JPH0743651Y2 - Gas chromatograph - Google Patents

Gas chromatograph

Info

Publication number
JPH0743651Y2
JPH0743651Y2 JP1987049542U JP4954287U JPH0743651Y2 JP H0743651 Y2 JPH0743651 Y2 JP H0743651Y2 JP 1987049542 U JP1987049542 U JP 1987049542U JP 4954287 U JP4954287 U JP 4954287U JP H0743651 Y2 JPH0743651 Y2 JP H0743651Y2
Authority
JP
Japan
Prior art keywords
split
carrier gas
resistance
capillary column
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987049542U
Other languages
Japanese (ja)
Other versions
JPS63156069U (en
Inventor
豊明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1987049542U priority Critical patent/JPH0743651Y2/en
Publication of JPS63156069U publication Critical patent/JPS63156069U/ja
Application granted granted Critical
Publication of JPH0743651Y2 publication Critical patent/JPH0743651Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【考案の詳細な説明】 (イ)産業上の利用分野 この考案はガスクロマトグラフに関し、更に詳しくは調
圧弁を介接したキャリヤガス導入流路と、試料室と、キ
ャピラリカラムと、検出器とをこの順序で接続して備
え、且つ前記キャピラリカラムの入口部から分岐しスプ
リット抵抗を介接したスプリットアウト流路を備えたガ
スクロマトグラフに関する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to a gas chromatograph, and more specifically, to a carrier gas introduction flow path through which a pressure regulating valve is interposed, a sample chamber, a capillary column, and a detector. The present invention relates to a gas chromatograph provided with a split-out flow path connected in this order and branched from an inlet portion of the capillary column and having a split resistor interposed therebetween.

(ロ)従来の技術 従来の調圧弁を介接したキャリヤガス導入流路と、試料
室と、キャピラリカラムと、検出器とをこの順序で接続
して備え、且つ前記キャピラリカラムの入口部から分岐
しスプリット抵抗を介接したスプリットアウト流路を備
えたガスクロマトグラフとして、第3図で示されたもの
がある。
(B) Conventional technology A carrier gas introduction flow path through which a conventional pressure regulating valve is interposed, a sample chamber, a capillary column, and a detector are connected in this order, and branched from the inlet of the capillary column. As a gas chromatograph provided with a split-out flow path having a split resistor interposed therebetween, there is one shown in FIG.

(ハ)考案が解決しようとする問題点 調圧弁を介接したキャリヤガス導入流路と、試料室と、
キャピラリカラム、検出器とをこの順序で接続して備
え、且つ前記キャピラリカラムの入口部から分岐しスプ
リット抵抗を介接したスプリットアウト流路を備えたガ
スクロマトグラフでは、分岐の際キャリヤガスとしてヘ
リウム又は水素を使用するのが普通である。又、キャピ
ラリカラムには大量の試料を導入することができないの
で、試料室に導入した試料の大部分をスプリッタにより
系外に放出する方式がとられている。
(C) Problems to be solved by the device: A carrier gas introduction flow path through which a pressure regulating valve is interposed, a sample chamber,
In a gas chromatograph equipped with a capillary column and a detector connected in this order, and having a split-out flow path branched from the inlet of the capillary column and having a split resistor interposed, helium or a carrier gas is used as a carrier gas at the time of branching. It is common to use hydrogen. Further, since a large amount of sample cannot be introduced into the capillary column, a method is adopted in which most of the sample introduced into the sample chamber is discharged outside the system by a splitter.

このためスプリッタの放出部から常にキャリヤガスを放
出している。従って、真に分析に必要なキャリヤガスは
数ml/minであるにもかかわらず、スプリッタによりキャ
リヤガスは無駄に放出されているという問題がある。特
に、具体的にはその放出量は必要な量の20〜200倍と多
量である。加えて、ヘリウムは高価であり、又水素の多
量の放出は大きな危険を伴なうため、問題はより一層深
刻であった。
Therefore, the carrier gas is always discharged from the discharge portion of the splitter. Therefore, there is a problem that the carrier gas is unnecessarily discharged by the splitter even though the carrier gas which is truly necessary for the analysis is several ml / min. Particularly, specifically, the released amount is as large as 20 to 200 times the required amount. In addition, helium is expensive, and the large release of hydrogen carries great danger, making the problem even more serious.

この考案は上記の事情に鑑みてなされたものであり、分
析に影響を与えずキャリヤガスの実際の消費量を少くお
さえるガスクロマトグラフを提供するものである。
The present invention has been made in view of the above circumstances, and provides a gas chromatograph that does not affect the analysis and can reduce the actual consumption amount of the carrier gas.

(ニ)問題点を解決するための手段 この考案は、キャピラリの入口部から分岐したスプリッ
トアウト流路において、そのスプリットアウト流路に介
接したスプリット抵抗に対し切換え可能なバイパス抵抗
を並列に接続し、それらの抵抗の一方を閉止し得る構成
としたガスクロマトグラフである。
(D) Means for Solving the Problems This invention relates to a split-out flow path branched from an inlet portion of a capillary, in which a switchable bypass resistance is connected in parallel to a split resistance interposed in the split-out flow path. The gas chromatograph is configured so that one of those resistors can be closed.

その詳細な構成は調圧弁を介接したキャリヤガス導入流
路と、試料室と、キャピラリカラムと、検出器とをこの
順序で接続して備え、且つ前記キャピラリカラムの入口
部から分岐してスプリット抵抗を介接したスプリットア
ウト流路を備え、更に、前記スプリット抵抗に対して並
列に接続したバイパス抵抗と、このバイパス抵抗及びス
プリット抵抗の一方を閉止し得る閉止手段とを備えてな
るガスクロマトグラフである。
The detailed configuration is such that a carrier gas introduction flow path with a pressure regulating valve in between, a sample chamber, a capillary column, and a detector are connected in this order, and the branch is split from the inlet of the capillary column. A gas chromatograph comprising a split-out flow path having a resistor interposed therebetween, further comprising a bypass resistance connected in parallel to the split resistance, and a closing means capable of closing one of the bypass resistance and the split resistance. is there.

(ホ)作用 スプリット流路に切り換え可能なスプリット抵抗とバイ
パス抵抗を並列に設けているので、試料導入後キャリヤ
ガスの流れをスプリット抵抗と抵抗バイパスとの切り換
えによって、流れるキャリヤガスの流量を少なくするこ
とで、キャリヤガスの放出量を少なくすることができ
る。
(E) Action Since the split resistance and the bypass resistance that can be switched are provided in parallel in the split flow path, the flow rate of the carrier gas flowing after the sample introduction is reduced by switching between the split resistance and the resistance bypass. As a result, the amount of carrier gas released can be reduced.

(へ)実施例 以下、第1〜2図に示す実施例に基づいてこの考案を詳
述する。なお、これによってこの考案が限定されるもの
ではない。
(H) Embodiment Hereinafter, the present invention will be described in detail based on an embodiment shown in FIGS. The invention is not limited to this.

第1図において、ガスクロマトグラフ1は、キャリヤガ
ス導入流路2と、試料室3と、キャピラリカラム4と、
検出器5とを順に接続し、且つキャピラリカラム4の入
口部からスプリットアウト流路又は(スプリッタ,6)を
分岐している。そしてキャリヤガス導入流路2は、キャ
リヤガス源(図示省略)と試料室3との間に調圧弁7と
圧力計8を介接している。
In FIG. 1, a gas chromatograph 1 includes a carrier gas introduction flow path 2, a sample chamber 3, a capillary column 4,
The detector 5 is sequentially connected, and the split-out flow path or (splitter, 6) is branched from the inlet of the capillary column 4. In the carrier gas introduction flow path 2, a pressure regulating valve 7 and a pressure gauge 8 are connected between a carrier gas source (not shown) and the sample chamber 3.

一方、スプリットアウト流路6はキャピラリカラム4の
入口圧力を一定に維持するスプリット抵抗であるスプリ
ット抵抗管9を介接している。
On the other hand, the split-out flow path 6 is connected with a split resistance tube 9 which is a split resistance for keeping the inlet pressure of the capillary column 4 constant.

而して、10はバイパス抵抗としての抵抗管であり、スプ
リット抵抗管9に並列に切換可能に接続され、11はその
切換のための閉止手段である三方弁である。
Reference numeral 10 is a resistance tube as a bypass resistance, which is switchably connected in parallel to the split resistance tube 9 and 11 is a three-way valve which is a closing means for the switching.

かくして、まず三方弁11を、キャリヤガス(ヘリウムガ
ス)が矢印A方向に流れるように設定し、その状態でキ
ャリヤガスを調圧弁7により一定圧力にする。次いでキ
ャリヤガスの一定流量を試料室3へ流す。一方、試料を
試料室3に注入すると試料はそこで気化し、スプリット
抵抗管9とキャピラリカラム4自体の抵抗比により分割
され、注入した試料の約100分の1がキャピラリカラム
4に導入される。
Thus, first, the three-way valve 11 is set so that the carrier gas (helium gas) flows in the direction of arrow A, and in that state, the carrier gas is made to have a constant pressure by the pressure regulating valve 7. Then, a constant flow rate of the carrier gas is flown into the sample chamber 3. On the other hand, when the sample is injected into the sample chamber 3, the sample is vaporized there, divided by the resistance ratio of the split resistance tube 9 and the capillary column 4 itself, and about 1/100 of the injected sample is introduced into the capillary column 4.

試料室3を出たキャリヤガスは、キャピラリカラム4の
入口で分割され、大部分が、スプリットアウト流路6か
ら放出され、ごく一部分(例えば数ml/分)がキャピラ
リカラム4へ移送される。試料を試料室3へ注入してか
ら一定時間(数秒〜数十秒)が経過した後、三方弁11を
操作してキャリヤガスの流れを抵抗管10つまり矢印B方
向に流れるように切換える。抵抗管10の抵抗はスプリッ
ト抵抗管9の抵抗の100倍程度(キャピラリカラム4の
抵抗とほぼ同じ)であるので、放出されるキャリヤガス
の量は非常に少ない。又、分析が長時間(2時間程度)
であれば、放出するキャリヤガスの量の差は極めて大き
い。
The carrier gas that has left the sample chamber 3 is split at the inlet of the capillary column 4, most of it is discharged from the split-out flow path 6, and only a small portion (for example, several ml / min) is transferred to the capillary column 4. After a certain time (several seconds to several tens of seconds) has passed since the sample was injected into the sample chamber 3, the three-way valve 11 was operated to switch the flow of the carrier gas to the resistance tube 10, that is, the direction of arrow B. Since the resistance of the resistance tube 10 is about 100 times the resistance of the split resistance tube 9 (almost the same as the resistance of the capillary column 4), the amount of carrier gas released is very small. In addition, analysis takes a long time (about 2 hours)
Then, the difference in the amount of carrier gas released is extremely large.

なお、キャリヤガスの圧力は一定に調節してあるためキ
ャピラリカラム4の入口圧は変化せず、キャピラリカラ
ム4に流れる流量は一定であり、分析結果には切換えに
よる影響は生じない。
In addition, since the pressure of the carrier gas is adjusted to be constant, the inlet pressure of the capillary column 4 does not change, the flow rate of the capillary column 4 is constant, and the analysis result is not affected by the switching.

又、スプリット抵抗管9のみを備えてスプリットアウト
流路6を開閉することも考えられる。しかし、その場合
にはスプリット抵抗管9へ至る流路内に残存する試料が
拡散により試料室3に戻ることがあり、これによってい
わゆるゴーストが生じて分析の障害となる。だが、この
考案では並列抵抗管10を通してキャリヤガスを数ml/min
流すことにより、拡散による試料の逆流が防止できると
いう効果も得られる。
It is also conceivable to provide only the split resistance tube 9 to open / close the split-out flow path 6. However, in that case, the sample remaining in the flow path leading to the split resistance tube 9 may return to the sample chamber 3 due to diffusion, which causes a so-called ghost and becomes an obstacle to analysis. However, in this device, a carrier gas of several ml / min is passed through the parallel resistance tube 10.
By flowing the liquid, it is possible to obtain an effect that the backflow of the sample due to diffusion can be prevented.

第2図に、この考案の他の実施例を示す。ガスクロマト
グラフ1aにおいて、11a,12aはともに閉止手段である二
方弁である。試料の濃度が稀薄な場合は試料を分析せず
全量をカラムに導入する、いわゆるスプリットレス試料
注入法による分析では、試料を試料室3に注入する間
(注入数十秒)は、スプリット抵抗管9aは二方弁11aで
並列の抵抗管10aは二方弁12aでそれぞれ流路を閉止する
ことができる。
FIG. 2 shows another embodiment of the present invention. In the gas chromatograph 1a, both 11a and 12a are two-way valves which are closing means. When the sample concentration is low, the sample is not analyzed and the entire amount is introduced into the column. In the analysis by the so-called splitless sample injection method, while the sample is injected into the sample chamber 3 (injection tens of seconds), a split resistance tube is used. 9a is a two-way valve 11a, and the parallel resistance tube 10a is a two-way valve 12a that can close the flow path.

又、スプリット抵抗管9及び並列の抵抗管10は固定抵抗
管でもニードル弁を備えた管であってもよい。
Further, the split resistance tube 9 and the parallel resistance tube 10 may be fixed resistance tubes or tubes equipped with needle valves.

(ホ)考案の効果 この考案によれば、試料導入後キャリヤガスの流れをス
プリット抵抗からバイパス抵抗に切換えて、流れるキャ
リヤガスの流量を少なくし、それによってキャリヤガス
の放出量を少なくできる。
(E) Effect of the Invention According to this invention, the flow of the carrier gas after the sample introduction is switched from the split resistance to the bypass resistance to reduce the flow rate of the carrier gas flowing, and thereby the release amount of the carrier gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の一実施例を示す構成説明図、第2図
はこの考案の他の実施例を示す第1図相当図、第3図は
従来の第1図相当図である。 1……ガスクロマトグラフ、2……キャリヤガス導入流
路、3……試料室、4……キャピラリカラム、5……検
出器、6……スプリットアウト流路、7……調圧弁、8
……圧力計、9……スプリット抵抗管(スプリット抵
抗)、10……抵抗管(バイパス抵抗)、11……三方弁
(閉止手段)、11a,12a……二方弁(閉止手段)。
FIG. 1 is a structural explanatory view showing an embodiment of the present invention, FIG. 2 is a view corresponding to FIG. 1 showing another embodiment of the present invention, and FIG. 3 is a view corresponding to FIG. 1 ... Gas chromatograph, 2 ... Carrier gas introduction flow path, 3 ... Sample chamber, 4 ... Capillary column, 5 ... Detector, 6 ... Split-out flow path, 7 ... Pressure regulating valve, 8
...... Pressure gauge, 9 ...... Split resistance tube (split resistance), 10 ...... Resistance tube (bypass resistance), 11 ...... Three-way valve (closing means), 11a, 12a ...... Two-way valve (closing means).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】調圧弁を介接したキャリアガス導入流路
と、試料室と、キャピラリカラムと、検出器とをこの順
序で接続して備え、且つ前記キャピラリカラムの入口部
から分岐してスプリット抵抗を介接したスプリットアウ
ト流路を備え、 更に、前記スプリット抵抗に対して並列に接続したバイ
パス抵抗と、このバイパス抵抗及びスプリット抵抗の一
方を閉止し得る閉止手段とを備えてなるガスクロマトグ
ラフ。
1. A carrier gas introducing passage having a pressure regulating valve in contact therewith, a sample chamber, a capillary column, and a detector are connected in this order, and branched from the inlet of the capillary column to split. A gas chromatograph comprising a split-out flow path having a resistor interposed therebetween, further comprising a bypass resistor connected in parallel to the split resistor, and a closing means capable of closing one of the bypass resistor and the split resistor.
JP1987049542U 1987-03-31 1987-03-31 Gas chromatograph Expired - Lifetime JPH0743651Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987049542U JPH0743651Y2 (en) 1987-03-31 1987-03-31 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987049542U JPH0743651Y2 (en) 1987-03-31 1987-03-31 Gas chromatograph

Publications (2)

Publication Number Publication Date
JPS63156069U JPS63156069U (en) 1988-10-13
JPH0743651Y2 true JPH0743651Y2 (en) 1995-10-09

Family

ID=30872089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987049542U Expired - Lifetime JPH0743651Y2 (en) 1987-03-31 1987-03-31 Gas chromatograph

Country Status (1)

Country Link
JP (1) JPH0743651Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540365B (en) 2015-07-14 2019-12-11 Thermo Fisher Scient Bremen Gmbh Control of gas flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442477Y1 (en) * 1965-11-17 1969-01-29
JPS60113555U (en) * 1984-01-09 1985-08-01 ガスクロ工業株式会社 splitter

Also Published As

Publication number Publication date
JPS63156069U (en) 1988-10-13

Similar Documents

Publication Publication Date Title
CN202822862U (en) Chromatographic system
US5595709A (en) Instrument for measuring non-methane organic gases in gas samples
JPH06194351A (en) Gas-chromatograph system
CA2070619C (en) Sample collection and inlet systems for gas chromatography apparatus
US6447575B2 (en) Method and apparatus for gas chromatography analysis of samples
JPH05288738A (en) Gas chromatograph apparatus
WO2020155577A1 (en) Full-two-dimensional gas chromatograph and modulation method
US3368385A (en) Sample system for chromatographic analyzers
JPH0743651Y2 (en) Gas chromatograph
Bellar et al. Determination of Atmospheric Pollutants in the Part-per-Billon Range by Gas Chromatography. A Simple Trapping System for Use with Flame Ionization Detectors.
JP2005221341A (en) Volatile organic compound measuring instrument
US4067226A (en) Chromatographic apparatus
US3152470A (en) Thermochromatographic apparatus and method of analysis
JPH0712922Y2 (en) Gas chromatograph
Cooper et al. Automatic preparation of human serum samples for analysis of the drug enoximone and its sulphoxide metabolite using high-performance liquid chromatography
JPH09127074A (en) Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph
US5001071A (en) Vented retention gap capillary gas chromatography method
JP2005283403A (en) Gas chromatograph
JP3048018B2 (en) Capillary column gas chromatograph
JPH06273404A (en) Gas chromatography
JPS6126858A (en) Precutting device for gas chromatograph
JP2861336B2 (en) Applied flow path of gas chromatograph
Barinaga et al. Noncryogenic FSOT column separation of sulfur‐containing gases
JPH0718997Y2 (en) Process gas chromatograph
JPH0715435B2 (en) Device for measuring water content in liquid