバットとなる可能性がある。
However, JP-A-1-201275 describes that when the long fiber reinforced thermosetting resin is cured, the matrix resin of the long fiber reinforced thermoplastic resin is melted or softened, so that the adhesion is improved. However, it is hard to say that the adhesiveness at the interface is sufficient to ensure the durability of the bat that is repeatedly subjected to impact. Further, when the melting point or softening point of the thermoplastic resin is lower than the curing temperature of the thermosetting resin, the bat may have poor heat resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明は、充分な実用
的強度、剛性、耐久性を有しながら、振動減衰性が優れ
ており、打球感が良くかつ使用環境に依り特性が変化し
ない繊維強化樹脂製バットを提供するものである。
DISCLOSURE OF THE INVENTION According to the present invention, while having sufficient practical strength, rigidity and durability, the vibration damping property is excellent, the feel at impact is good, and the characteristics do not change depending on the use environment. A reinforced resin bat is provided.

【0007】[0007]

【課題を解決するための手段】本発明は繊維強化熱硬化
性樹脂と繊維強化熱可塑性樹脂とからなる繊維強化樹脂
製バットにおいて、繊維強化熱硬化性樹脂と繊維強化熱
可塑性樹脂の境界で熱硬化性樹脂と熱可塑性樹脂または
熱硬化性樹脂と熱可塑性樹脂と強化繊維が混在する領域
が存在することを特徴とする繊維強化樹脂製バットであ
る。
The present invention relates to a fiber reinforced resin bat comprising a fiber reinforced thermosetting resin and a fiber reinforced thermoplastic resin, and a heat is applied at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. A fiber-reinforced resin bat having a region in which a curable resin and a thermoplastic resin or a thermosetting resin, a thermoplastic resin, and reinforcing fibers are present.

【0008】本発明における繊維強化熱硬化性樹脂のマ
トリックス樹脂としては、エポキシ樹脂、不飽和ポリエ
ステル樹脂、フェノール樹脂、ポリイミド樹脂をはじめ
各種熱硬化性樹脂を使用できるが中でも、エポキシ樹脂
が好ましい。また、場合によっては硬化前の熱硬化性樹
脂を一定昇温速度で加熱しながら粘度測定した際、30
℃での粘度と最低粘度との比が100以下、好ましくは
50以下、更に好ましくは10以下の熱硬化性樹脂を使
用する事が好ましい。
As the matrix resin of the fiber-reinforced thermosetting resin in the present invention, various thermosetting resins such as epoxy resin, unsaturated polyester resin, phenol resin and polyimide resin can be used, and among them, epoxy resin is preferable. In some cases, when the viscosity of the thermosetting resin before curing is measured at a constant heating rate,
It is preferable to use a thermosetting resin having a ratio of the viscosity at 0 ° C. to the minimum viscosity of 100 or less, preferably 50 or less, more preferably 10 or less.

【0009】このような樹脂は、公知の増粘効果を有す
る成分或いは粒子を適宜添加する事で得られる。例え
ば、アエロジルの添加による増粘により、所望の樹脂が
得られる。30℃における粘度は1000〜50000
ポイズ、好ましくは5000〜20000ポイズであ
る。繊維強化熱硬化性樹脂の室温でのハンドリング性と
硬化時の流動挙動制御を両立させるには上記粘度である
ことが好ましい。
Such a resin can be obtained by appropriately adding a known component or particle having a thickening effect. For example, the desired resin can be obtained by thickening by adding Aerosil. Viscosity at 30 ° C is 1000 to 50,000
Poise, preferably 5000 to 20000 poise. The above viscosity is preferable in order to achieve both the handling property of the fiber-reinforced thermosetting resin at room temperature and the flow behavior control during curing.

【0010】本発明における繊維強化熱硬化性樹脂の強
化繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化
珪素繊維、アルミナ繊維など公知の高強度、高弾性率繊
維が単独または組み合わせて用いられる。強化繊維とし
ては長繊維、短繊維、ウィスカ−等が利用できるが、強
化効率の点から長繊維が好ましく用いられる。本発明に
おける繊維強化熱可塑性樹脂のマトリックス樹脂として
は、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミ
ド樹脂、アクリル樹脂、ポリオキシメチレン樹脂、ポリ
カ−ボネ−ト樹脂、ポリフェニレンエ−テル樹脂、ポリ
スチレン樹脂、ポリエ−テルケトン樹脂、ポリエ−テル
エ−テルケトン樹脂、ポリエ−テルスルホン樹脂、ポリ
フェニレンスルフィド樹脂、ポリエ−テルイミド樹脂な
どを用いる事ができる。これらは共重合体、アロイ、ブ
レンド、コンパウンドに成っていても良い。
As the reinforcing fiber of the fiber-reinforced thermosetting resin in the present invention, known high-strength and high-modulus fibers such as carbon fiber, glass fiber, aramid fiber, silicon carbide fiber and alumina fiber are used alone or in combination. As the reinforcing fibers, long fibers, short fibers, whiskers and the like can be used, but long fibers are preferably used from the viewpoint of reinforcing efficiency. Examples of the matrix resin of the fiber-reinforced thermoplastic resin in the present invention include polyolefin resin, polyester resin, polyamide resin, acrylic resin, polyoxymethylene resin, polycarbonate resin, polyphenylene ether resin, polystyrene resin, and polyetherketone. A resin, a polyether ether ketone resin, a polyether sulfone resin, a polyphenylene sulfide resin, a polyether imide resin or the like can be used. These may be copolymers, alloys, blends, and compounds.

【0011】繊維強化熱可塑性樹脂のマトリックス樹脂
の融点または軟化点は繊維強化熱硬化性樹脂のマトリッ
クス樹脂が硬化前の状態で最低粘度となる温度以上であ
る事が好ましく、更に該最低粘度となる温度以上、30
0℃以下である事が好ましい。成形温度、成形時の界面
制御、成形体の物性により上記温度範囲が好ましい。吸
水によるバットの特性変化を抑制するために、繊維強化
熱可塑性樹脂のマトリックス樹脂のASTM D570
に依り測定した吸水率が1.5%以下、更に好ましくは
0.5%以下である事が好ましい。
The melting point or softening point of the matrix resin of the fiber reinforced thermoplastic resin is preferably at least a temperature at which the matrix resin of the fiber reinforced thermosetting resin has the lowest viscosity before curing, and further the minimum viscosity is obtained. Above temperature, 30
It is preferably 0 ° C. or lower. The above temperature range is preferable in view of molding temperature, interface control during molding, and physical properties of the molded product. ASTM D570, a matrix resin of a fiber reinforced thermoplastic resin, for suppressing the change in the characteristics of the bat due to water absorption.
It is preferable that the water absorption measured by the method is 1.5% or less, and more preferably 0.5% or less.

【0012】繊維強化熱可塑性樹脂のマトリックス樹脂
としては、融点、吸水率が上記範囲であり、更にガラス
転移点が室温以下で、室温における振動減衰性が熱可塑
性樹脂の中でも特に優れるポリプロピレン樹脂、酸化ク
ラッキングにより変性したポリプロピレン樹脂、酸変性
ポリプロピレン樹脂、ポリプロピレン樹脂または酸化ク
ラッキングにより変性したポリプロピレン樹脂または酸
変性ポリプロピレン樹脂を成分とする共重合体、アロ
イ、ブレンド、コンパウンドが好ましく使用される。特
に他樹脂及び強化繊維との接着性に優れる酸化クラッキ
ングにより変性したポリプロピレン樹脂、酸変性ポリプ
ロピレン樹脂、酸化クラッキングにより変性したポリプ
ロピレン樹脂または酸変性ポリプロピレン樹脂を成分と
する共重合体、アロイ、ブレンド、コンパウンドが好ま
しく使用される。
The matrix resin of the fiber-reinforced thermoplastic resin has a melting point and a water absorption coefficient in the above ranges, a glass transition point of room temperature or lower, and a vibration damping property at room temperature which is particularly excellent among the thermoplastic resins. A polypropylene resin modified by cracking, an acid-modified polypropylene resin, a polypropylene resin, or a copolymer containing polypropylene as a component modified by oxidation cracking or an acid-modified polypropylene resin, an alloy, a blend, or a compound is preferably used. Particularly excellent adhesion to other resins and reinforcing fibers polypropylene resin modified by oxidation cracking, acid-modified polypropylene resin, polypropylene resin modified by oxidation cracking or copolymers containing acid-modified polypropylene resin as components, alloys, blends, compounds Is preferably used.

【0013】本発明における繊維強化熱可塑性樹脂の強
化繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化
珪素繊維、アルミナ繊維など公知の高強度、高弾性率繊
維が単独または組み合わせて用いられる。強化繊維とし
ては長繊維、短繊維、ウィスカ−等が利用できるが、強
化効率の点から長繊維が好ましく用いられる。長繊維と
は実質的に連続した繊維及び長さ5mm以上の不連続繊
維のことである。強化長繊維の形態としては実質的に繊
維長方向を一方向に引き揃えて配列した物、織物、ラン
ダムマット等が使用でき、実質的に繊維長方向を一方向
に引き揃えて配列した物が、最も効果的にマトリックス
樹脂を強化でき、好ましい。
As the reinforcing fiber of the fiber-reinforced thermoplastic resin in the present invention, known high-strength and high-modulus fibers such as carbon fiber, glass fiber, aramid fiber, silicon carbide fiber and alumina fiber are used alone or in combination. As the reinforcing fibers, long fibers, short fibers, whiskers and the like can be used, but long fibers are preferably used from the viewpoint of reinforcing efficiency. The long fibers are substantially continuous fibers and discontinuous fibers having a length of 5 mm or more. As the form of the reinforced long fibers, a product in which the fiber length direction is substantially aligned in one direction and arranged, a woven fabric, a random mat, or the like can be used, and a product in which the fiber length direction is substantially aligned in one direction is used. It is preferable since the matrix resin can be reinforced most effectively.

【0014】繊維強化熱可塑性樹脂の成形材料としては
不連続長繊維、短繊維、ウィスカ−等を含有した熱可塑
性樹脂ペレット、ランダムマットに熱可塑性樹脂を含浸
したいわゆるスタンピングシ−ト、長繊維織物に熱可塑
性樹脂を含浸した物、実質的に繊維長方向を一方向に引
き揃えて配列した物に熱可塑性樹脂を含浸した物、強化
長繊維と熱可塑性長繊維を引き揃えたまたは混繊した繊
維束を組み紐形態としたものや、すだれ状の形態にした
もの、縦糸に強化長繊維または上記の強化長繊維と熱可
塑性長繊維を引き揃えた、または混繊した繊維束を使用
し、横糸に熱可塑性長繊維を使用して製造した織物、実
質的に繊維長方向を一方向に引き揃えて配列した強化長
繊維集合体と熱可塑性繊維のシ−トからなる複合シ−ト
であって、該熱可塑性繊維が該シ−トを構成する強化長
繊維の間に入り込んで交絡一体化している複合シ−ト、
該複合シ−トを円筒形の組み紐状に加工した物等が使用
できる。ハンドリング性の良さ、成形時の熱可塑性樹脂
の含浸性の良さ、強化効率の高さから、実質的に繊維長
方向を一方向に引き揃えて配列した強化長繊維集合体と
熱可塑性繊維のシ−トからなる複合シ−トであって、該
熱可塑性繊維が該シ−トを構成する強化長繊維の間に入
り込んで交絡一体化している複合シ−ト、該複合シ−ト
を円筒形の組み紐状に加工した物を利用する事が好まし
い。上記各種の繊維強化熱可塑性樹脂の成形材料を製造
する方法は公知の方法を利用できる。
The molding material of the fiber reinforced thermoplastic resin is a thermoplastic resin pellet containing discontinuous long fibers, short fibers, whiskers, etc., a so-called stamping sheet in which a random mat is impregnated with the thermoplastic resin, or a long fiber woven fabric. A material impregnated with a thermoplastic resin, a material impregnated with a thermoplastic resin in a material in which the fiber length direction is substantially aligned in one direction, and a reinforced long fiber and a thermoplastic long fiber are aligned or mixed Weaves of fiber bundles in the form of braids, combs, warp yarns made of reinforced long fibers or the above-mentioned reinforced long fibers and thermoplastic long fibers aligned or mixed, and weft yarns A woven fabric produced by using thermoplastic long fibers as a composite sheet, which is a composite sheet made of a sheet of reinforced long fibers and a sheet of thermoplastic fibers which are substantially aligned in one direction. , The heat Sex fibers 該Shi - enters between the reinforcing long fibers constituting the door entangled integrated to have a composite sheet - DOO,
A product obtained by processing the composite sheet into a cylindrical braid can be used. Due to good handling, good impregnation with thermoplastic resin during molding, and high reinforcement efficiency, the reinforcing long fiber aggregates and thermoplastic fibers that are aligned with one another in the fiber length direction are aligned. -Composite sheet composed of a sheet, wherein the thermoplastic fiber is interlaced and integrated between the reinforcing long fibers constituting the sheet so as to be entangled and integrated, and the composite sheet has a cylindrical shape. It is preferable to use a braided product. A known method can be used as a method for producing the above-mentioned various fiber-reinforced thermoplastic resin molding materials.

【0015】本発明においては、繊維強化熱硬化性樹脂
と繊維強化熱可塑性樹脂が同一のバットに同時に存在す
る事が必要である。。繊維強化熱硬化性樹脂と繊維強化
熱可塑性樹脂の存在様式は特に限定されない。例えば、
打球部が繊維強化熱可塑性樹脂で、グリップ部が繊維強
化熱硬化性樹脂とする様式、または打球部が繊維強化熱
硬化性樹脂で、グリップ部が繊維強化熱可塑性樹脂とす
る様式が挙げられる。また、バットの断面において、内
層から発泡合成樹脂−繊維強化熱可塑性樹脂−繊維強化
熱硬化性樹脂の順序で積層された、または発泡合成樹脂
−繊維強化熱硬化性樹脂−繊維強化熱可塑性樹脂の順序
で積層された存在様式、内層から熱可塑性樹脂チュ−ブ
−繊維強化熱可塑性樹脂−繊維強化熱硬化性樹脂の順序
で積層された、または熱可塑性樹脂チュ−ブ−繊維強化
熱硬化性樹脂−繊維強化熱可塑性樹脂の順序で積層され
た存在様式、内層から繊維強化熱可塑性樹脂−繊維強化
熱硬化性樹脂の順序で積層された、または繊維強化熱硬
化性樹脂−繊維強化熱可塑性樹脂の順序で積層された存
在様式が例示される。上記バットの断面における存在様
式がバット全長にわたって存在しても良く、バットの一
部、例えば打球部またはグリップ部のみに存在しても良
い。もちろん、存在様式は上記例示に限定されない。
In the present invention, it is necessary that the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin be present in the same vat at the same time. . The mode of existence of the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin is not particularly limited. For example,
The ball hitting portion is a fiber reinforced thermoplastic resin and the grip portion is a fiber reinforced thermosetting resin, or the ball hitting portion is a fiber reinforced thermosetting resin and the grip portion is a fiber reinforced thermoplastic resin. Further, in the cross section of the bat, from the inner layer, laminated in the order of foam synthetic resin-fiber reinforced thermoplastic resin-fiber reinforced thermosetting resin, or foam synthetic resin-fiber reinforced thermosetting resin-fiber reinforced thermoplastic resin Existence mode laminated in order, thermoplastic resin tube-fiber reinforced thermoplastic resin-fiber reinforced thermosetting resin laminated in this order from the inner layer, or thermoplastic resin tube-fiber reinforced thermosetting resin -Present state of being laminated in the order of fiber reinforced thermoplastic resin, fiber reinforced thermoplastic resin from the inner layer-laminated in the order of fiber reinforced thermosetting resin, or fiber reinforced thermosetting resin-of fiber reinforced thermoplastic resin The presence mode in which the layers are stacked in order is illustrated. The presence pattern in the cross section of the bat may be present over the entire length of the bat, or may be present only in a part of the bat, for example, in a hitting portion or a grip portion. Of course, the mode of existence is not limited to the above example.

【0016】存在様式としては、繊維強化熱可塑性樹脂
の有する振動減衰性、耐衝撃性を生かし、繊維強化熱硬
化性樹脂の耐環境性を最大限に生かすために、打球部に
繊維強化熱可塑性樹脂を用いるのが好ましく、さらに打
球部外層に繊維強化熱可塑性樹脂を用いるのが特に好ま
しい。本発明で最も肝要な点は、繊維強化熱硬化性樹脂
と繊維強化熱可塑性樹脂の境界で、熱硬化性樹脂と熱可
塑性樹脂または熱硬化性樹脂と熱可塑性樹脂と強化繊維
が混在する事である。混在する事に依り、接着性が必ず
しもいいとは限らない繊維強化熱硬化性樹脂と繊維強化
熱可塑性樹脂の接着性が大幅に向上し、両樹脂間での剥
離等による破壊強度が向上する。従って、バットとして
の耐久性、耐衝撃性も向上する。
As a mode of existence, in order to make full use of the vibration damping property and impact resistance of the fiber reinforced thermoplastic resin and to maximize the environment resistance of the fiber reinforced thermosetting resin, the fiber reinforced thermoplastic resin is applied to the hitting portion. It is preferable to use a resin, and it is particularly preferable to use a fiber-reinforced thermoplastic resin for the outer layer of the hitting portion. The most important point in the present invention is that the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin is that the thermosetting resin and the thermoplastic resin or the thermosetting resin and the thermoplastic resin and the reinforcing fiber are mixed. is there. Due to the mixture, the adhesiveness between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, which do not necessarily have good adhesiveness, is significantly improved, and the breaking strength due to peeling between the two resins is improved. Therefore, the durability and impact resistance of the bat are also improved.

【0017】繊維強化熱硬化性樹脂と繊維強化熱可塑性
樹脂の境界で熱硬化性樹脂と熱可塑性樹脂又は、熱硬化
性樹脂、熱可塑性樹脂、強化繊維を混在させる方法とし
ては、打球部を繊維強化熱可塑性樹脂で、グリップ部を
繊維強化熱硬化性樹脂で作製した後、接着剤で接合する
方法において、接着剤として相溶性の熱硬化性樹脂と熱
可塑性樹脂が分子レベルで混在した物、或いは溶融状態
では相溶しているが、硬化または凝固が進行すると相分
離する樹脂の組み合わせで、ミクロ相分離構造を持つ様
に混在させた物を用いれば良い。また該樹脂同志とウィ
スカ−、短繊維等の強化繊維を混練した接着剤を用いて
も良い。非相溶性の熱硬化性樹脂と熱可塑性樹脂がマク
ロレベルで混在し、海島構造、ドメイン構造等をとって
いるアロイ、ブレンドを接着剤として用いても良いし、
更に強化繊維を混練して接着剤としても良い。海島構
造、ドメイン構造を制御し、両樹脂間の接着性を高める
為に、相溶剤を併用しても良い。
As a method of mixing the thermosetting resin and the thermoplastic resin at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin, or the thermosetting resin, the thermoplastic resin and the reinforcing fiber, Reinforced thermoplastic resin, after the grip portion is made of fiber reinforced thermosetting resin, in the method of joining with an adhesive, a compatible thermosetting resin and thermoplastic resin mixed as an adhesive at the molecular level, Alternatively, it is possible to use a combination of resins that are compatible in a molten state but phase-separate as hardening or solidification proceeds so that they have a microphase-separated structure. Further, an adhesive obtained by kneading the resin and reinforcing fibers such as whiskers and short fibers may be used. Incompatible thermosetting resin and thermoplastic resin are mixed at the macro level, sea-island structure, alloy having a domain structure, or a blend may be used as an adhesive,
Further, reinforcing fibers may be kneaded to form an adhesive. A compatibilizer may be used in combination for controlling the sea-island structure and the domain structure and enhancing the adhesion between the two resins.

【0018】用いる熱硬化性樹脂と熱可塑性樹脂はそれ
ぞれ繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂のマ
トリックス樹脂と同種の樹脂を用いる事が好ましい。ま
た、別の混在方法としては、予め多孔構造を持った発泡
体やスパンボンド法、メルトブロー法、スパンレース法
等で得られた網目構造を有する不織布等を成形前の繊維
強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界に配置
し、該多孔構造、網目構造内に熱硬化性樹脂または熱可
塑性樹脂を含浸させて混在部分を作る方法もある。成形
前の繊維強化熱硬化性樹脂や繊維強化熱可塑性樹脂が、
もともと多孔構造、網目構造を持つものであれば、その
境界に別の発泡体や不織布を配置させなくても、混在部
分を得ることができるので好ましい。発泡体や不織布等
を構成する樹脂は、熱可塑性樹脂でも熱硬化性樹脂でも
又、強化繊維を含む熱可塑性樹脂でも熱硬化性樹脂でも
良いが、熱可塑性樹脂または繊維強化熱可塑性樹脂が好
ましい。
As the thermosetting resin and the thermoplastic resin used, it is preferable to use the same kind of resin as the matrix resin of the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin, respectively. Further, as another mixing method, a foam having a porous structure or a spunbond method, a melt blow method, a nonwoven fabric having a network structure obtained by a spunlace method or the like is used as a fiber-reinforced thermosetting resin before molding. There is also a method of arranging at the boundary of the fiber reinforced thermoplastic resin and impregnating a thermosetting resin or a thermoplastic resin in the porous structure or network structure to make a mixed portion. Fiber-reinforced thermosetting resin and fiber-reinforced thermoplastic resin before molding
It is preferable to use a material having a porous structure or a network structure, since a mixed portion can be obtained without disposing another foam or nonwoven fabric at the boundary. The resin constituting the foam or the nonwoven fabric may be a thermoplastic resin, a thermosetting resin, a thermoplastic resin containing reinforcing fibers or a thermosetting resin, but a thermoplastic resin or a fiber reinforced thermoplastic resin is preferable.

【0019】より具体的には、耐熱性チュ−ブ(例えば
シリコ−ンゴム、フッソゴムなどの大きな伸びを有する
ゴムチュ−ブやポリイミド、パラ配向アラミドなどの不
融耐熱性重合体のチュ−ブなど)を芯材にし、該耐熱性
チュ−ブに繊維強化熱可塑性樹脂を被覆し、さらに、そ
の外層に連通多孔性の熱可塑性樹脂シ−ト、繊維強化熱
硬化性樹脂で被覆した後、金型内にセットし、耐熱性チ
ュ−ブに液体または気体を送り圧力をかけるとともに成
形材料を加熱成形し、耐熱性チュ−ブを取り除く方法が
挙げられる。連通多孔性の熱可塑性樹脂シ−トは繊維強
化熱可塑性樹脂のマトリックス樹脂と同種の樹脂である
事が好ましい。連通多孔に繊維強化熱硬化性樹脂のマト
リックス樹脂が含浸するためには、連通多孔性の熱可塑
性樹脂は融点または軟化点が繊維強化熱硬化性樹脂のマ
トリックス樹脂が硬化前の状態で最低粘度となる温度以
上である事が好ましく、更に該最低粘度となる温度以
上、300℃以下である事が好ましい。連通多孔に繊維
強化熱硬化性樹脂のマトリックス樹脂が含浸しすぎ、繊
維強化熱可塑性樹脂にまで達すると多孔性シ−トを配置
した効果が低下するので、成形条件を最適化するととも
に、硬化前の繊維強化熱硬化性樹脂のマトリックス樹脂
は一定昇温速度で加熱しながら粘度測定した際、30℃
での粘度と最低粘度との比が100以下、好ましくは5
0以下、更に好ましくは10以下である事が好ましい。
上記した接着剤を用いる方法では、このような問題はお
こらないので、粘度比を特に限定する必要はない。連通
多孔性の熱可塑性樹脂シ−トの代わりに網目構造を有す
る不織布を用いても良い。
More specifically, a heat-resistant tube (for example, a rubber tube having a large elongation such as silicone rubber or fluorine rubber, or a tube of infusible heat-resistant polymer such as polyimide or para-oriented aramid). As a core material, the heat-resistant tube is coated with a fiber-reinforced thermoplastic resin, and the outer layer is further coated with a continuous porous thermoplastic resin sheet or a fiber-reinforced thermosetting resin, and then a mold A method of removing the heat resistant tube by setting it inside, heat-molding the molding material by sending a liquid or gas to the heat resistant tube and applying pressure thereto. The continuous porous thermoplastic resin sheet is preferably the same resin as the matrix resin of the fiber reinforced thermoplastic resin. In order to impregnate the continuous pores with the matrix resin of the fiber-reinforced thermosetting resin, the continuous porous thermoplastic resin has a melting point or a softening point of which the matrix resin of the fiber-reinforced thermosetting resin has the minimum viscosity in the state before curing. It is preferable that the temperature is not lower than the above temperature, and it is more preferable that the temperature is not less than the temperature at which the minimum viscosity is reached and not higher than 300 ° C. The matrix resin of the fiber-reinforced thermosetting resin is excessively impregnated into the communicating pores, and when the fiber-reinforced thermoplastic resin is reached, the effect of arranging the porous sheet decreases. The matrix resin of the fiber-reinforced thermosetting resin of is 30 ° C when the viscosity is measured while heating at a constant heating rate.
The ratio of the minimum viscosity to the minimum viscosity is 100 or less, preferably 5
It is preferably 0 or less, more preferably 10 or less.
In the method using the above-mentioned adhesive, such a problem does not occur, so that it is not necessary to particularly limit the viscosity ratio. Instead of the continuous porous thermoplastic resin sheet, a non-woven fabric having a network structure may be used.

【0020】耐熱性チュ−ブの代わりに発泡合成樹脂、
熱可塑性樹脂チュ−ブを芯材として用いても良い。芯材
へ被覆する順序は上記例示の順序に限定されるものでは
ない。実質的に繊維長方向を一方向に引き揃えて配列し
た強化長繊維集合体と熱可塑性繊維のシ−トからなる複
合シ−トであって、該熱可塑性繊維が該シ−トを構成す
る強化長繊維の間に入り込んで交絡一体化している複合
シ−トで、該熱可塑性繊維のシ−トが網目構造を有する
不織布である複合シ−ト、該複合シ−トを円筒形の組み
紐状に加工した物を繊維強化熱可塑性樹脂の成形材料と
して用いる事は好ましく、この場合、予め多孔構造、網
目構造とした熱硬化性樹脂または熱可塑性樹脂を成形前
の繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界
に配置する必要はない。さらに熱可塑性繊維のシ−トを
強化長繊維集合体の片面のみに配し交絡一体化した複合
シートの強化長繊維露出面に繊維強化熱硬化性樹脂を重
ねると、熱可塑性樹脂、熱硬化性樹脂の両方が強化長繊
維の間に含浸するため、熱可塑性樹脂と熱硬化性樹脂と
強化長繊維が混在した領域ができ、優れた接着性が得ら
れ、特に好ましい。
Foamed synthetic resin instead of heat resistant tube,
You may use a thermoplastic resin tube as a core material. The order of coating the core material is not limited to the above-exemplified order. A composite sheet comprising a sheet of reinforced long fiber aggregates substantially aligned in one direction of fiber length and a sheet of thermoplastic fiber, wherein the thermoplastic fiber constitutes the sheet. A composite sheet in which reinforced long fibers are inserted between and interlaced with each other and the thermoplastic fiber sheet is a nonwoven fabric having a mesh structure, and the composite sheet is a cylindrical braid. It is preferable to use a product processed into a shape as a molding material for a fiber-reinforced thermoplastic resin, in this case, a porous structure, a thermosetting resin having a network structure in advance or a thermoplastic resin as a fiber-reinforced thermosetting resin before molding. It need not be placed at the boundaries of the fiber reinforced thermoplastic. Furthermore, when a sheet of thermoplastic fibers is arranged only on one side of the reinforced long fiber aggregate and a reinforced long fiber exposed surface of the reinforced long fiber exposed surface of the composite sheet is entangled and integrated, a thermoplastic resin and a thermosetting resin can be obtained. Since both of the resins are impregnated between the reinforced long fibers, a region in which the thermoplastic resin, the thermosetting resin and the reinforced long fibers are mixed is formed, and excellent adhesiveness is obtained, which is particularly preferable.

【0021】[0021]

【実施例】以下実施例により本発明を説明するが、本発
明は、実施例により限定されるものではない。尚表1、
2に以下の方法により得られた各バットの特性を示す。 1):打球部頭部とグリップ部を固定し、グリップ部上
部に曲げ荷重を加えた時の曲げ破壊強度。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples. Table 1
2 shows the characteristics of each bat obtained by the following method. 1): Bending fracture strength when the head portion of the hitting portion and the grip portion are fixed and a bending load is applied to the upper portion of the grip portion.

【0022】2):ハンマ−で打球部を叩いた時、グリ
ップ部で検出される振幅が初期振幅の1/10になるまでの
時間の逆数。 3):1.5mの高さからバットを落下させた時、破壊
するまでの落下回数。 4):グリップ部を固定し、ピッチングマシーンを使
い、120km/hの硬球をバットにぶつけた時破壊す
るまでの回数。
2): The reciprocal of the time until the amplitude detected by the grip part becomes 1/10 of the initial amplitude when the hitting part is hit with a hammer. 3): The number of drops until the bat is destroyed when the bat is dropped from a height of 1.5 m. 4): The number of times until the grip part is fixed and a pitching machine is used to break a 120 km / h hard ball when hitting a bat.

【0023】[0023]

【実施例1、2】図1に示すバットにおいて、打球部2
を炭素繊維を10wt%、ガラス繊維を20wt%混練
したポリブチレンブタレート樹脂を用い、シリンダ温度
260℃、射出圧力1000kg/cm2 、金型温度7
0℃で射出成形した。また、グリップ部3を炭素繊維及
びガラス繊維強化エポキシ樹脂を用い、空気で10kg
/cm2 加圧し、160℃×20分で硬化させ、内圧成
形により作製した。エポキシ樹脂に相溶の共重合ポリエ
ステル樹脂を20wt%混合した接着剤で上記打球部と
グリップ部を接合して、バットを作製した。(実施例
1)さらに上記接着剤に気相成長法炭素繊維(繊維径
0.1μm、繊維長20μm)を10wt%混練した接
着剤で上記打球部とグリップ部を接合して、バットを作
製した。(実施例2)
Embodiments 1 and 2 In the bat shown in FIG.
Using a polybutylene butarate resin kneaded with 10 wt% of carbon fiber and 20 wt% of glass fiber, a cylinder temperature of 260 ° C., an injection pressure of 1000 kg / cm 2 , and a mold temperature of 7
Injection molded at 0 ° C. Further, the grip portion 3 is made of carbon fiber and glass fiber reinforced epoxy resin, and is 10 kg in air.
/ Cm 2 was pressed, cured at 160 ° C. for 20 minutes, and produced by internal pressure molding. A bat was made by joining the hitting portion and the grip portion with an adhesive obtained by mixing 20 wt% of a copolymerized polyester resin compatible with an epoxy resin. (Example 1) Further, the hitting portion and the grip portion were joined with an adhesive obtained by kneading vapor-grown carbon fibers (fiber diameter 0.1 μm, fiber length 20 μm) in an amount of 10 wt% to the adhesive to prepare a bat. . (Example 2)

【0024】[0024]

【比較例1】接着剤としてエポキシ樹脂を単独で用いた
以外は実施例1と同様にして、バットを作製した。
Comparative Example 1 A bat was prepared in the same manner as in Example 1 except that an epoxy resin was used alone as an adhesive.

【0025】[0025]

【実施例3】ナイロン66チュ−ブに炭素繊維及びガラ
ス繊維強化エポキシ樹脂プリプレグをシ−トワインディ
ング法で被覆した後、打球部2に相当する部分にマレイ
ン酸変性ポリプロピレン樹脂のメルトブロ−法による不
織布を被覆し、更に実質的に繊維長方向を一方向に配列
した炭素繊維及びガラス繊維集合体にマレイン酸変性ポ
リプロピレン樹脂を溶融含浸したシ−トを打球部2に相
当する部分にシ−トワインディング法で被覆した。この
プリフォ−ムをバット金型に装着した。ナイロン66チ
ュ−ブの両端より10kg/mm2 の空気圧をかけ、2
00℃で20分加熱した後、130℃で30分加熱して
バットを作製した。炭素繊維強化エポキシ樹脂プリプレ
グのマトリックス樹脂は最低粘度を示す温度が約120
℃であり、30℃での粘度と最低粘度の比が約25であ
るため、200℃までの昇温過程で軟化流動して、上記
不織布の網目構造内に含浸するが最低粘度が高い為、繊
維強化熱可塑性樹脂シ−トまでは到達せず不織布内に留
まる。さらに約160℃で該不織布と繊維強化熱可塑性
樹脂シ−トのマトリックス樹脂が溶融し一体化する。従
って、繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の
境界に網目構造に由来する三次元的に熱硬化性樹脂と熱
可塑性樹脂が絡まりあって混在する領域が生成する。
Example 3 Nylon 66 tube was coated with carbon fiber and glass fiber reinforced epoxy resin prepreg by the sheet winding method, and then the portion corresponding to the hitting portion 2 was made of a maleic acid-modified polypropylene resin non-woven fabric by the melt blow method. A sheet obtained by melting and impregnating a maleic acid-modified polypropylene resin into a carbon fiber and glass fiber aggregate in which the fiber length direction is substantially aligned in one direction is covered with a sheet winding at a portion corresponding to the hitting portion 2. Method. This preform was mounted on a bat mold. Apply air pressure of 10 kg / mm 2 from both ends of nylon 66 tube, and
After heating at 00 ° C. for 20 minutes, it was heated at 130 ° C. for 30 minutes to prepare a bat. The matrix resin of carbon fiber reinforced epoxy resin prepreg shows the minimum viscosity at a temperature of about 120.
Since the ratio of the viscosity at 30 ° C. to the minimum viscosity is about 25, it softens and flows during the temperature rising process up to 200 ° C. and is impregnated into the network structure of the nonwoven fabric, but the minimum viscosity is high. It does not reach the fiber-reinforced thermoplastic resin sheet and remains in the nonwoven fabric. Further, at about 160 ° C., the nonwoven fabric and the matrix resin of the fiber reinforced thermoplastic resin sheet are melted and integrated. Therefore, at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, a region where the thermosetting resin and the thermoplastic resin are three-dimensionally entangled and mixed with each other is generated.

【0026】図2にバットの打球部A−Aの断面、図3
に繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界
の拡大模式図を示す。
FIG. 2 is a cross section of the hitting portion AA of the bat, and FIG.
An enlarged schematic view of the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin is shown in FIG.

【0027】[0027]

【比較例2】マレイン酸変性ポリプロピレン樹脂のメル
トブロ−法による不織布を被覆しない以外は実施例3と
同様にしてバットを作製した。繊維強化熱硬化性樹脂と
繊維強化熱可塑性樹脂は明瞭な界面を示し、熱硬化性樹
脂と熱可塑性樹脂の混在する領域は存在しなかった。
[Comparative Example 2] A bat was produced in the same manner as in Example 3 except that the nonwoven fabric of the maleic acid-modified polypropylene resin was not coated by the melt blow method. The fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin showed a clear interface, and there was no region where the thermosetting resin and the thermoplastic resin were mixed.

【0028】[0028]

【実施例4、5】ナイロン66チュ−ブに炭素繊維及び
ガラス繊維強化エポキシ樹脂プリプレグをシ−トワイン
ディング法で被覆した後、更に実質的に繊維長方向を一
方向に配列した炭素繊維集合体にマレイン酸変性ポリプ
ロピレン樹脂のメルトブロ−法による不織布を両面に配
置し(実施例4)または、片面のみに配置し(実施例
5)、高圧水流により炭素繊維及びガラス繊維集合体の
間にマレイン酸変性ポリプロピレン樹脂の繊維が入り込
んで一体化した複合シ−トを打球部2に相当する部分に
シ−トワインディング法で被覆した。このプリフォ−ム
をバット金型に装着した。ナイロン66チュ−ブの両端
より10kg/mm2 の空気圧をかけ、200℃で20
分加熱した後、130℃で30分加熱してバットを作製
した。炭素繊維強化エポキシ樹脂プリプレグのマトリッ
クス樹脂は最低粘度を示す温度が約120℃であり、3
0℃での粘度と最低粘度の比が約25であった。実施例
4では200℃までの昇温過程で該マトリックス樹脂が
軟化流動して、上記不織布の網目構造内に含浸するが最
低粘度が高い為、繊維強化熱可塑性樹脂シ−ト内の炭素
繊維またはガラス繊維までは到達せず不織布内に留ま
る。さらに約160℃で繊維強化熱可塑性樹脂シ−トの
マトリックス樹脂が溶融し、炭素繊維及びガラス繊維内
に含浸するとともに、繊維強化熱硬化性樹脂と繊維強化
熱可塑性樹脂が一体化する。従って、繊維強化熱硬化性
樹脂と繊維強化熱可塑性樹脂の境界に網目構造に由来す
る三次元的に熱硬化性樹脂と熱可塑性樹脂が絡まりあっ
て混在する領域が生成する。実施例5では炭素繊維また
はガラス繊維が露出した繊維強化熱可塑性樹脂シ−トの
強化繊維露出面に繊維強化熱硬化性樹脂プリプレグが接
しているため、三次元的に熱硬化性樹脂と熱可塑性樹脂
が絡まりあって混在する領域に炭素繊維またはガラス繊
維も共存し、より強固な境界が形成される。図4に実施
例5における繊維強化熱硬化性樹脂と繊維強化熱可塑性
樹脂の境界の拡大模式図を示す。
Examples 4 and 5 Nylon 66 tube was coated with carbon fiber and glass fiber reinforced epoxy resin prepreg by the sheet winding method, and then the carbon fiber aggregate was obtained in which the fiber length direction was substantially aligned in one direction. A maleic acid-modified polypropylene resin non-woven fabric prepared by the melt-blowing method is placed on both sides (Example 4) or on only one side (Example 5), and maleic acid is placed between the carbon fiber and glass fiber aggregates by high-pressure water flow. The composite sheet in which the fibers of the modified polypropylene resin entered and was integrated was coated on the portion corresponding to the hitting portion 2 by the sheet winding method. This preform was mounted on a bat mold. Air pressure of 10 kg / mm 2 is applied from both ends of nylon 66 tube at 20 ° C at 20 ° C.
After heating for 30 minutes, it was heated at 130 ° C. for 30 minutes to prepare a vat. The matrix resin of carbon fiber reinforced epoxy resin prepreg has a minimum viscosity temperature of about 120 ° C.
The ratio of viscosity at 0 ° C. to minimum viscosity was about 25. In Example 4, the matrix resin softens and flows in the course of heating up to 200 ° C. and is impregnated into the network structure of the nonwoven fabric, but since the minimum viscosity is high, the carbon fiber in the fiber-reinforced thermoplastic resin sheet or It does not reach the glass fiber and stays in the nonwoven fabric. Further, at about 160 ° C., the matrix resin of the fiber-reinforced thermoplastic resin sheet is melted and impregnated into the carbon fiber and the glass fiber, and the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin are integrated. Therefore, at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, a region where the thermosetting resin and the thermoplastic resin are three-dimensionally entangled and mixed with each other is generated. In Example 5, since the fiber reinforced thermosetting resin prepreg is in contact with the reinforced fiber exposed surface of the fiber reinforced thermoplastic resin sheet where the carbon fiber or the glass fiber is exposed, the thermosetting resin and the thermoplastic resin are three-dimensionally Carbon fibers or glass fibers also coexist in a region where the resins are entangled and mixed, and a stronger boundary is formed. FIG. 4 shows an enlarged schematic view of the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin in Example 5.

【0029】[0029]

【比較例3】炭素繊維及びガラス繊維強化エポキシ樹脂
のみでバットを作製した。
[Comparative Example 3] A bat was made using only carbon fiber and glass fiber reinforced epoxy resin.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明のバットは、繊維強化熱可塑性樹
脂が有する優れた振動減衰性、耐衝撃性を充分生かしな
がら、繊維強化熱硬化性樹脂の有する優れた耐環境性等
の特性を損なうことなく存在させるために、境界の成
分、構造を制御する事で境界の接着性及び強度を大幅に
向上させる物である。従って、本発明の繊維強化樹脂製
バットは充分な実用的な強度、剛性、耐久性を有しなが
ら、振動減衰性が優れており、打球感が良くかつ使用環
境に依り変化しない。
INDUSTRIAL APPLICABILITY The bat of the present invention impairs the characteristics such as excellent environmental resistance of the fiber reinforced thermosetting resin while fully utilizing the excellent vibration damping and impact resistance of the fiber reinforced thermoplastic resin. In order to make it exist without any material, the composition and structure of the boundary are controlled to significantly improve the adhesiveness and strength of the boundary. Therefore, the fiber-reinforced resin bat of the present invention has sufficient practical strength, rigidity, and durability, as well as excellent vibration damping, a good shot feeling, and does not change depending on the use environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】バットの正面図である。FIG. 1 is a front view of a bat.

【図2】実施例3におけるA−A線断面図である。FIG. 2 is a sectional view taken along line AA in the third embodiment.

【図3】実施例3におけるA−A線断面の繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図で
ある。
FIG. 3 is an enlarged schematic view of a boundary between a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin taken along a line AA in Example 3.

【図4】実施例5におけるA−A線断面の繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図で
ある。
FIG. 4 is an enlarged schematic view of a boundary between a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin taken along a line AA in Example 5.

【符号の説明】[Explanation of symbols]

1 バット 2 打球部 3 グリップ部 4 繊維強化熱硬化性樹脂 5 繊維強化熱可塑性樹脂 6 熱硬化性樹脂 7 熱可塑性樹脂 8 炭素繊維 9 中空部 10 ナイロン66チュ−ブ 11 熱硬化性樹脂、熱可塑性樹脂又は熱硬化性樹脂、
熱可塑性樹脂、炭素繊維が混在している領域
1 Bat 2 Hitting Part 3 Grip Part 4 Fiber Reinforced Thermosetting Resin 5 Fiber Reinforced Thermoplastic Resin 6 Thermosetting Resin 7 Thermoplastic Resin 8 Carbon Fiber 9 Hollow Part 10 Nylon 66 Tube 11 Thermosetting Resin, Thermoplastic Resin or thermosetting resin,
Area where thermoplastic resin and carbon fiber are mixed

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化熱硬化性樹脂と繊維強化熱可塑
性樹脂とからなる繊維強化樹脂製バットにおいて、少な
くとも繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の
境界で熱硬化性樹脂と熱可塑性樹脂が混在することを特
徴とする繊維強化樹脂製バット。
1. A bat made of a fiber reinforced thermosetting resin and a fiber reinforced thermoplastic resin, wherein the bat made of the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin are at least at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. A fiber-reinforced resin bat characterized in that resin is mixed.
【請求項2】 繊維強化熱硬化性樹脂と繊維強化熱可塑
性樹脂とからなる繊維強化樹脂製バットにおいて、少な
くとも繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の
境界で熱硬化性樹脂と熱可塑性樹脂と強化繊維が混在す
ることを特徴とする繊維強化樹脂製バット。
2. A fiber reinforced resin bat comprising a fiber reinforced thermosetting resin and a fiber reinforced thermoplastic resin, wherein the thermosetting resin and the thermoplastic resin are at least at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. A fiber-reinforced resin bat, wherein resin and reinforcing fibers are mixed.
JP5194672A 1993-08-05 1993-08-05 Fiber reinforced resin bat Withdrawn JPH0747155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5194672A JPH0747155A (en) 1993-08-05 1993-08-05 Fiber reinforced resin bat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5194672A JPH0747155A (en) 1993-08-05 1993-08-05 Fiber reinforced resin bat

Publications (1)

Publication Number Publication Date
JPH0747155A true JPH0747155A (en) 1995-02-21

Family

ID=16328389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5194672A Withdrawn JPH0747155A (en) 1993-08-05 1993-08-05 Fiber reinforced resin bat

Country Status (1)

Country Link
JP (1) JPH0747155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044264A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Decorative molded article and its production method
JP2016124182A (en) * 2014-12-26 2016-07-11 日産自動車株式会社 Bonded structure bonding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044264A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Decorative molded article and its production method
JP2016124182A (en) * 2014-12-26 2016-07-11 日産自動車株式会社 Bonded structure bonding method

Similar Documents

Publication Publication Date Title
US4848745A (en) Fiber reinforced article
Masuelli Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
CA2366584C (en) Composite comprising structural and non structural fibers
CA2105797C (en) Hockey stick shaft
US5419553A (en) Hockey stick shaft
US5301940A (en) Baseball bat and production thereof
JPH0747152A (en) Fiber-reinforced resin racket frame
US20050197023A1 (en) Composite comprising structural and non structural fibers
JPH0747155A (en) Fiber reinforced resin bat
JP2004229869A (en) Golf club head
JPH0687903B2 (en) Tennis racket frame
JPH07100943A (en) Pipe made of fiber-reinforced resin
JP5589465B2 (en) Fiber reinforced plastic for automotive parts
JP2515222B2 (en) Racket frame
WO2002028623A1 (en) A composite
AU2001290149A1 (en) A composite
JP6140263B2 (en) Acid-modified polyolefin fiber, fiber structure and fiber-reinforced composite material using the same
CA2125343C (en) Hockey stick shaft
JPH09176347A (en) Tubular long article produced from fiber-reinforced resin
JP2004202004A (en) Bat made of fiber reinforced plastic
JPH10174729A (en) Racket and production of this racket
KR101951205B1 (en) Fiber reinforced composite material and method of manufacturing the same
US20050191478A1 (en) Composite
JP2004202001A (en) Racket frame

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031