JPH0747126B2 - Exhaust gas treatment catalyst - Google Patents

Exhaust gas treatment catalyst

Info

Publication number
JPH0747126B2
JPH0747126B2 JP62097617A JP9761787A JPH0747126B2 JP H0747126 B2 JPH0747126 B2 JP H0747126B2 JP 62097617 A JP62097617 A JP 62097617A JP 9761787 A JP9761787 A JP 9761787A JP H0747126 B2 JPH0747126 B2 JP H0747126B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
radius
macropores
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62097617A
Other languages
Japanese (ja)
Other versions
JPS63264144A (en
Inventor
徹 瀬戸
薫明 光岡
耕三 飯田
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62097617A priority Critical patent/JPH0747126B2/en
Publication of JPS63264144A publication Critical patent/JPS63264144A/en
Publication of JPH0747126B2 publication Critical patent/JPH0747126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排煙脱硝触媒すなわち排ガス中の窒素酸化物を
アンモニアの如き還元性ガスにより還元して無害化する
ための触媒に関する。
TECHNICAL FIELD The present invention relates to a flue gas denitration catalyst, that is, a catalyst for detoxifying nitrogen oxides in exhaust gas by reducing them with a reducing gas such as ammonia.

〔従来の技術〕 各種の固定発生源からの排ガス、特にボイラーの如き各
種燃焼炉からの排ガスに含有される窒素酸化物(以下NO
x)を、アンモニアの如き還元性ガスと接触させ還元し
て無害化する方法が知られている。
[Prior Art] Exhaust gas from various fixed sources, especially nitrogen oxides (hereinafter referred to as NO 2) contained in exhaust gas from various combustion furnaces such as boilers.
It is known that x) is made harmless by bringing it into contact with a reducing gas such as ammonia to reduce it.

使用される触媒としては種々ものが提案され使用されて
いるが、近年ますます経済性の改善や触媒性能の向上要
求が厳しくなってきている。
Various types of catalysts have been proposed and used, but in recent years, demands for improved economy and improved catalyst performance have become more and more stringent.

その1例としてチタンと卑金属(V,W,Mo,Mn,Cu,Fe,Cr,C
o,Ni,Zn,Sn等)を含有しているものが挙げられる。この
系統の触媒は活性,強度,排ガス中に含まれるSOxに対
する耐久性などの面で性能が高く実用化されているが価
格の面で問題が残されている。また、経済的な触媒とし
ては原料に安価な硫酸カルシウムを担体として使用し、
硫酸銅または硫酸鉄を活性体とするものが提案されてい
る。(特開昭51−66276号公報) この後者の系統の触媒は例えば、硫酸カルシウム2水和
物と硫酸鉄水和物など活性体粉末をよく混合して又は水
を加えて混練していずれも乾燥した後、円筒状に成形し
たものであるが(前出特開昭51−66276号公報の実施例
1〜3)、この方法で調整された触媒は前述のチタンと
卑金属を含有する触媒、例えばTiO2−V2O5触媒に比較し
て脱硝性能が低い欠点がある。
As an example, titanium and base metals (V, W, Mo, Mn, Cu, Fe, Cr, C
o, Ni, Zn, Sn, etc.) are included. The catalyst of this system has been put to practical use with high performance in terms of activity, strength, and durability against SOx contained in exhaust gas, but there are still problems in terms of price. Also, as an economical catalyst, inexpensive calcium sulfate is used as a carrier as a raw material,
It has been proposed to use copper sulfate or iron sulfate as an active substance. (JP-A-51-66276) This latter type of catalyst is, for example, well mixed with active powder such as calcium sulfate dihydrate and iron sulfate hydrate or kneaded with water. After being dried, it is molded into a cylindrical shape (Examples 1 to 3 of JP-A-51-66276), but the catalyst prepared by this method is a catalyst containing the above-mentioned titanium and base metal, For example, it has a defect that the denitration performance is lower than that of the TiO 2 —V 2 O 5 catalyst.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

排ガス中のNOxを還元性ガスと接触させて還元・無害化
する際に使用する触媒として従来提案された触媒の多く
は、前述の如く、その価格や性能に問題を有している。
これに対して本発明の目的は安価にしてしかも長期に亘
つて高い活性を維持する工業的に有利な触媒を提供する
ことにある。
As described above, most of the catalysts that have been conventionally proposed as catalysts to be used when NOx in exhaust gas is brought into contact with a reducing gas to reduce / detoxify it have problems in price and performance.
On the other hand, the object of the present invention is to provide an industrially advantageous catalyst which is inexpensive and maintains high activity over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば本発明の上記目的および利点は、触媒成
分として硫酸カルシウム(担体)、鉄又はバナジウムの
酸化物もしくは硫酸塩を含有し、そしてその全細孔容積
が0.20〜0.31ミリリットル/gの範囲であり、かつ半径10
0Å程度のミクロポアと、半径1000〜60000Åのマクロポ
アとを共に有し、全細孔容積に対するマクロポアの割合
が25〜42%であることを特徴とする排煙脱硝触媒によつ
て達成される。
According to the present invention, the above objects and advantages of the present invention include calcium sulphate (support), oxides or sulphates of iron or vanadium as catalyst components and have a total pore volume of 0.20 to 0.31 ml / g. Range and radius 10
It is achieved by a flue gas denitration catalyst having both micropores of about 0Å and macropores of radius 1000 to 60,000Å, and the ratio of macropores to the total pore volume is 25 to 42%.

即、従来脱硝触媒の活性は半径100Å程度のミクロポア
に依存するものと考えられていたが、本発明触媒の如
く、さらに半径1000〜60000Åのマクロポアが付与さ
れ、全細孔容積及びミクロポアとマクロポアの割合が適
切な範囲に調整さた細孔構造をもつ触媒の脱硝性能が向
上することが判明した。この性能向上の理由はよく明ら
かではないが、ミクロポアのみであれば細孔半径に比し
て拡散分子の径が無視できなくなり拡散速度が減少す
る。これに反し、ミクロポアとマクロポアを共存させた
二元細孔径の触媒では有効拡散係数が大きくなるため触
媒性能が向上するものと考えられる。
Immediately, the activity of the conventional denitration catalyst was considered to depend on micropores having a radius of 100 Å, but like the catalyst of the present invention, macropores having a radius of 1000 to 60 000 Å were further added, and the total pore volume and the micropores and macropores were It was found that the denitration performance of the catalyst having a pore structure whose proportion was adjusted to an appropriate range was improved. The reason for this improvement in performance is not clear, but if only micropores are used, the diameter of the diffusing molecule cannot be ignored compared to the pore radius, and the diffusion rate decreases. Contrary to this, it is considered that the catalyst performance is improved because the effective diffusion coefficient becomes large in the catalyst having a binary pore size in which micropores and macropores coexist.

このマクロポアは、例えば触媒構成成分の一部を前もつ
て混練、乾燥、焼成、粉砕し、適度の粒子間空隙を有す
る状態とし、製造工程の適当な段階で残りの成分と混合
する方法、あるいは触媒構成々分に対して結晶性セルロ
ース例えば旭化成工業(株)製のアビセルTG101や山陽
国策パルプ(株)製のパルプフロツクW−1等、炭酸ア
ンモニウム、尿素、乳糖、コーンスターチ、小麦粉やア
クリル樹脂、ポリプロピレン、ポリアミドの如き樹脂等
の触媒の焼成時に焼失する有機物を添加することにより
製造することができる。
This macropore is, for example, a method of kneading, drying, firing, and pulverizing with a part of the catalyst constituents in advance so as to have an appropriate interparticle void, and mixing with the remaining components at an appropriate stage of the production process, or Crystalline cellulose for each of the catalyst components, such as Avicel TG101 manufactured by Asahi Kasei Kogyo Co., Ltd., Pulp Flock W-1 manufactured by Sanyo Kokusaku Pulp Co., Ltd., ammonium carbonate, urea, lactose, corn starch, flour or acrylic resin, polypropylene It can be produced by adding an organic substance which is burnt off during the burning of a catalyst such as a resin such as polyamide.

触媒の形状はペレツト状、球状、板状、ハニカム状等い
ずれでもよい。
The catalyst may have any shape such as pellet, sphere, plate and honeycomb.

本発明の触媒を排ガス通路に設置し、排ガスが含有する
窒素酸化物の0.5〜5倍モル、好ましくは1〜2倍モル
のアンモニアを加え、空間速度(SV),約2000〜50000h
r-1の範囲で通じ、反応ガスの接触は好ましくは100〜55
0℃、より好ましくは200〜500℃の温度において実施さ
れ又圧力は好ましくは、大気圧〜10kg/cm2程度である。
The catalyst of the present invention is installed in an exhaust gas passage, and ammonia is added in an amount of 0.5 to 5 times, preferably 1 to 2 times the molar amount of nitrogen oxide contained in the exhaust gas, and the space velocity (SV) is about 2000 to 50000 h.
Through the range of r -1, the contact of the reaction gas is preferably from 100 to 55
It is carried out at a temperature of 0 ° C, more preferably 200 to 500 ° C, and the pressure is preferably atmospheric pressure to about 10 kg / cm 2 .

〔実施例1〕 廃酸石膏、排脱石膏などから得られた一般的な硫酸カル
シウム・2水和物約50kgに硫酸第1鉄水和物を加えたも
のを微粉砕機にかけて硫酸カルシウムと硫酸第1鉄の混
合粉末を得た。(無水硫酸カルシウムに対して無水硫酸
第1鉄を15重量比に調整)これに、ポリビニルアルコー
ル1.5kgの他にポリアミド樹脂0.6kg及びEガラスチヨツ
プドストランド2.5kgを水約10と共に加えニーダーで
これらを混練した。
[Example 1] Approximately 50 kg of general calcium sulfate dihydrate obtained from waste acid gypsum, drainage gypsum, etc., and ferrous sulfate hydrate were added to a fine pulverizer to apply calcium sulfate and sulfuric acid. A mixed powder of ferrous iron was obtained. (Adjusting 15 wt% anhydrous ferrous sulfate to anhydrous calcium sulfate) To this, in addition to 1.5 kg of polyvinyl alcohol, 0.6 kg of polyamide resin and 2.5 kg of E glass chopped strand together with about 10 parts of water, kneader And kneaded these.

次いでこの混練物をハニカム押出用ノズルを備えたスク
リユー付き押出機によつて、ハニカム状に成形した。成
形したハニカムを充分時間をかけて自然乾燥させた後、
200℃で5時間通風乾燥した。この後、軸方向の両端を
切り揃えてセルピツチ7.4mm,壁厚1.35mm,外径70mm×70m
m,軸方向長さ500mmの脱硝用ハニカム触媒(相当直径5.9
mm)を得た。
Next, this kneaded product was formed into a honeycomb shape by an extruder with a screw equipped with a honeycomb extrusion nozzle. After allowing the molded honeycomb to dry naturally for a sufficient time,
It was dried by ventilation at 200 ° C. for 5 hours. After this, cut the both ends in the axial direction to align the cell pitch 7.4mm, wall thickness 1.35mm, outer diameter 70mm x 70m.
m, axial length 500 mm denitration honeycomb catalyst (equivalent diameter 5.9
mm).

〔実施例2〕 実施例1の方法において、ポリアミド樹脂を1.2kg添加
に変更する以外は全く同じ操作にて脱硫触媒を得た。
[Example 2] A desulfurization catalyst was obtained by the same procedure as in Example 1, except that 1.2 kg of polyamide resin was added.

〔実施例3〕 実施例1の方法において、ポリアミド樹脂を2.4kgとす
る以外は全く同じ操作にて脱硝触媒を得た。
[Example 3] A denitration catalyst was obtained by the same procedure as in Example 1, except that the polyamide resin was changed to 2.4 kg.

〔実施例4〕 実施例1の方法において、ポリアミド樹脂を3.6kgとす
る以外は全く同じ操作にて脱硝触媒を得た。
Example 4 A denitration catalyst was obtained by the same procedure as in Example 1, except that the polyamide resin was 3.6 kg.

〔実施例5〕 実施例2の方法において硫酸第1鉄を硫酸バナジルに変
更する以外は全く同じ操作にて脱硝触媒を得た。
[Example 5] A denitration catalyst was obtained by the same operation except that ferrous sulfate was changed to vanadyl sulfate in the method of Example 2.

〔比較例1〕 実施例1の方法において、ポリアミド樹脂を除いた以外
は全く同じ操作にて脱硝触媒を得た。
Comparative Example 1 A denitration catalyst was obtained by the same procedure as in Example 1 except that the polyamide resin was removed.

〔比較例2〕 実施例1の方法において、ポリアミド樹脂を0.3kg添加
と変更する以外は全く同じ操作にて脱硝触媒を得た。
Comparative Example 2 A denitration catalyst was obtained by the same procedure as in Example 1, except that the polyamide resin was changed to 0.3 kg.

〔比較例3〕 実施例5の方法において、ポリアミド樹脂を除いた以外
は全く同じ操作にて脱硝触媒を得た。
Comparative Example 3 A denitration catalyst was obtained by the same procedure as in Example 5, except that the polyamide resin was removed.

〔実施例6〕 以上の実施例1〜5及び比較例1〜3で得た各窒素酸化
物除去用触媒を2セル×2セル長さ100mmに切り出し、
その触媒に窒素酸化物100ppm,アンモニア100ppm,水蒸気
10%,二酸化炭素12%,二酸化イオウ800ppm,残部窒素
からなる組成の混合ガスを温度380℃、空間速度5000hr
-1にて接触させ、窒素酸化物(NOx)除去率を測定し
た。なお、窒素酸化物除去率(%)は次式により求め
た。
Example 6 The nitrogen oxide removing catalysts obtained in the above Examples 1 to 5 and Comparative Examples 1 to 3 were cut into 2 cells × 2 cells 100 mm in length,
Nitrogen oxide 100ppm, ammonia 100ppm, steam
A mixed gas composed of 10%, carbon dioxide 12%, sulfur dioxide 800ppm, and the balance nitrogen, temperature 380 ° C, space velocity 5000hr
The nitrogen oxide (NOx) removal rate was measured by contacting at -1 . The nitrogen oxide removal rate (%) was calculated by the following formula.

結果は表1に示す通りである。 The results are shown in Table 1.

〔実施例7〕 また、得られた触媒の細孔容積と細孔分布は水銀圧入式
ポロシメータを用いて測定した結果を表1に併せて示
す。
[Example 7] Further, the pore volume and the pore distribution of the obtained catalyst are shown in Table 1 together with the results of measurement using a mercury porosimetry porosimeter.

〔実施例8〕 得られた触媒を5セル×5セル長さ100mmに切り出した
ものに平均粒子径40μの硅砂を70g/Nm3含む含塵空気を4
0m/secの流速にて30分間流通させ、耐摩耗強度を求め
た。
Example 8 The obtained catalyst was cut into 5 cells × 5 cells with a length of 100 mm, and 4 parts of dust-containing air containing 70 g / Nm 3 of silica sand having an average particle diameter of 40 μ was cut.
It was circulated for 30 minutes at a flow rate of 0 m / sec, and the abrasion resistance strength was determined.

耐摩耗強度は下式により求めた。The wear resistance strength was calculated by the following formula.

その結果も表1に併せて示した。 The results are also shown in Table 1.

通常2水石膏を担体として形成した触媒はそのまゝの状
態では例えば1例として全細孔容積は0.45c.c./g、その
うち半径100Å以下は0.02c.c./g(割合約5%程度)、
半径1000〜60,000Åのものの割合は0.40c.c./g(割合で
約88%程度)含むものである。
Normally, a catalyst formed using dihydrate gypsum as a carrier, for example, has a total pore volume of 0.45 cc / g, of which 0.02 cc / g for a radius of 100 Å or less (ratio of about 5%).
The ratio of those with a radius of 1000 to 60,000Å includes 0.40cc / g (about 88% in ratio).

このまゝでは、半径100Å以下のものが過少であり、比
表面積も低いため、活性が低くて問題となるので、本発
明では微粉砕を行い(実施例1参照)を行い、半径100
Å程度のものを増加させている。(本発明では実施例4
で33%) 反面、この微粉細によつて粗粒が破砕されて触媒内の細
孔容積が減少し、(本発明では比較例1の全細孔容積0.
15ml/g)このため触媒内のガス拡散が粗害されるため
に、ポリアミド樹脂を添加して、再度半径1000Å以上の
マクロポアを付加している。
Up to this point, the amount of particles having a radius of 100 Å or less is too small and the specific surface area is low, which causes a problem of low activity. Therefore, in the present invention, fine pulverization (see Example 1) is performed, and a radius of 100
Å About those are increasing. (Example 4 in the present invention
On the other hand, coarse particles are crushed by this fine powder, and the pore volume in the catalyst is reduced (in the present invention, the total pore volume of Comparative Example 1 is 0.
(15ml / g) Because of this, the gas diffusion in the catalyst is roughly impaired, so polyamide resin is added, and macropores with a radius of 1000Å or more are added again.

従つて、この半径100Å以下のものの割合は微粉細操作
をどこまで可能かにもかゝつているが、活性面からすれ
ば本実施例程度が望ましい。又、半径1000〜60,000Å程
度のマクロポアの割合は理論的には50%迄は活性向上の
効果があるとされているが、強度面からして、本実施例
の上限42%程度が限度であると考えられる。
Therefore, the ratio of those having a radius of 100 Å or less depends on the extent to which fine pulverization operation can be performed, but from the viewpoint of activity, this embodiment is preferable. Further, the ratio of macropores with a radius of about 1000 to 60,000Å is theoretically said to have an effect of improving activity up to 50%, but from the viewpoint of strength, the upper limit of this example is about 42%. It is believed that there is.

〔発明の効果〕〔The invention's effect〕

表1から明らかな通り実施例1〜5で示す本発明の触媒
は、比較例1〜3で示すものに比較して高い脱硝率を有
していることがわかる。
As is clear from Table 1, the catalysts of the present invention shown in Examples 1 to 5 have a higher denitration rate than those shown in Comparative Examples 1 to 3.

また、細孔容積及びマクロポアの増加に略比例して脱硝
率は高くなるが、反面に対摩耗性が減少してくるため、
必要な摩耗強度に応じた上限値も考えられる。
In addition, the denitrification rate increases almost in proportion to the increase in pore volume and macropores, but on the other hand, the wear resistance decreases,
An upper limit depending on the required wear strength is also conceivable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排気ガス中の窒素酸化物を還元無害化する
ために使用する硫酸カルシウムを担体とし、鉄及び/又
はバナジウムを活性成分とする脱硝触媒において、該触
媒の全細孔容積が0.20〜0.31ミリリットル/gの範囲であ
り、かつ半径100Å程度のミクロポアと半径1,000〜60,0
00Åのマクロポアとを共に有し、全細孔容積に対するマ
クロポアの割合が25〜42%であることを特徴とする排ガ
ス処理用触媒。
1. A denitration catalyst having calcium sulfate as a carrier and iron and / or vanadium as an active component, which is used for reducing and detoxifying nitrogen oxides in exhaust gas, and has a total pore volume of 0.20. Micropores with a radius of about 100 Å and a radius of 1,000 to 60,0
A catalyst for treating exhaust gas, which has both 00 Å macropores and the ratio of macropores to the total pore volume is 25 to 42%.
JP62097617A 1987-04-22 1987-04-22 Exhaust gas treatment catalyst Expired - Fee Related JPH0747126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097617A JPH0747126B2 (en) 1987-04-22 1987-04-22 Exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097617A JPH0747126B2 (en) 1987-04-22 1987-04-22 Exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JPS63264144A JPS63264144A (en) 1988-11-01
JPH0747126B2 true JPH0747126B2 (en) 1995-05-24

Family

ID=14197163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097617A Expired - Fee Related JPH0747126B2 (en) 1987-04-22 1987-04-22 Exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JPH0747126B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8875711B2 (en) 2010-05-27 2014-11-04 Theravent, Inc. Layered nasal respiratory devices
US8985116B2 (en) 2006-06-07 2015-03-24 Theravent, Inc. Layered nasal devices
US9238113B2 (en) 2004-12-08 2016-01-19 Theravent, Inc. Nasal respiratory devices for positive end-expiratory pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238113B2 (en) 2004-12-08 2016-01-19 Theravent, Inc. Nasal respiratory devices for positive end-expiratory pressure
US8985116B2 (en) 2006-06-07 2015-03-24 Theravent, Inc. Layered nasal devices
US8875711B2 (en) 2010-05-27 2014-11-04 Theravent, Inc. Layered nasal respiratory devices

Also Published As

Publication number Publication date
JPS63264144A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
CA1327346C (en) Catalyst support material containing lanthanides
KR100370460B1 (en) DeNOx CATALYST FOR REDUCING THE NOx CONCENTRATION IN A STREAM OF FLUID, AND METHOD OF MANUFACTURING THE CATALYST
CN113289602A (en) Catalyst for carbonyl sulfide hydrolysis in blast furnace gas and preparation method and application thereof
JPS63130140A (en) Exhaust gas denitration catalyst
US5516741A (en) Reduced chlorine containing platinum catalysts
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
US20200179902A1 (en) A Noxious Gas Purificant and Its Preparation and Purification Method Thereof
CN107626292A (en) Flue gas desulfurization and denitrification catalyst and its preparation method and application
JPS63185448A (en) Catalyst and method for removing nitrogen oxide in exhaust gas
US4138368A (en) Catalyst for reducing nitrogen oxides
JPH0747126B2 (en) Exhaust gas treatment catalyst
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JP2778031B2 (en) Nitrogen oxide / sulfur oxide absorbent
CN108786819A (en) A kind of catalyst and preparation method thereof for flue gas and desulfurizing and denitrifying
CN111359616B (en) High-concentration NOx flue gas denitration agent and preparation method thereof
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JP3279330B2 (en) Nitrogen oxide removal method
JPS6372342A (en) Catalyst for removing nitrogen oxide
JPS6372341A (en) Catalyst for removing nitrogen oxide
JPH08196871A (en) Decomposition of ammonia
JP4578624B2 (en) Method for producing exhaust gas treatment catalyst
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JPH0420663B2 (en)
CN108671752A (en) A kind of equipment for denitrifying flue gas and method of charged spray ammonia and ammonolysis craft combination
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees