JPH0745520A - Forming method of semiconductor crystal - Google Patents

Forming method of semiconductor crystal

Info

Publication number
JPH0745520A
JPH0745520A JP18378193A JP18378193A JPH0745520A JP H0745520 A JPH0745520 A JP H0745520A JP 18378193 A JP18378193 A JP 18378193A JP 18378193 A JP18378193 A JP 18378193A JP H0745520 A JPH0745520 A JP H0745520A
Authority
JP
Japan
Prior art keywords
germanium
silicon
molecular beam
hydrogen
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18378193A
Other languages
Japanese (ja)
Other versions
JP2705524B2 (en
Inventor
Akira Sakai
酒井  朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5183781A priority Critical patent/JP2705524B2/en
Publication of JPH0745520A publication Critical patent/JPH0745520A/en
Application granted granted Critical
Publication of JP2705524B2 publication Critical patent/JP2705524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To grow a germanium epitaxial layer in a layer type without forming an island structure, by individually irradiating a silicon crystal substrate in a vacuum, with a germanium molecular beam and atomic state hydrogen. CONSTITUTION:A silicon substrate 11 is irradiated with a germanium molecular beam 12 and atomic state hydrogen 13, and germanium is grown on the silicon substrate 11. In this case, the silicon substrate 11 is heated, but surface diffusion of germanium atoms 14 is restrained, because simultaneously supplied hydrogen atoms are attracted on the germanium atoms 14 which have arrived the substrate surface from a molecular beam source. Hence the germanium atoms which arrived the growth surface of the silicon substrate 11 are instantaneously captured by the crystal layer, and epitaxially grown, so that island structure is not formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体結晶の作成方
法、特にシリコンとゲルマニウムの半導体結晶をエピタ
キシャル成長させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor crystal, and more particularly to a method for epitaxially growing a semiconductor crystal of silicon and germanium.

【0002】[0002]

【従来の技術】シリコンとゲルマニウムのヘテロエピタ
キシャル構造は、ヘテロバイポーラトランジスタや光半
導体素子の特性を飛躍的に向上させる材料として注目さ
れている。そこで、CVD,MBEといった気相成長法
によって、結晶性の良いヘテロ構造を形成することが試
みられている。
2. Description of the Related Art A heteroepitaxial structure of silicon and germanium has been attracting attention as a material that dramatically improves the characteristics of heterobipolar transistors and optical semiconductor devices. Therefore, it has been attempted to form a heterostructure having good crystallinity by a vapor phase growth method such as CVD or MBE.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記い
ずれの方法をもってしても、シリコン基板上のゲルマニ
ウム及びゲルマニウム基板上のシリコンには、それぞ
れ、Stranski−Krastanov型の成長及
びVolmer−Weber型の成長が起こり、結果的
に基板上にアイランド構造が形成され、その結晶表面の
平坦性が損なわれてしまうという欠点があった。こうし
た膜構造の不均一性は、それを適用して作製したデバイ
スの特性向上のうえで有害である。
However, with any of the above methods, the germanium on the silicon substrate and the silicon on the germanium substrate are subjected to Stranski-Krastanov type growth and Volmer-Weber type growth, respectively. However, there is a drawback that an island structure is formed on the substrate as a result and the flatness of the crystal surface is impaired. Such nonuniformity of the film structure is harmful for improving the characteristics of the device manufactured by applying it.

【0004】本発明の目的は、このような従来の欠点を
除去し、各基板上に平坦な表面形態を持つ結晶層を成長
させる方法を提供することにある。
An object of the present invention is to eliminate such conventional defects and provide a method for growing a crystal layer having a flat surface morphology on each substrate.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の半導体結晶の作成方法は、照射処理と水素
吸着処理と拡散抑制処理とを行い、シリコン又はゲルマ
ニウムからなる半導体の表面に、シリコンとゲルマニウ
ムからなる層状構造の結晶層を真空中にてエピタキシャ
ル成長させる半導体結晶の作成方法であって、照射処理
は、分子線と原子状の水素とを個別に半導体表面に向け
て照射する処理であり、分子線は、ゲルマニウム及びシ
リコンであり、シリコン製半導体表面に対しては、ゲル
マニウムの分子線を照射し、ゲルマニウム製半導体表面
に対しては、シリコンの分子線を照射し、水素吸着処理
は、半導体表面に到達したゲルマニウム又はシリコンの
原子に、個別に照射された水素原子を吸着させる処理で
あり、拡散抑制処理は、半導体表面上でのゲルマニウム
又はシリコン原子の拡散を水素原子で抑制させる処理で
ある。
In order to achieve the above object, the method for producing a semiconductor crystal of the present invention comprises performing irradiation treatment, hydrogen adsorption treatment and diffusion suppression treatment on a surface of a semiconductor made of silicon or germanium, A method for producing a semiconductor crystal in which a crystal layer having a layered structure composed of silicon and germanium is epitaxially grown in a vacuum, and the irradiation treatment is a treatment in which a molecular beam and atomic hydrogen are individually irradiated toward the semiconductor surface. Yes, the molecular beam is germanium and silicon, the silicon semiconductor surface is irradiated with a germanium molecular beam, the germanium semiconductor surface is irradiated with a silicon molecular beam, hydrogen adsorption treatment , A process of adsorbing individually irradiated hydrogen atoms to germanium or silicon atoms that have reached the semiconductor surface. Is a process of suppressing a hydrogen atom diffusion of germanium or silicon atoms on the semiconductor surface.

【0006】また、原子状水素の照射は、少なくとも分
子線の照射期間中行うものである。
Further, the irradiation of atomic hydrogen is performed at least during the irradiation period of the molecular beam.

【0007】[0007]

【作用】本発明の原理について、シリコン基板上へのゲ
ルマニウムの成長を例にとって説明する。通常、200
℃以上に加熱されたシリコン基板上にゲルマニウムの分
子線を照射すると、蒸着されたゲルマニウムの原子は、
基板表面を拡散し、エピタキシャル成長する。このと
き、シリコンの表面エネルギーは、ゲルマニウムの表面
エネルギーよりも大きいため、成長初期では、3原子層
程度は層状に成長するが、ゲルマニウムとシリコンの格
子不整合に起因する歪から、成長中表面を拡散している
ゲルマニウム原子は、3原子層成長したゲルマニウムの
表面上でアイランド構造を形成する(本成長様式をSt
ranski−Krastanov型成長と呼ぶ)。
The principle of the present invention will be described by taking the growth of germanium on a silicon substrate as an example. Usually 200
When a germanium molecular beam is irradiated onto a silicon substrate heated above ℃, the deposited germanium atoms are
The substrate surface is diffused and epitaxially grown. At this time, since the surface energy of silicon is larger than the surface energy of germanium, about three atomic layers grow in a layered form at the initial stage of growth, but the strain due to the lattice mismatch between germanium and silicon causes the surface during growth to grow. The diffusing germanium atoms form an island structure on the surface of germanium grown by three atomic layers (this growth mode is referred to as St
This is referred to as ranki-Krastanov type growth).

【0008】本発明者は、シリコン結晶基板上へ、真空
中で、ゲルマニウムの分子線と、原子状の水素を個別に
照射すると、ゲルマニウムエピタキシャル層はアイラン
ド構造を形成せず、層状に成長することを見いだした。
The present inventors have found that when a germanium molecular beam and atomic hydrogen are individually irradiated onto a silicon crystal substrate in a vacuum, the germanium epitaxial layer does not form an island structure but grows in a layer form. I found it.

【0009】このような構造の形成は、以下の原理に基
づいている。図1(a)において、シリコン基板11上
にゲルマニウム分子線12と原子状水素13とを照射
し、シリコン基板11上にゲルマニウムを成長させる。
この場合、シリコン基板11は加熱されているが、同時
に供給した水素原子が、分子線源より基板表面に到達し
たゲルマニウム原子14上に吸着することによって、ゲ
ルマニウム原子14の表面拡散が抑制される。そのた
め、シリコン基板11の成長表面に到達したゲルマニウ
ム原子は、即座に結晶層に取り込まれてエピタキシャル
成長することになり、アイランド構造が形成されない。
この際、こうした表面上の水素は、ゲルマニウム分子線
の照射によって大多数は離脱するため、成長中に原子状
の水素を常に供給することが必要である。
The formation of such a structure is based on the following principle. In FIG. 1A, a germanium molecular beam 12 and atomic hydrogen 13 are irradiated on a silicon substrate 11 to grow germanium on the silicon substrate 11.
In this case, the silicon substrate 11 is heated, but the hydrogen atoms supplied at the same time are adsorbed on the germanium atoms 14 that have reached the substrate surface from the molecular beam source, so that the surface diffusion of the germanium atoms 14 is suppressed. Therefore, the germanium atoms reaching the growth surface of the silicon substrate 11 are immediately taken into the crystal layer and epitaxially grown, and the island structure is not formed.
At this time, most of the hydrogen on the surface is released by the irradiation of the germanium molecular beam, so it is necessary to constantly supply atomic hydrogen during the growth.

【0010】この原理は、水素による成長物質の拡散抑
制に基づいており、図1(b)に示すゲルマニウム層1
5の表面上あるいはゲルマニウム基板上に、シリコン分
子線16を照射することによって表面吸着したシリコン
原子17に対しても同様の効果がある。
This principle is based on the suppression of diffusion of the growth material by hydrogen, and the germanium layer 1 shown in FIG.
The same effect can be obtained with respect to the silicon atoms 17 adsorbed on the surface by irradiating the surface of No. 5 or the germanium substrate with the silicon molecular beam 16.

【0011】以上の原理に従えば、シリコン基板上もし
くはゲルマニウム基板上に層状構造を持ったゲルマニウ
ムもしくはシリコンの結晶層を成長させることが可能と
なる。
According to the above principle, it is possible to grow a germanium or silicon crystal layer having a layered structure on a silicon substrate or a germanium substrate.

【0012】[0012]

【実施例】以下、本発明の実施例について具体的に説明
する。ここでは、到達真空度1×10-10TorrのM
BE装置を用いた。試料ウェハは、4インチのp型シリ
コン(001)基板及び2インチのゲルマニウム(00
1)基板を用いた。原子状水素の供給は、タングステン
フィラメント加熱方式のラジカル銃を用いて行い、その
フラックス密度は、導入する水素ガスの分圧によって制
御した。基板温度300℃にて、1250℃に加熱され
たクヌーセンセルからゲルマニウムの分子線を、電子銃
式シリコン蒸着器からシリコンの分子線を照射した。ま
た上記ラジカル銃から水素ガス分圧0.1〜10×10
-5Torrの範囲で原子状水素を供給した。
EXAMPLES Examples of the present invention will be specifically described below. Here, M of ultimate vacuum of 1 × 10 -10 Torr
A BE device was used. The sample wafer is a 4-inch p-type silicon (001) substrate and a 2-inch germanium (00
1) A substrate was used. Atomic hydrogen was supplied by using a tungsten filament heating type radical gun, and its flux density was controlled by the partial pressure of hydrogen gas introduced. At a substrate temperature of 300 ° C., a molecular beam of germanium was irradiated from a Knudsen cell heated to 1250 ° C. and a molecular beam of silicon was irradiated from an electron gun silicon vapor deposition device. Moreover, the hydrogen gas partial pressure of 0.1 to 10 × 10
Atomic hydrogen was supplied in the range of -5 Torr.

【0013】上記サンプルの作成段階における表面の構
造は、その場高速電子線回折(RHEED)を用いて、
また、形成された結晶層の構造は走査電子顕微鏡(SE
M)、及び透過電子顕微鏡(TEM)を用いて観察を行
った。
The structure of the surface at the stage of preparing the sample was determined by in-situ high-speed electron diffraction (RHEED).
Further, the structure of the formed crystal layer is the scanning electron microscope (SE
M) and a transmission electron microscope (TEM) were used for observation.

【0014】その結果、RHEED観察では、アイラン
ド構造を示す三次元スポットパターンは観察されず、S
EM観察においては、表面の平坦な形態を現す像を、さ
らに断面方向からの高分解能TEM観察においては、平
坦な表面を持つゲルマニウム結晶構造を、それぞれ確認
した。
As a result, in RHEED observation, a three-dimensional spot pattern showing an island structure was not observed, and S
An image showing a flat surface morphology was confirmed by EM observation, and a germanium crystal structure having a flat surface was confirmed by high-resolution TEM observation from the cross-sectional direction.

【0015】図2は、本発明に従い、基板温度300
℃,ゲルマニウム蒸着速度1オングストローム/sの条
件で、膜厚換算で500オングストローム分のゲルマニ
ウム層を堆積した場合、断面TEMより計測したゲルマ
ニウム結晶層表面の平坦性を、原子状水素供給における
水素分圧に対してプロットしたグラフである。ここで
は、アイランド構造の凸部と凹部の高さの差を平坦性の
値とした。図より明らかに、水素分圧5×10-5Tor
r以上において、表面は平坦化されていることがわか
り、本発明の効果を確認した。
FIG. 2 illustrates a substrate temperature 300 according to the present invention.
When a germanium layer of 500 angstrom in film thickness conversion was deposited under the conditions of ° C and germanium deposition rate of 1 angstrom / s, the flatness of the germanium crystal layer surface measured by cross-sectional TEM was used to determine the hydrogen partial pressure in the atomic hydrogen supply. Is a graph plotted against. Here, the difference in height between the convex portion and the concave portion of the island structure was used as the flatness value. The figure clearly shows that the hydrogen partial pressure is 5 × 10 −5 Tor.
At r and above, the surface was found to be flattened, confirming the effect of the present invention.

【0016】本実施例では、シリコン上のゲルマニウム
結晶層に対してのみ示したが、ゲルマニウム基板上のシ
リコンでも同様の構造が形成されることを確認した。ま
た、原子状水素の形成をタングステンフィラメント加熱
方式のラジカル銃で行ったが、ECRプラズマによって
も同様の結果が得られることを確認した。
In this embodiment, only the germanium crystal layer on silicon is shown, but it was confirmed that a similar structure is formed on silicon on a germanium substrate. Further, although atomic hydrogen was formed by a radical gun using a tungsten filament heating system, it was confirmed that similar results were obtained by ECR plasma.

【0017】なお、本実施例では、半導体として、シリ
コンウェハ又はゲルマニウムウェハを用いたが、本発明
の方法は表面にのみシリコンが存在するSOI(Sil
icon on Insulator)基板等の半導体
にも当然利用できる。
In the present embodiment, a silicon wafer or a germanium wafer was used as the semiconductor, but the method of the present invention uses SOI (Sil) in which silicon exists only on the surface.
Of course, it can also be used for semiconductors such as an icon on insulator substrate.

【0018】[0018]

【発明の効果】以上詳細に述べたように本発明によれ
ば、シリコンもしくはゲルマニウム基板上に、平坦な表
面形態を持つゲルマニウムもしくはシリコンの結晶層を
形成することができる。さらに、本発明は、膜構造の均
一性を高めることが可能であり、デバイスの特性向上に
寄与するところが大きい。
As described in detail above, according to the present invention, a crystal layer of germanium or silicon having a flat surface morphology can be formed on a silicon or germanium substrate. Furthermore, the present invention can improve the uniformity of the film structure, and greatly contributes to the improvement of device characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概念を説明するための図である。FIG. 1 is a diagram for explaining the concept of the present invention.

【図2】原子状水素供給における水素分圧に対し、ゲル
マニウム結晶層表面の平坦性をプロットした図である。
FIG. 2 is a diagram in which the flatness of the surface of a germanium crystal layer is plotted against the hydrogen partial pressure in the supply of atomic hydrogen.

【符号の説明】[Explanation of symbols]

11 シリコン基板 12 ゲルマニウム分子線 13 原子状水素 14 ゲルマニウム原子 15 ゲルマニウム層 16 シリコン分子線 17 シリコン原子 11 Silicon Substrate 12 Germanium Molecular Beam 13 Atomic Hydrogen 14 Germanium Atom 15 Germanium Layer 16 Silicon Molecular Beam 17 Silicon Atom

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 照射処理と水素吸着処理と拡散抑制処理
とを行い、シリコン又はゲルマニウムからなる半導体の
表面に、シリコンとゲルマニウムからなる層状構造の結
晶層を真空中にてエピタキシャル成長させる半導体結晶
の作成方法であって、 照射処理は、分子線と原子状の水素とを個別に半導体表
面に向けて照射する処理であり、 分子線は、ゲルマニウム及びシリコンであり、シリコン
製半導体表面に対しては、ゲルマニウムの分子線を照射
し、ゲルマニウム製半導体表面に対しては、シリコンの
分子線を照射し、 水素吸着処理は、半導体表面に到達したゲルマニウム又
はシリコンの原子に、個別に照射された水素原子を吸着
させる処理であり、 拡散抑制処理は、半導体表面上でのゲルマニウム又はシ
リコン原子の拡散を水素原子で抑制させる処理であるこ
とを特徴とする半導体結晶の作成方法。
1. Preparation of a semiconductor crystal in which a crystal layer having a layered structure composed of silicon and germanium is epitaxially grown in vacuum on a surface of a semiconductor composed of silicon or germanium by performing irradiation processing, hydrogen adsorption processing and diffusion suppression processing. In the method, the irradiation treatment is a treatment of individually irradiating a molecular beam and atomic hydrogen toward the semiconductor surface, the molecular beam is germanium and silicon, and for the silicon semiconductor surface, The germanium molecular beam is irradiated, and the germanium semiconductor surface is irradiated with the silicon molecular beam.Hydrogen adsorption treatment is carried out by individually irradiating the individually irradiated hydrogen atoms to the germanium or silicon atoms reaching the semiconductor surface. Diffusion suppression treatment is a process to adsorb, and hydrogen atoms suppress the diffusion of germanium or silicon atoms on the semiconductor surface. How to create a semiconductor crystal which is a process for.
【請求項2】 原子状水素の照射は、少なくとも分子線
の照射期間中行うものであることを特徴とする請求項1
に記載の半導体結晶の作成方法。
2. The irradiation of atomic hydrogen is performed at least during the irradiation period of the molecular beam.
The method for producing a semiconductor crystal according to 1.
JP5183781A 1993-07-26 1993-07-26 How to make a semiconductor crystal Expired - Fee Related JP2705524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5183781A JP2705524B2 (en) 1993-07-26 1993-07-26 How to make a semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5183781A JP2705524B2 (en) 1993-07-26 1993-07-26 How to make a semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH0745520A true JPH0745520A (en) 1995-02-14
JP2705524B2 JP2705524B2 (en) 1998-01-28

Family

ID=16141832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183781A Expired - Fee Related JP2705524B2 (en) 1993-07-26 1993-07-26 How to make a semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2705524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275591A1 (en) * 2009-07-10 2011-01-19 Imec Method for manufacturing a mono-crystalline layer on a substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335238A (en) * 1992-06-03 1993-12-17 Daido Hoxan Inc Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335238A (en) * 1992-06-03 1993-12-17 Daido Hoxan Inc Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275591A1 (en) * 2009-07-10 2011-01-19 Imec Method for manufacturing a mono-crystalline layer on a substrate

Also Published As

Publication number Publication date
JP2705524B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US4872046A (en) Heterojunction semiconductor device with <001> tilt
EP0430280B1 (en) Selective and non-selective deposition of Si1-x Gex on a Si substrate that is partially masked with Si O2
US6313016B1 (en) Method for producing epitaxial silicon germanium layers
EP0232082B1 (en) Semiconductor deposition method and device
JP2007511892A (en) Epitaxial growth of relaxed silicon germanium layers.
JPH06244112A (en) Method of growing compound semiconductor crystal
JP5254195B2 (en) Method for manufacturing a single crystal semiconductor layer over a substrate
JPH05291140A (en) Growth method of compound semiconductor thin film
JPH0360171B2 (en)
US5834362A (en) Method of making a device having a heteroepitaxial substrate
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP2705524B2 (en) How to make a semiconductor crystal
US6188090B1 (en) Semiconductor device having a heteroepitaxial substrate
JPH04139819A (en) Method and apparatus for selective growth of silicon epitaxial film
JPH0476217B2 (en)
JP3027947B2 (en) Method of forming fine wire structure
JPS63291897A (en) Method for growing single crystal membrane
JPH02139918A (en) Manufacture of hetero structure
JP5538104B2 (en) Method for producing a single crystal layer on a substrate
JP2651146B2 (en) Crystal manufacturing method
JP3688802B2 (en) Method for manufacturing SOI structure
JP3121945B2 (en) Semiconductor crystal growth method
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture
JP2861683B2 (en) Method of forming amorphous silicon film
JPH0613328A (en) Growing method for compound semiconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees