JPH074656A - Burner ignition device - Google Patents

Burner ignition device

Info

Publication number
JPH074656A
JPH074656A JP3052698A JP5269891A JPH074656A JP H074656 A JPH074656 A JP H074656A JP 3052698 A JP3052698 A JP 3052698A JP 5269891 A JP5269891 A JP 5269891A JP H074656 A JPH074656 A JP H074656A
Authority
JP
Japan
Prior art keywords
circuit
resistance
time
ignition device
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3052698A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishida
弘 西田
Nobuo Nakazawa
信雄 中澤
Shunichi Tsumura
俊一 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3052698A priority Critical patent/JPH074656A/en
Publication of JPH074656A publication Critical patent/JPH074656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a burner ignition device having high reliability, by which the decrease of heating temperature caused by the deterioration with time of a heater is compensated, and the suitable heating temperature can be always obtained, in a burner ignition device using a ceramic igniter. CONSTITUTION:A time correction control circuit 17 for correcting the resistance command value by the change with time of heater 6 to the resistance detection circuit output value from a resistance detecting circuit 12 is provided between the resistance detecting circuit 12 of the heater 6 of a ceramic igniter 7 and an electric energy control circuit 13. Thereby, since the temperature of the heater 6 can be held into the suitable value according to the deterioration with time of the heater 6 of the ceramic igniter 7, the reliability of the burner ignition device is improved. Moreover, since it is not necessary to set the initial set temperature to high in anticipation of the deterioration with time of the heater 6, the long life of the heater 6 can be attempted, and also the suitable compensation of the deterioration with time can be performed, so that the heater can be used as a burner ignition device capable of stably and reliably performing the ignition for long periods.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバーナ点火装置に係り、
特に点火源として用いるセラミックスイグナイタの経時
劣化に伴なう発熱温度の低下を補償する制御回路を設け
たバーナ点火装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner ignition device,
In particular, the present invention relates to a burner ignition device provided with a control circuit that compensates for a decrease in heat generation temperature due to deterioration over time of a ceramics igniter used as an ignition source.

【0002】[0002]

【従来の技術】従来、例えば事業用火力発電ボイラにお
ける主バーナへの点火には、軽油を燃料とする軽油点火
バーナやガスを燃料とするガス点火バーナが用いられて
いる。そして、主バーナへ点火するときは、軽油点火バ
ーナやガス点火バーナは点火用発熱体と一体に構成し
て、これを火炉内へ前進させて、まず点火バーナを点火
して、その後に点火バーナの火炎によって主バーナを点
火する方式が採用されている。また、主バーナへの点火
後は、点火バーナと発熱体は、共に主バーナの火炎によ
る焼損から保護するために、火炉内から後退させる構造
になっている。
2. Description of the Related Art Conventionally, for example, a light oil ignition burner using light oil as a fuel and a gas ignition burner using gas as a fuel have been used to ignite a main burner in a commercial thermal power generation boiler. When the main burner is ignited, the light oil ignition burner and the gas ignition burner are integrated with the heating element for ignition, and are advanced into the furnace to ignite the ignition burner first, and then the ignition burner. The method of igniting the main burner with the flame of is adopted. After the main burner is ignited, both the ignition burner and the heating element are configured to be retracted from the inside of the furnace in order to protect the main burner from being burned by the flame.

【0003】ここで、従来のバーナ点火装置の構成の概
要について説明する。点火源としては、図5に示すごと
く、点火バーナ1の近傍に設けたスパークイグナイタ2
の電極3、4間に発生する火花放電5を利用するもの
と、図6に示すように、発熱体6の発熱を利用するセラ
ミックスイグナイタ7が知られている。スパークイグナ
イタ2は、点火温度に達するまでの時間(点火所要時
間)が短い特徴はあるが、火花放電5の点火領域が狭
く、放電電極3、4間に未燃分などの異物が付着すると
放電不能となる。また、所要電圧が高いため複雑な防爆
構造とする必要があるなどの欠点があった。一方、セラ
ミックスイグナイタ7の発熱体6は、耐熱性、点火領
域、使用電圧等の点で点火バーナ1の点火源として優れ
た特徴がある。ところが、発熱体6は図7に示すよう
に、ヒータ抵抗値とヒータ発熱温度は正比例して増加す
る抵抗温度特性がある。したがって、発熱体6の温度は
この原理を用い、所定の抵抗値になるように電流・電圧
を印加して発熱温度を制御する抵抗値一定制御を採用し
ている。この抵抗値一定制御(A)は、図8に示すよう
に発熱体6近傍の空気流速に係わらず、定電圧制御
(B)、定電流制御(C)に比べて一定の発熱温度を保
持できる制御方式である。したがって、燃料の点火源と
して用いる場合のように、燃焼用空気の流速が変化しや
すく、かつ発熱温度の精度が要求される場合の制御方式
としては、抵抗値一定制御(A)が適している。
Here, an outline of the configuration of a conventional burner ignition device will be described. As an ignition source, as shown in FIG. 5, a spark igniter 2 provided near the ignition burner 1 is used.
There is known one using a spark discharge 5 generated between the electrodes 3 and 4 and a ceramic igniter 7 utilizing heat generated by a heating element 6 as shown in FIG. The spark igniter 2 has a characteristic that the time until the ignition temperature is reached (ignition required time) is short, but the ignition region of the spark discharge 5 is narrow, and if foreign matter such as unburned matter adheres between the discharge electrodes 3 and 4, discharge occurs. It becomes impossible. Further, there is a drawback that a complicated explosion-proof structure is required due to a high required voltage. On the other hand, the heating element 6 of the ceramics igniter 7 has excellent characteristics as an ignition source of the ignition burner 1 in terms of heat resistance, ignition area, working voltage, and the like. However, as shown in FIG. 7, the heating element 6 has a resistance temperature characteristic in which the heater resistance value and the heater heating temperature increase in direct proportion. Therefore, the temperature of the heating element 6 is based on this principle, and a constant resistance value control is applied to control the heating temperature by applying a current / voltage so that a predetermined resistance value is obtained. As shown in FIG. 8, the constant resistance value control (A) can maintain a constant heat generation temperature as compared with the constant voltage control (B) and the constant current control (C) regardless of the air flow velocity near the heating element 6. It is a control method. Therefore, the constant resistance value control (A) is suitable as a control method when the flow velocity of the combustion air is likely to change and the accuracy of the heat generation temperature is required as in the case of using it as an ignition source of fuel. .

【0004】図9は、従来のバーナ点火装置の概略構成
を示す模式図である。図9において、6は発熱体、7は
セラミックスイグナイタ、8は通電指令、11は端子
箱、12は抵抗検出回路、13は電力量制御回路、14
は電源回路、15は電源制御装置を示す。このような構
造のバーナ点火装置において、電源制御装置15はセラ
ミックスイグナイタ7の抵抗値を検出するための抵抗検
出回路12、抵抗検出回路12からの出力により発熱量
の制御信号を出力する電力量制御回路13およびセラミ
ックスイグナイタ7の発熱体6を発熱させるための電源
回路14により構成されている。次に、各回路12、1
3、14の動作を、セラミッスクイグナイタ7の発熱体
6が室温から設定発熱温度1200℃まで昇温する場合
について説明する。なお、用いたセラミックスイグナイ
タ7の発熱体6の室温における抵抗値は0.1Ωであ
り、セラミックスイグナイタ7の発熱体6は抵抗検出回
路12の一部を構成しているので、電源を投入する室温
における発熱体6の抵抗値と設定発熱温度1200℃に
おける抵抗値0.3Ωとの差が電圧として検出される。
検出された電圧に応じて、電力量制御回路13から発熱
体6への電流を増加させる信号が出てセラミックスイグ
ナイタ7の発熱体6が発熱しはじめる。一方、電力量制
御回路13では、比例−積分制御を行うため、セラミッ
クスイグナイタ7の発熱体6の昇温速度に対応して信号
を発生する。この発熱体6の抵抗値に基づく電流増加の
信号と、セラミックスイグナイタ7の発熱体6の電流値
から、セラミックスイグナイタ7の発熱体6に負荷すべ
き電流値が決まり、これにしたがってセラミックスイグ
ナイタ7の発熱体6への電流を増加させ発熱温度を上昇
させる。セラミックスイグナイタ7の発熱体6の発熱温
度が設定温度に達すると、電力量制御回路13からの電
流増加信号は停止する。したがって、その時点での電流
値を維持し、発熱温度は一定となる。セラミックスイグ
ナイタ7の発熱体6の発熱温度が設定温度を越えた場合
には、その抵抗値が0.3Ωより大きくなるため、昇温
時の場合と逆の電圧が生じる。そこで、電力量制御回路
13から発熱体6への電流を減少させる信号を発生し、
昇温時と同様の動作順序で発熱体6への電流を減少し、
発熱温度を低下させるという制御回路が用いられてい
る。
FIG. 9 is a schematic diagram showing a schematic configuration of a conventional burner ignition device. In FIG. 9, 6 is a heating element, 7 is a ceramic igniter, 8 is an energization command, 11 is a terminal box, 12 is a resistance detection circuit, 13 is a power control circuit, and 14
Is a power supply circuit, and 15 is a power supply control device. In the burner igniter having such a structure, the power supply control device 15 controls the amount of heat generated by the resistance detection circuit 12 for detecting the resistance value of the ceramic igniter 7 and the output from the resistance detection circuit 12. The circuit 13 and a power supply circuit 14 for causing the heating element 6 of the ceramic igniter 7 to generate heat. Next, each circuit 12, 1
The operations of Nos. 3 and 14 will be described when the heating element 6 of the ceramic igniter 7 is heated from room temperature to a preset heating temperature of 1200 ° C. The resistance value of the heating element 6 of the ceramic igniter 7 used at room temperature is 0.1Ω, and since the heating element 6 of the ceramic igniter 7 constitutes a part of the resistance detection circuit 12, the power is turned on at room temperature. The difference between the resistance value of the heating element 6 and the resistance value 0.3Ω at the set heat generation temperature of 1200 ° C. is detected as a voltage.
In response to the detected voltage, the electric energy control circuit 13 outputs a signal to increase the current to the heating element 6, and the heating element 6 of the ceramic igniter 7 starts to generate heat. On the other hand, since the electric energy control circuit 13 performs proportional-integral control, it generates a signal corresponding to the temperature rising rate of the heating element 6 of the ceramic igniter 7. From the current increase signal based on the resistance value of the heating element 6 and the current value of the heating element 6 of the ceramic igniter 7, the current value to be loaded on the heating element 6 of the ceramic igniter 7 is determined. The current to the heating element 6 is increased to raise the heating temperature. When the heating temperature of the heating element 6 of the ceramics igniter 7 reaches the set temperature, the current increase signal from the power amount control circuit 13 stops. Therefore, the current value at that time is maintained and the heat generation temperature becomes constant. When the heating temperature of the heating element 6 of the ceramic igniter 7 exceeds the set temperature, the resistance value becomes larger than 0.3Ω, so that a voltage opposite to that at the time of temperature rise is generated. Therefore, a signal for reducing the current from the electric energy control circuit 13 to the heating element 6 is generated,
The current to the heating element 6 is reduced in the same operation sequence as when the temperature is raised,
A control circuit that lowers the heat generation temperature is used.

【0005】[0005]

【発明が解決しようとする課題】上述した従来技術にお
いて、図10に示すような抵抗値一定制御を行なって
も、時間の経過とともに発熱体の発熱温度は低下し、約
50時間で約100℃低下してしまう。一般に要求され
る発熱体の寿命は130時間以上であり、もし仮りに1
30時間経過後に、所定の発熱温度を保持しようとする
ためには、初期の設定温度を150℃以上嵩上げしてお
く必要がある。これは、セラミックスイグナイタの寿命
を低下させることになり、好ましくない。また、セラミ
ックスイグナイタを1400℃以上の高温にしてしまう
と、図11の(a)、(b)に示すように、抵抗値と発
熱温度とが負の特性を示すようになり、通常の抵抗制御
が不可能になってしまうという欠点があり、これを防止
するためには、初期の設定温度をできるだけ低く設定す
る必要がある。しかし、温度を低く設定しすぎると経時
劣化による発熱温度の低下のために、点火源としての役
割が果たせなくなり信頼性の面から問題が生じる。
In the above-mentioned prior art, even if the constant resistance value control shown in FIG. 10 is performed, the heat generation temperature of the heat generating element decreases with the passage of time, and the heat generation temperature is reduced to about 100 ° C. in about 50 hours. Will fall. Generally, the life of the heating element required is 130 hours or more.
In order to maintain a predetermined heat generation temperature after 30 hours, it is necessary to raise the initial set temperature by 150 ° C. or more. This shortens the life of the ceramic igniter and is not preferable. When the ceramic igniter is heated to a high temperature of 1400 ° C. or higher, the resistance value and the heat generation temperature show negative characteristics as shown in FIGS. However, in order to prevent this, it is necessary to set the initial set temperature as low as possible. However, if the temperature is set too low, the heat generation temperature decreases due to deterioration over time, so that it cannot serve as an ignition source, which causes a problem in terms of reliability.

【0006】本発明の目的は、上記従来技術の欠点を解
消するものであって、セラミックスイグナイタの発熱体
のいかなる経時特性劣化に伴なう発熱温度の低下があっ
ても、安定した発熱温度特性を保持することができる信
頼性の高いバーナ点火装置を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide stable heat generation temperature characteristics even if the heat generation temperature of the heating element of the ceramic igniter deteriorates with time. It is to provide a highly reliable burner ignition device capable of holding

【0007】[0007]

【課題を解決するための手段】上記本発明の目的を達成
するために、セラミックスイグナイタの発熱体の抵抗検
出回路と電力量制御回路との間に、抵抗検出回路からの
抵抗検出回路出力値に対して、発熱体の経時変化分の抵
抗指令値を補正する経時補正制御回路を設けるものであ
る。このような経時補正制御回路を設けることにより、
セラミックスイグナイタの発熱体の経時劣化による発熱
温度の低下を補償することができ、発熱温度を常に適切
な温度範囲に保持することができるので、信頼性の高い
バーナ点火装置が得られる。
In order to achieve the above object of the present invention, a resistance detection circuit output value from the resistance detection circuit is provided between the resistance detection circuit of the heating element of the ceramic igniter and the electric energy control circuit. On the other hand, a time-dependent correction control circuit for correcting the resistance command value corresponding to the change with time of the heating element is provided. By providing such a temporal correction control circuit,
Since it is possible to compensate for the decrease in the heat generation temperature due to the deterioration of the heating element of the ceramics igniter over time, and it is possible to always maintain the heat generation temperature in an appropriate temperature range, it is possible to obtain a highly reliable burner ignition device.

【0008】本発明は、セラミックイグナイタの発熱体
に電力を供給する電源回路と、上記発熱体の発熱による
抵抗値変化を検出する抵抗検出回路と、電源回路からの
供給電力を制御する電力量制御回路を備え、上記抵抗検
出回路の出力によりイグナイタの発熱体への供給電力を
制御し、上記発熱体を設定の温度範囲に保持する制御回
路を有するバーナ点火装置において、上記抵抗検出回路
と電力量制御回路との間に、抵抗検出回路からの抵抗検
出回路出力値に対して、経時変化分の抵抗指令値を補正
する経時変化補正制御回路を設けるものである。
The present invention provides a power supply circuit for supplying electric power to a heating element of a ceramic igniter, a resistance detection circuit for detecting a resistance value change due to heat generation of the heating element, and a power amount control for controlling the electric power supplied from the power supply circuit. In the burner ignition device having a circuit, which controls the power supplied to the heating element of the igniter by the output of the resistance detection circuit, and which holds the heating element within a set temperature range, the resistance detection circuit and the electric energy A temporal change correction control circuit is provided between the control circuit and the resistance detection circuit output value from the resistance detection circuit to correct the resistance command value for the temporal change.

【0009】本発明のバーナ点火装置において、上記電
力量制御回路の通電時間を積分する時間積分回路を設
け、この時間積分回路の出力値を用いて、経時変化分の
抵抗指令値を補正する回路を設けてもよい。また、電力
量制御回路の通電指令の有無の回数を計数する計数器を
設け、この計数器の出力値を用いて、経時変化分の抵抗
指令値を補正する回路を構成してもよい。さらに、上記
の時間積分回路の出力値もしくは通電指令の有無の回数
を計数する計数器の出力値から、イグナイタの発熱体の
余寿命を算出し、この余寿命が所定の値以下となったと
きに、警報もしくは表示を行う回路を設けることもでき
る。そして、イグナイタの発熱体の過去の抵抗値を記録
しておき、この過去の抵抗値から次回の抵抗値を算出
し、これにより経時変化分の抵抗指令値の補正をさらに
補正する回路を設けるようにして、発熱体の経時劣化を
補償することができる。
In the burner igniter of the present invention, a circuit is provided for integrating the energization time of the electric energy control circuit, and using the output value of this time integration circuit, the resistance command value for the change over time is corrected. May be provided. In addition, a counter that counts the number of times of the energization command of the power amount control circuit may be provided, and the output value of this counter may be used to configure a circuit that corrects the resistance command value for the change over time. Furthermore, the remaining life of the heating element of the igniter is calculated from the output value of the above-mentioned time integration circuit or the output value of the counter that counts the number of times of the energization command, and when this remaining life becomes equal to or less than the predetermined value. It is also possible to provide a circuit for issuing an alarm or display. Then, the past resistance value of the igniter heating element is recorded, the next resistance value is calculated from this past resistance value, and a circuit for further correcting the correction of the resistance command value for the aging by this is provided. Thus, deterioration of the heating element over time can be compensated.

【0010】[0010]

【作用】セラミックスイグナイタの発熱体を発熱させる
ための電力量制御回路の信号を、経時変化分だけを補正
することにより、発熱体の温度を一定に保持することが
できる。経時変化分を補正した電力を印加すれば、セラ
ミックスイグナイタの発熱体の温度を所定の設定値に保
持できるので、初期設定温度をあらかじめ高めに設定す
る必要もなくなり、セラミックイグナイタの発熱体の寿
命低下および経時劣化による発熱温度の低下を補償する
ことができる。
The temperature of the heating element can be kept constant by correcting the signal of the electric energy control circuit for heating the heating element of the ceramics igniter only for the change with time. By applying the power that corrects for the change over time, the temperature of the heating element of the ceramic igniter can be maintained at a predetermined set value, so there is no need to set the initial setting temperature in advance to a high level, and the life of the heating element of the ceramic igniter is shortened. Also, it is possible to compensate for a decrease in heat generation temperature due to deterioration over time.

【0011】[0011]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。 〈実施例1〉図1は、本発明のバーナ点火装置の構成の
一例を示す模式図で、図2の(a)、(b)は本実施例
におけるバーナ点火装置の動作の特性を示すグラフであ
る。図1において、発熱体6、セラミックスイグナイタ
7、通電指令8、端子箱11、抵抗検出回路12、電力
量制御回路13、電源回路14、電源制御装置15、抵
抗検出回路出力値16、抵抗検出値21および電力量制
御信号22は、従来のバーナ点火装置の場合と同様であ
る。図1に示すごとく、通電指令8は、電力量制御回路
13の他に経時検出回路18の入力となる。また、電力
量制御回路13の出力は、経時変化信号20として、経
時変化補正制御回路17の補正入力となる。経時変化補
正制御回路17は、抵抗検出回路12と電力量制御回路
13の間に設けられ、抵抗検出回路出力値16を、経時
変化信号20により補正し、抵抗指令値19を出力す
る。
Embodiments of the present invention will be described below in more detail with reference to the drawings. <Embodiment 1> FIG. 1 is a schematic diagram showing an example of the configuration of a burner ignition device of the present invention, and FIGS. 2A and 2B are graphs showing the operation characteristics of the burner ignition device in this embodiment. Is. In FIG. 1, heating element 6, ceramics igniter 7, energization command 8, terminal box 11, resistance detection circuit 12, power amount control circuit 13, power supply circuit 14, power supply control device 15, resistance detection circuit output value 16, resistance detection value. 21 and the electric energy control signal 22 are the same as in the case of the conventional burner ignition device. As shown in FIG. 1, the energization command 8 is input to the elapsed time detection circuit 18 in addition to the power amount control circuit 13. Further, the output of the electric energy control circuit 13 serves as a temporal change signal 20 and serves as a correction input of the temporal change correction control circuit 17. The aging correction control circuit 17 is provided between the resistance detection circuit 12 and the electric energy control circuit 13, corrects the resistance detection circuit output value 16 with the aging signal 20, and outputs a resistance command value 19.

【0012】上記の構成において、電源制御装置15
は、図1に示すように、発熱体6を有するセラミックス
イグナイタ7の抵抗検出値21を、端子箱11を通して
検出する抵抗検出回路12、通電指令8がオンのとき電
力量制御回路13が動作し、同時にオン時間の時間積分
をする経時検出回路18、経時検出回路18からの経時
変化信号20、先の抵抗検出回路12からの抵抗検出回
路出力値16を、経時変化信号20により補正する経時
変化補正制御回路17、経時変化補正制御回路17の出
力である抵抗指令値19に応じて、所定の発熱温度に保
持するための電力量を制御する電力量制御回路13およ
び電力量制御回路13からの電力量制御信号22に応じ
て、セラミックスイグナイタ7に電力を供給する電源回
路14により構成されている。
In the above structure, the power supply controller 15
As shown in FIG. 1, the resistance detection circuit 12 that detects the resistance detection value 21 of the ceramic igniter 7 having the heating element 6 through the terminal box 11, and the power amount control circuit 13 operates when the energization command 8 is on. , A time-dependent change for correcting the time-dependent change signal 20 from the time-dependent detection circuit 18 and the time-dependent detection circuit 18, and the resistance-detection circuit output value 16 from the resistance detection circuit 12 described above. According to the resistance command value 19 which is the output of the correction control circuit 17 and the aging correction control circuit 17, the power amount control circuit 13 and the power amount control circuit 13 for controlling the power amount for keeping the heat generation temperature at a predetermined value are used. The power supply circuit 14 supplies power to the ceramic igniter 7 in response to the power control signal 22.

【0013】セラミックスイグナイタ7の特性は、図7
に示すように、発熱体の発熱温度が上昇すると抵抗値も
上昇するという正比例の関係があり、発熱温度と抵抗値
との間には1対1の関係がある。したがって、抵抗制御
により、発熱温度が制御できることになる。しかし、図
10に示すように、一定値の抵抗制御を行なっていても
経時変化により、発熱温度が変化してしまう。この経時
変化は、図10に示すように、時間と発熱温度とが対応
している。したがって、あらかじめ経時変化分だけの補
正を加えるようにすれば、セラミッスクイグナイタの発
熱温度を所定の設定温度に保持できるようになる。図2
に、抵抗指令値を時間の経過とともに補正した例を示し
ている。このように補正することにより、発熱温度は一
定に保持されることになる。図1に示すバーナ点火装置
において、セラミックスイグナイタ7の発熱体6に通電
する時間だけを積算するために、通電指令8の信号がオ
ン時に経時検出回路18で時間積分を行なう。この出力
値である経時変化信号20は、図2の時間補正量に相当
する信号であり、これにより経時変化補正制御回路17
の補正入力となる。そして、経時変化補正制御回路17
の出力はこの補正により時間とともに抵抗指令値19が
微増して行き、電力量制御回路13の電力量が増加し、
その出力電力量制御信号22が増加し、電源回路14を
介して、セラミックスイグナイタ7の発熱体6の発熱温
度は一定に保持されるようになる。
The characteristics of the ceramic igniter 7 are shown in FIG.
As shown in, there is a direct proportional relationship that the resistance value increases as the heat generation temperature of the heating element increases, and there is a one-to-one relationship between the heat generation temperature and the resistance value. Therefore, the heat generation temperature can be controlled by the resistance control. However, as shown in FIG. 10, even if the resistance control is performed at a constant value, the heat generation temperature changes due to the change over time. As shown in FIG. 10, this change with time corresponds to time and heat generation temperature. Therefore, if the correction for only the change with time is added in advance, the heat generation temperature of the ceramic igniter can be maintained at a predetermined set temperature. Figure 2
An example in which the resistance command value is corrected over time is shown in FIG. By making the correction in this way, the heat generation temperature is kept constant. In the burner igniter shown in FIG. 1, in order to integrate only the time during which the heating element 6 of the ceramic igniter 7 is energized, the time detection circuit 18 performs time integration when the signal of the energization command 8 is on. The time-dependent change signal 20 which is the output value is a signal corresponding to the time correction amount in FIG.
It becomes the correction input of. Then, the temporal change correction control circuit 17
This correction causes the resistance command value 19 to slightly increase with time due to this correction, and the power amount of the power amount control circuit 13 increases,
The output power control signal 22 increases, and the heat generation temperature of the heat generating element 6 of the ceramic igniter 7 is maintained constant via the power supply circuit 14.

【0014】以上述べたように、本実施例において示し
たバーナ点火装置は、経時変化に対応して安定した発熱
特性を示し、信頼性の高い温度制御が実現できる。な
お、本実施例では経時検出回路18を時間の積分回路と
して説明したが、一般にイグナイタの通電時間は一定時
間に設定されているので、通電指令8の有無を計数器で
計数し、この計数値を使用しても同様の効果が得られ
る。また、経時変化信号20についても、本実施例では
連続値として説明したが、例えば通電指令の有無の計数
値に応じて、不連続に変化する信号であっても、上記と
同様の効果が得られることは言うまでもない。回路を簡
単化したい場合には、通電指令の有無の回数が5000
回未満のとき、経時変化信号20は無い状態で設定し、
5000回を越えるときは、経時変化信号20を有の状
態に設定することも可能である。
As described above, the burner igniter shown in this embodiment exhibits stable heat generation characteristics in response to changes over time, and highly reliable temperature control can be realized. Although the elapsed time detection circuit 18 is described as a time integration circuit in the present embodiment, since the energizing time of the igniter is generally set to a fixed time, the presence or absence of the energizing command 8 is counted by the counter, and the counted value is calculated. The same effect can be obtained by using. Further, the time-dependent change signal 20 is also described as a continuous value in the present embodiment, but the same effect as above can be obtained even if the signal changes discontinuously according to the count value of the presence or absence of the energization command. It goes without saying that it will be done. If you want to simplify the circuit, the number of times with or without the energization command is 5000
If it is less than the number of times, set with no time-dependent change signal 20,
When it exceeds 5000 times, it is possible to set the time-dependent change signal 20 to the existing state.

【0015】〈実施例2〉本実施例におけるバーナ点火
装置の構成を図3に示す。なお、図1のバーナ点火装置
と異なるところは、経時検出回路18の出力である経時
変化信号20が、経時終了検出回路9の入力となり、経
時終了検出回路9から警報信号10を出力するように構
成したところである。このように構成した回路におい
て、図2に示すごとく時間補正量に相当する経時変化信
号20が所定の値を越えたときは、経時終了検出回路9
によりこれを検出し、警報信号10として出力する。な
お、経時終了検出回路9を比較器で構成する場合には、
警報信号10はオン・オフの2値信号として出力される
が、図2の時間補正量をD/A変換することにより、警
報信号10を介して、外部に余寿命または使用時間を表
示することも可能である。
<Embodiment 2> The construction of the burner ignition device in this embodiment is shown in FIG. Note that the difference from the burner ignition device of FIG. 1 is that the time-dependent change signal 20 which is the output of the time-dependent detection circuit 18 becomes the input of the time-dependent end detection circuit 9, and the time-dependent end detection circuit 9 outputs an alarm signal 10. I have just configured it. In the circuit configured as described above, when the time-dependent change signal 20 corresponding to the time correction amount exceeds a predetermined value as shown in FIG.
This is detected by and is output as an alarm signal 10. When the aging end detection circuit 9 is composed of a comparator,
The alarm signal 10 is output as a binary signal of ON / OFF, but by displaying the remaining life or use time externally via the alarm signal 10 by D / A converting the time correction amount of FIG. Is also possible.

【0016】〈実施例3〉図4に、本実施例におけるバ
ーナ点火装置の構成を示す。図1と異なるところは、抵
抗検出回路出力値16を過去抵抗値記憶回路25の入力
とし、セラミックスイグナイタ7の発熱体6の抵抗値を
記憶し、さらに過去抵抗値記憶回路25の出力である抵
抗値予測信号24を経時変化予測修正回路26の一方の
入力とし、経時検出回路18の出力である経時変化信号
20を他方の入力とした経時変化予測修正回路26を、
経時検出回路18と経時変化補正制御回路17との間に
設け、経時変化予測修正回路26の出力である経時変化
予測信号23により補正を行なうように構成したところ
である。このような構成において、セラミックスイグナ
イタ7の発熱体6の過去の抵抗値を記憶している過去抵
抗値記憶回路25により現在の抵抗値を算出し、その抵
抗値予測信号24と経時変化信号20とから経時変化予
測修正回路26により経時変化の修正を行ない経時変化
予測信号23を発生する。この経時変化予測信号23に
より、経時変化補正を行なうことができる。ここで、過
去抵抗値記憶回路25による抵抗値予測信号24の算出
方法は、過去の抵抗値の平均値を使用するか、または過
去の抵抗値に対する現在の抵抗値の関係を示すデータ表
から求めるなどの方法が考えられる。また、経時変化予
測修正回路26の役割は、経時変化信号20を抵抗値予
測信号24により修正するところにある。以上述べた本
実施例に係るバーナ点火装置は、経時変化に対応でき、
しかも過去の抵抗実測値を使って経時変化の補正量を修
正することができるので、より正確に発熱温度が補償で
きる効果がある。
<Third Embodiment> FIG. 4 shows the structure of a burner ignition device according to this embodiment. The difference from FIG. 1 is that the resistance detection circuit output value 16 is used as an input to the past resistance value storage circuit 25, the resistance value of the heating element 6 of the ceramic igniter 7 is stored, and the resistance that is the output of the past resistance value storage circuit 25 is used. A time-dependent change prediction correction circuit 26 in which the value prediction signal 24 is used as one input of the time-dependent change prediction correction circuit 26 and the time-dependent change signal 20 output from the time-dependent detection circuit 18 is used as the other input,
It is arranged between the aging detection circuit 18 and the aging correction control circuit 17, and is configured to perform the correction by the aging prediction signal 23 which is the output of the aging prediction correction circuit 26. In such a configuration, the current resistance value is calculated by the past resistance value storage circuit 25 that stores the past resistance value of the heating element 6 of the ceramics igniter 7, and the resistance value prediction signal 24 and the temporal change signal 20 are calculated. Then, the temporal change prediction correction circuit 26 corrects the temporal change and generates the temporal change prediction signal 23. With this time-dependent change prediction signal 23, time-dependent change correction can be performed. Here, the method of calculating the resistance value prediction signal 24 by the past resistance value storage circuit 25 uses the average value of the past resistance values or is obtained from a data table showing the relationship between the past resistance values and the current resistance values. The method such as is conceivable. The role of the temporal change prediction correction circuit 26 is to correct the temporal change signal 20 with the resistance value prediction signal 24. The burner ignition device according to the present embodiment described above can cope with changes over time,
Moreover, since the correction amount of the change over time can be corrected using the past measured resistance value, there is an effect that the heat generation temperature can be more accurately compensated.

【0017】[0017]

【発明の効果】以上詳細に説明したごとく、本発明のバ
ーナ点火装置は、セラミックスイグナイタの発熱体の経
時劣化に対応して発熱体の温度を適切な値に保持するこ
とができるので、バーナ点火装置の信頼性が著しく向上
する。また、発熱体の経時劣化を見込んで初期設定温度
を高くする必要がないので、発熱体の長寿命化がはから
れる。さらに、発熱体の適切な経時劣化補償を行なうこ
とができるので、セラミックスイグナイタを長期間にわ
たり安定して活用することができる。
As described above in detail, the burner ignition device of the present invention can maintain the temperature of the heating element of the ceramic igniter at an appropriate value in response to the deterioration with time of the heating element. The reliability of the device is significantly improved. Further, since it is not necessary to raise the initial set temperature in consideration of the deterioration of the heating element over time, the life of the heating element can be extended. Further, since it is possible to perform appropriate aging compensation of the heating element, the ceramic igniter can be used stably for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1において例示したバーナ点火
装置の構成を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a burner ignition device exemplified in a first embodiment of the present invention.

【図2】図1に示すバーナ点火装置の動作特性を示すグ
ラフ。
FIG. 2 is a graph showing operating characteristics of the burner ignition device shown in FIG.

【図3】本発明の実施例2において例示したバーナ点火
装置の構成を示す模式図。
FIG. 3 is a schematic diagram showing a configuration of a burner ignition device exemplified in a second embodiment of the present invention.

【図4】本発明の実施例3において例示したバーナ点火
装置の構成を示す模式図。
FIG. 4 is a schematic diagram showing a configuration of a burner ignition device exemplified in a third embodiment of the present invention.

【図5】従来のスパークイグナイタの構成を示す模式
図。
FIG. 5 is a schematic diagram showing a configuration of a conventional spark igniter.

【図6】従来のセラミックスイグナイタの構成を示す模
式図。
FIG. 6 is a schematic diagram showing a configuration of a conventional ceramics igniter.

【図7】従来のイグナイタの発熱体の抵抗値と発熱温度
の関係を示すグラフ。
FIG. 7 is a graph showing a relationship between a resistance value of a heating element of a conventional igniter and a heating temperature.

【図8】従来のイグナイタの発熱体の空気流速と発熱温
度の関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the air flow velocity and the heat generation temperature of the heating element of the conventional igniter.

【図9】従来のバーナ点火装置の構成を示す模式図。FIG. 9 is a schematic diagram showing a configuration of a conventional burner ignition device.

【図10】従来のイグナイタの発熱体の経時変化特性を
示すグラフ。
FIG. 10 is a graph showing a time-dependent change characteristic of a heating element of a conventional igniter.

【図11】従来のイグナイタの発熱体の高温特性を示す
グラフ。
FIG. 11 is a graph showing high-temperature characteristics of a heating element of a conventional igniter.

【符号の説明】[Explanation of symbols]

1…点火バーナ 2…スパークイグナイ
タ 3、4…電極 5…火花放電 6…発熱体 7…セラミックスイグ
ナイタ 8…通電指令 9…経時終了検出回路 10…警報信号 11…端子箱 12…抵抗検出回路 13…電力量制御回路 14…電源回路 15…電源制御装置 16…抵抗検出回路出力値 17…経時変化補正制
御回路 18…経時検出回路 19…抵抗指令値 20…経時変化信号 21…抵抗検出値 22…電力量制御信号 23…経時変化予測信
号 24…抵抗値予測信号 25…過去抵抗値記憶
回路 26…経時変化予測修正回路
1 ... Ignition burner 2 ... Spark igniter 3, 4 ... Electrode 5 ... Spark discharge 6 ... Heating element 7 ... Ceramics igniter 8 ... Energization command 9 ... Elapsed time detection circuit 10 ... Warning signal 11 ... Terminal box 12 ... Resistance detection circuit 13 ... Electric power control circuit 14 ... Power supply circuit 15 ... Power supply control device 16 ... Resistance detection circuit output value 17 ... Aging change correction control circuit 18 ... Aging detection circuit 19 ... Resistance command value 20 ... Aging change signal 21 ... Resistance detection value 22 ... Electric power Quantity control signal 23 ... Change prediction signal 24 ... Resistance prediction signal 25 ... Past resistance value storage circuit 26 ... Change prediction correction circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イグナイタの発熱体に電力を供給する電源
回路と、上記発熱体の発熱による抵抗値変化を検出する
抵抗検出回路と、電源回路からの供給電力を制御する電
力量制御回路を備え、上記抵抗検出回路の出力によりイ
グナイタの発熱体への供給電力を制御し、上記発熱体を
設定の温度範囲に保持する制御回路を有するバーナ点火
装置において、上記抵抗検出回路と電力量制御回路との
間に、抵抗検出回路からの抵抗検出回路出力値に対し
て、経時変化分の抵抗指令値を補正する経時変化補正制
御回路を設けたことを特徴とするバーナ点火装置。
1. A power supply circuit for supplying electric power to a heating element of an igniter, a resistance detection circuit for detecting a resistance value change due to heat generation of the heating element, and a power amount control circuit for controlling electric power supplied from the power supply circuit. In the burner ignition device having a control circuit for controlling the power supplied to the heating element of the igniter by the output of the resistance detection circuit, and holding the heating element in a set temperature range, the resistance detection circuit and the electric energy control circuit A burner ignition device characterized in that a time-dependent change correction control circuit for correcting a resistance command value corresponding to a time-dependent change is provided between the resistance detection circuit output values from the resistance detection circuit.
【請求項2】請求項1記載のバーナ点火装置において、
電力量制御回路の通電時間を積分する時間積分回路を設
け、この時間積分回路の出力値を用いて、経時変化分の
抵抗指令値を補正する回路を設けたことを特徴とするバ
ーナ点火装置。
2. The burner ignition device according to claim 1,
A burner ignition device comprising a time integration circuit that integrates the energization time of an electric energy control circuit, and a circuit that corrects a resistance command value for a change with time using an output value of the time integration circuit.
【請求項3】請求項1記載のバーナ点火装置において、
電力量制御回路の通電指令の有無の回数を計数する計数
器を設け、この計数器の出力値を用いて、経時変化分の
抵抗指令値を補正する回路を設けたことを特徴とするバ
ーナ点火装置。
3. The burner ignition device according to claim 1, wherein
A burner ignition characterized by being provided with a counter for counting the number of times of the energization command of the electric energy control circuit, and using the output value of this counter, a circuit for correcting the resistance command value for the change over time. apparatus.
【請求項4】請求項2または請求項3記載のバーナ点火
装置において、時間積分回路の出力値もしくは通電指令
の有無の回数を計数する計数器の出力値から、イグナイ
タの発熱体の余寿命を算出し、この余寿命が所定の値以
下となったときに、警報もしくは表示を行う回路を設け
たことを特徴とするバーナ点火装置。
4. The burner ignition device according to claim 2 or 3, wherein the remaining life of the heating element of the igniter is calculated from the output value of the time integration circuit or the output value of a counter that counts the number of times of the energization command. A burner ignition device comprising a circuit for performing an alarm or a display when calculated and when the remaining life becomes equal to or less than a predetermined value.
【請求項5】請求項2または請求項3記載のバーナ点火
装置において、イグナイタの発熱体の過去の抵抗値を記
録しておき、この過去の抵抗値から次回の抵抗値を算出
し、これにより経時変化分の抵抗指令値の補正をさらに
補正する回路を設けたことを特徴とするバーナ点火装
置。
5. The burner ignition device according to claim 2, wherein the past resistance value of the heating element of the igniter is recorded, and the next resistance value is calculated from this past resistance value. A burner ignition device comprising a circuit for further correcting the resistance command value for the amount of change over time.
JP3052698A 1991-03-18 1991-03-18 Burner ignition device Pending JPH074656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3052698A JPH074656A (en) 1991-03-18 1991-03-18 Burner ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3052698A JPH074656A (en) 1991-03-18 1991-03-18 Burner ignition device

Publications (1)

Publication Number Publication Date
JPH074656A true JPH074656A (en) 1995-01-10

Family

ID=12922110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3052698A Pending JPH074656A (en) 1991-03-18 1991-03-18 Burner ignition device

Country Status (1)

Country Link
JP (1) JPH074656A (en)

Similar Documents

Publication Publication Date Title
JP3394376B2 (en) Gas combustor
JPH09180888A (en) Discharge lamp lighting device
JPS6183825A (en) Ignition device of burner
US4345330A (en) Laser energy control circuit
EP3333482B1 (en) Gas burner controller adapter, gas burner appliance having such a gas burner controller adapter and method for operating such a gas burner appliance
EP2971964B1 (en) Burner combustion control method and device
JPH074656A (en) Burner ignition device
JP2580296B2 (en) Glow plug applied voltage controller for combustion type heater
JPH0244122A (en) Combustion controller
JPS62100994A (en) High voltage discharge lamp burner
JPH03241228A (en) Burner igniter device
JPS6134453A (en) Gas detector
JPS6248769B2 (en)
JP3052688B2 (en) Oxygen sensor control device
SE528997C2 (en) Method of lighting an oil burner and ignition device for an oil burner device
JPS6360286B2 (en)
AU2022323298A1 (en) Burner having a controller and an ignition and ionisation electrode and method for monitoring and igniting the flame of a burner
JP3012478B2 (en) Combustion equipment
JP2586245B2 (en) Control device of vaporization type combustor
JPH0727738A (en) Oxygen sensor controller
JP2661269B2 (en) Oil combustor control device
JPS5916168B2 (en) Layered ignition device for burners
JP3008735B2 (en) Combustion control device
JP3462646B2 (en) Unburned component concentration detector for combustion equipment
JPS6093230A (en) Control device for combustion and feeding of solid fuel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060424

A072 Dismissal of procedure

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A072

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090228

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20140228