JPH074321A - Exhaust gas recirculation device - Google Patents

Exhaust gas recirculation device

Info

Publication number
JPH074321A
JPH074321A JP5146461A JP14646193A JPH074321A JP H074321 A JPH074321 A JP H074321A JP 5146461 A JP5146461 A JP 5146461A JP 14646193 A JP14646193 A JP 14646193A JP H074321 A JPH074321 A JP H074321A
Authority
JP
Japan
Prior art keywords
valve
valve opening
egr
amount
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5146461A
Other languages
Japanese (ja)
Inventor
Eiji Mizote
英治 溝手
Satoshi Hiranuma
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP5146461A priority Critical patent/JPH074321A/en
Publication of JPH074321A publication Critical patent/JPH074321A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To improve responsiveness and changeover accuracy at controlling changeover of an EGR valve. CONSTITUTION:This EGR device is provided with a first flow control valve 14 of a first EGR passage (r1) of a diesel engine 12, a second flow control valve 15 of a second EGR passage (r2), a lever opening sensor 16 outputting a lever opening signal thetaL, an engine rotation sensor 17 outputting an engine speed Ne signal, and first and second valve opening sensors 18, 19 outputting valve opening quantity signals of the first and second flow control valves 14, 15. Further it is provided with a control means 20 which computes a valve opening quantity (h0) corresponding to a target recirculating quantity Q0 of the first and second flow control valves based on the lever opening thetaL signal and the engine speed Ne signal and controls the first and second flow control valves to be the valve opening quantity, the control means 20 computes the deviation dA between the valve opening quantities (h1), (h2) and the valve opening quantity (h0), it controls simultaneously both flow control valves while the deviation is over the set deviation width -a<=dA<=a, and controls only either of both flow control valves while the deviation dA is within the set deviation width.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンから排出され
る排ガスの一部を吸気通路に戻す排ガス再循環装置、特
に排気路と吸気路とを結ぶ再循環路に流量制御弁を設け
て、同弁の開弁量を運転条件に応じて増減制御する排ガ
ス再循環装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation device for returning a part of exhaust gas discharged from an engine to an intake passage, and more particularly to a recirculation passage connecting an exhaust passage and an intake passage with a flow control valve. The present invention relates to an exhaust gas recirculation device that controls the opening amount of the valve according to operating conditions.

【0002】[0002]

【従来の技術】一般に、エンジン排ガス中のNOx(窒
素酸化物)の発生を低減するため、排ガスの一部を再度
吸気路に戻す排ガス再循環装置(以後単にEGR装置と
記す)が使用されている。例えば、図8に示すように、
エンジン1の吸気路2と排気路3との間に配設されるE
GR装置はバキュームポンプ4で負圧を発生させ、エン
ジンの運転情報を受ける制御手段5からの制御信号に応
じ駆動する負圧制御弁6によってその負圧を適切な値に
制御し、該負圧を排ガス再循環制御弁(以後単にEGR
弁と称する)9のダイアフラム室7内に供給する。これ
によって、排ガス再循環路(以後単にEGR路と称す
る)8の開口面積を変化させて排ガス再循環量、つまり
EGR量を制御していた。
2. Description of the Related Art Generally, in order to reduce the generation of NOx (nitrogen oxide) in engine exhaust gas, an exhaust gas recirculation device (hereinafter simply referred to as an EGR device) for returning a part of exhaust gas to an intake passage is used. There is. For example, as shown in FIG.
E provided between the intake passage 2 and the exhaust passage 3 of the engine 1
The GR device causes the vacuum pump 4 to generate a negative pressure, and controls the negative pressure to an appropriate value by a negative pressure control valve 6 that is driven according to a control signal from a control means 5 that receives engine operation information. The exhaust gas recirculation control valve (hereinafter simply referred to as EGR
(Referred to as a valve) 9 is supplied into the diaphragm chamber 7. As a result, the opening area of the exhaust gas recirculation path (hereinafter simply referred to as the EGR path) 8 is changed to control the exhaust gas recirculation amount, that is, the EGR amount.

【0003】この際、制御手段5は、エンジンの運転域
が変動する毎に新たに目標とするEGR量を算出し、現
在の開弁量を目標EGR量相当の開弁量に増減修正し、
常に、最適なEGR量を確保するようにしている。
At this time, the control means 5 calculates a new target EGR amount each time the engine operating range fluctuates, and increases or decreases the current valve opening amount to a valve opening amount corresponding to the target EGR amount.
The optimum EGR amount is always ensured.

【0004】[0004]

【発明が解決しようとする課題】処で、通常のEGR装
置は、吸気路2と排気路3との間に単一のEGR路8を
設け、同通路に単一のEGR弁9を設けて、EGR路8
の開口面積を変化させてEGR量を制御していた。この
ため、大排気量のエンジンになると、必要とされるEG
R量も多くなり、EGR弁9が大型化し、弁体901自
体が大きくなり、結果として、応答性が悪化し易い。し
かも、EGR弁の弁体901自体が大きくなると単位バ
ルブリフト量当たりのEGR量(流量)も大きくなり、
結果として、精度の良い制御ができず、この点でも目標
開弁量に切換えるのにようする時間がかかり問題と成っ
ている。本発明の目的は、EGR弁の切換え制御時にお
ける応答性及び切換え精度を向上できる排ガス再循環装
置を提供することにある。
By the way, in a normal EGR device, a single EGR passage 8 is provided between the intake passage 2 and the exhaust passage 3, and a single EGR valve 9 is provided in the same passage. , EGR road 8
The EGR amount was controlled by changing the opening area of the. Therefore, when the engine has a large displacement, the required EG
The amount of R also increases, the EGR valve 9 becomes large, the valve body 901 itself becomes large, and as a result, the responsiveness is likely to deteriorate. Moreover, when the valve body 901 of the EGR valve itself becomes large, the EGR amount (flow rate) per unit valve lift amount also becomes large,
As a result, accurate control cannot be performed, and in this respect as well, it takes time to switch to the target valve opening amount, which is a problem. An object of the present invention is to provide an exhaust gas recirculation device that can improve responsiveness and switching accuracy during EGR valve switching control.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明はディーゼルエンジンの排気路の排ガスを
吸気路に戻す第1及び第2排ガス再循環路と、上記第1
排ガス再循環路に設けられ同路の流路断面積を可変とす
る第1流量制御弁と、上記第2排ガス再循環路に設けら
れ同路の流路断面積を可変とする第2流量制御弁と、上
記ディーゼルエンジンの燃料噴射ポンプのレバー開度信
号を出力するレバー開度センサと、上記ディーゼルエン
ジンのエンジン回転速度信号を出力するエンジン回転セ
ンサと、上記第1及び第2流量制御弁の開弁量信号を出
力する第1及び第2弁開度センサと、上記レバー開度信
号及び上記エンジン回転速度信号に基づき上記第1及び
第2流量制御弁の目標再循環量相当の各開弁量をそれぞ
れ算出し、同各開弁量に上記第1及び第2流量制御弁を
制御する制御手段とを有し、上記制御手段は上記第1及
び第2流量制御弁の各開弁量と上記目標再循環量相当の
開弁量との各偏差をそれぞれ算出すると共に、それら各
偏差が設定ずれ幅を上回る間は上記第1及び第2流量制
御弁を同時に上記各偏差を打ち消す開弁量に制御し、上
記各偏差が上記設定ずれ幅内にある間は上記第1及び第
2流量制御弁の内の一方のみを上記偏差を打ち消す開弁
量に制御することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides first and second exhaust gas recirculation passages for returning exhaust gas in an exhaust passage of a diesel engine to an intake passage, and the above first embodiment.
A first flow rate control valve that is provided in the exhaust gas recirculation passage and has a variable flow passage cross-sectional area, and a second flow rate control that is provided in the second exhaust gas recirculation passage and that has a variable flow passage cross-sectional area A valve, a lever opening sensor that outputs a lever opening signal of the fuel injection pump of the diesel engine, an engine rotation sensor that outputs an engine rotation speed signal of the diesel engine, and the first and second flow rate control valves. First and second valve opening sensors that output a valve opening signal, and each valve opening corresponding to the target recirculation amount of the first and second flow control valves based on the lever opening signal and the engine rotation speed signal And a control means for controlling the first and second flow rate control valves to calculate the respective valve opening amounts and the control means controls the valve opening amounts of the first and second flow rate control valves. Each deviation from the valve opening amount equivalent to the above target recirculation amount While calculating each, while the respective deviations exceed the set deviation range, the first and second flow rate control valves are simultaneously controlled to valve opening amounts that cancel the respective deviations, and the deviations are within the set deviation range. In the meantime, only one of the first and second flow rate control valves is controlled to the valve opening amount that cancels the deviation.

【0006】[0006]

【作用】ここでの制御手段は、第1及び第2流量制御弁
の各開弁量と目標再循環量相当の開弁量との各偏差をそ
れぞれ算出し、次いで、それら各偏差が設定ずれ幅外に
ある間には、第1及び第2流量制御弁を各偏差を打ち消
す開弁量に同時に制御するので、応答性を向上でき、各
偏差が設定ずれ幅内にある間は第1及び第2流量制御弁
の内の一方のみを偏差を打ち消す開弁量に制御するの
で、精度良く開弁量を調整できる。
The control means here calculates the respective deviations between the respective valve opening amounts of the first and second flow rate control valves and the valve opening amounts corresponding to the target recirculation amounts, and then the respective deviations are set to be different from each other. While it is out of the range, the first and second flow rate control valves are simultaneously controlled to the valve opening amount that cancels each deviation, so that the responsiveness can be improved, and while each deviation is within the set deviation width, Since only one of the second flow rate control valves is controlled to the valve opening amount that cancels the deviation, the valve opening amount can be adjusted accurately.

【0007】[0007]

【実施例】図1の排ガス再循環装置はディーゼルエンジ
ン(以後単にエンジンと記す)10に装着されている。
このエンジン10の吸気路Iは、大気をエアクリーナ1
1を通して吸入し、この新気をエンジン本体12の図示
しないシリンダ内に供給する。一方、排気路Eは上述の
シリンダより排出された排気をマフラー13を通して大
気放出する。このエンジン10の排ガス再循環装置は排
気路E中の排ガスの一部をEGRガスとして吸気路Iの
新気中に還流させ、燃焼室温度の上昇を抑え、NOX
出量の低減を図れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The exhaust gas recirculation system of FIG. 1 is installed in a diesel engine (hereinafter simply referred to as engine) 10.
The intake passage I of the engine 10 uses the air cleaner 1 for the atmosphere.
1, and the fresh air is supplied into a cylinder (not shown) of the engine body 12. On the other hand, the exhaust passage E discharges the exhaust exhausted from the cylinder through the muffler 13 to the atmosphere. The exhaust gas recirculation system for the engine 10 allows a part of the exhaust gas in the exhaust passage E to be recirculated to the fresh air in the intake passage I as EGR gas to suppress an increase in the temperature of the combustion chamber and reduce the NO X emission amount.

【0008】ここで、排ガス再循環装置は吸気路2と排
気路3との間を互いに並列的に結ぶ一対の第1及び第2
排ガス再循環路(以後単に第1及び第2EGR路と記
す)r1,r2と、第1EGR路r1に設けられ同路の
流路断面積を可変とする第1流量制御弁(以後単に第1
EGR弁と記す)14と、第2EGR路r2に設けられ
同路の流路断面積を可変とする第2流量制御弁(以後単
に第2EGR弁と記す)15と、ディーゼルエンジン1
0の図示しない燃料噴射ポンプのレバー開度θL信号を
出力するレバー開度センサ16と、ディーゼルエンジン
10のエンジン回転速度Ne信号を出力するエンジン回
転センサ17と、第1及び第2EGR弁14,15の開
弁量相当のリフト量h1,h2信号を出力する第1及び
第2弁開度センサ18,19と、レバー開度θL信号及
びエンジン回転速度Ne信号に基づき第1及び第2EG
R弁14,15を制御するコントローラ20とを備え
る。
Here, the exhaust gas recirculation device has a pair of first and second exhaust passages 3 and 3 which connect the intake passage 2 and the exhaust passage 3 in parallel with each other.
Exhaust gas recirculation passages (hereinafter simply referred to as first and second EGR passages) r1 and r2, and a first flow control valve (hereinafter simply referred to as first passage control valve) provided in the first EGR passage r1 and having a variable passage cross-sectional area.
EGR valve) 14, a second flow rate control valve (hereinafter simply referred to as a second EGR valve) 15 that is provided in the second EGR passage r2 and has a variable flow passage cross-sectional area, and the diesel engine 1
0, a lever opening sensor 16 that outputs a lever opening θ L signal of a fuel injection pump (not shown), an engine rotation sensor 17 that outputs an engine rotation speed Ne signal of the diesel engine 10, the first and second EGR valves 14, First and second valve opening sensors 18, 19 that output lift amounts h1, h2 signals corresponding to the valve opening amount of 15, and first and second EGs based on the lever opening θ L signal and the engine rotation speed Ne signal.
The controller 20 for controlling the R valves 14 and 15 is provided.

【0009】第1EGR弁14は第1EGR路r1の流
路面積を増減操作する弁体141と同弁体に一体的に接
続されるダイアフラム142とを有し、このダイアフラ
ム142は容器146内を大気開放室143と負圧室1
44とに区分し、両室の圧力差及び戻しばね145の閉
弁方向への弾性力とのバランス位置、即ち、リフト量h
1に弁体141を保持する。なお、弁体141の上端部
にはリフト量h1に応じた信号を出力できるポジション
センサとしての第1弁開度センサ18が接続されてい
る。
The first EGR valve 14 has a valve body 141 for increasing / decreasing the flow passage area of the first EGR passage r1 and a diaphragm 142 which is integrally connected to the valve body 141. Open chamber 143 and negative pressure chamber 1
44, and the balance position of the pressure difference between both chambers and the elastic force of the return spring 145 in the valve closing direction, that is, the lift amount h.
The valve body 141 is held at 1. A first valve opening sensor 18 as a position sensor capable of outputting a signal according to the lift amount h1 is connected to the upper end of the valve body 141.

【0010】ここで負圧室144にはソレノイドバルブ
である第1切換弁21を介し真空ポンプ22あるいは大
気開放口211が連通可能である。第1切換弁21はコ
ントローラ20に接続され、同コントローラからの出力
信号を受けて、デューティー作動する。即ち、ここでの
第1切換弁21は入力されたデューティー比の増加に比
例して負圧値を大きくし、これにより負圧室144の負
圧値をデューティー比の増加に比例して大きくし、弁体
141のリフト量を大きくし、第1排ガス再循環路r1
の流路面積を大きくし、再循環量であるEGR量を大き
くでき、逆に、第1切換弁21のデューティー比を減ず
ることによって、再循環量であるEGR量を小さくでき
る。
A vacuum pump 22 or an atmosphere opening port 211 can communicate with the negative pressure chamber 144 via a first switching valve 21 which is a solenoid valve. The first switching valve 21 is connected to the controller 20, receives an output signal from the controller 20, and is duty-operated. That is, the first switching valve 21 here increases the negative pressure value in proportion to the increase in the input duty ratio, and thereby increases the negative pressure value in the negative pressure chamber 144 in proportion to the increase in the duty ratio. , The lift amount of the valve body 141 is increased, and the first exhaust gas recirculation path r1
The EGR amount, which is the recirculation amount, can be increased by enlarging the flow path area of the above, and conversely, the EGR amount, which is the recirculation amount, can be reduced by reducing the duty ratio of the first switching valve 21.

【0011】同様に、第2EGR弁15は第2EGR路
r2の流路面積を増減操作する弁体151と、容器15
6内を大気開放室153と負圧室154とに区分するダ
イアフラム152と、ダイアフラム152に閉弁方向へ
の弾性力を加える戻しばね145とを有し、弁体151
をリフト量h2に保持する。弁体151にはリフト量h
2に応じた信号を出力できる第2弁開度センサ19が接
続されている。さらに、負圧室154には第2切換弁2
3を介し真空ポンプ22あるいは大気開放口231が連
通可能である。第2切換弁23もコントローラ20から
の出力信号を受けて、デューティー比の増加に比例して
負圧値を大きくし、これにより弁体151のリフト量を
大きくし、第2排ガス再循環路r2の流路面積を大きく
し、EGR量を大きくでき、逆に、第2切換弁23のデ
ューティー比を減ずることによってEGR量を小さくで
きる。
Similarly, the second EGR valve 15 includes a valve body 151 for increasing / decreasing the flow passage area of the second EGR passage r2, and a container 15.
The valve body 151 includes a diaphragm 152 that divides the inside of the chamber 6 into an atmosphere open chamber 153 and a negative pressure chamber 154, and a return spring 145 that applies an elastic force to the diaphragm 152 in the valve closing direction.
Is held at the lift amount h2. The lift amount h is applied to the valve body 151.
A second valve opening sensor 19 that can output a signal corresponding to 2 is connected. Further, the negative pressure chamber 154 has the second switching valve 2
The vacuum pump 22 or the atmosphere opening port 231 can communicate with each other through 3. The second switching valve 23 also receives the output signal from the controller 20 and increases the negative pressure value in proportion to the increase in the duty ratio, thereby increasing the lift amount of the valve body 151 and increasing the second exhaust gas recirculation path r2. The flow passage area can be increased and the EGR amount can be increased, and conversely, the EGR amount can be decreased by reducing the duty ratio of the second switching valve 23.

【0012】ここで、図2及び図3に示すように、同じ
EGR量を制御するに当たって、1個のEGR弁vaを
備えたEGR路raによってEGR量を制御する場合
と、2個の同一のEGR弁vbを備えたEGR路rb,
rbによってEGR量を制御する場合とを比較する。1
個のEGR弁vaを備えたEGR路raの通路面積π×
(a/2)2と、2個のEGR弁vb,vbを備えたE
GR路rb,rbの通路面積2×π×(b/2)2とは
同じという条件より、下式(1)が成り立つ。
Here, as shown in FIG. 2 and FIG. 3, in controlling the same EGR amount, the case where the EGR amount is controlled by the EGR path ra having one EGR valve va and the case where two EGR amounts are the same are controlled. EGR path rb with EGR valve vb,
The case of controlling the EGR amount by rb will be compared. 1
The passage area π of the EGR passage ra including the individual EGR valves va ×
E equipped with (a / 2) 2 and two EGR valves vb, vb
Under the condition that the passage areas 2 × π × (b / 2) 2 of the GR roads rb and rb are the same, the following expression (1) is established.

【0013】π×(a/2)2=2×π×(b/2)22=2b2 a=√2b・・・・・・・(1) さらに、通路面積π×(a/2)2と同一の通路面積を
得るための弁リフト量Hを求めるとする。ここで、図2
中の管路の通路面積π×(a/2)2とリング状の通路
面積s(=2×π×(a/2)×h)とが等しいという
条件より、下式(2)が成り立つ。
Π × (a / 2) 2 = 2 × π × (b / 2) 2 a 2 = 2b 2 a = √2b (1) Further, the passage area π × (a / 2) It is assumed that the valve lift amount H for obtaining the same passage area as 2 is obtained. Here, FIG.
The following equation (2) is established under the condition that the passage area π × (a / 2) 2 of the inner pipeline is equal to the ring-shaped passage area s (= 2 × π × (a / 2) × h). .

【0014】 π×(a/2)2=2×π×(a/2)×H H=a/4・・・・・・・(2) 故に、通路面積π×(a/2)2と同一の通路面積を得
るための必要リフトHは、通路内径の1/4となる。E
GR弁の径がaではa/4、EGR弁の径がbではb/
4となる。この点を考慮して流量QとEGR弁のリフト
量の関係を図示すると、図4のようになる。図4より明
らかなように、目標再循環量Q0を得るに当たり、単一
のEGR弁(va)を制御する場合に比較して、これと
同一の流量Q0を2個のEGR弁(vb,vb)を同時
制御して得る場合の方が単位リフト量Δh当たりの単位
流量変化分ΔQ1(<ΔQ2)が小さく、切換制御時の
精度が良いことが明らかである。しかも、図5に示すよ
うに、2個のEGR弁を同時制御する場合の方が各弁が
軽量化されるので、切換えに要する時間t2が1個のE
GR弁を切換え制御するに要する時間t1よりも短くて
済み、制御する場合の応答性も単一の場合よりも優れる
ことが明らかである。
Π × (a / 2) 2 = 2 × π × (a / 2) × H H = a / 4 ... (2) Therefore, the passage area π × (a / 2) 2 The required lift H for obtaining the same passage area as is 1/4 of the passage inner diameter. E
When the diameter of the GR valve is a, it is a / 4; when the diameter of the EGR valve is b, it is b /
It becomes 4. Considering this point, the relationship between the flow rate Q and the lift amount of the EGR valve is illustrated in FIG. As is apparent from FIG. 4, in obtaining the target recirculation amount Q0, the same flow rate Q0 as that of the two EGR valves (vb, vb) is used as compared with the case of controlling a single EGR valve (va). It is apparent that the unit flow rate change amount ΔQ1 (<ΔQ2) per unit lift amount Δh is smaller and the precision in the switching control is better in the case of simultaneously controlling (1). Moreover, as shown in FIG. 5, when the two EGR valves are controlled simultaneously, the weight of each valve is reduced, so that the time t2 required for switching is one E.
It is clear that the time required for switching control of the GR valve is shorter than t1, and that the response in the case of control is superior to that in the single case.

【0015】このような点を考慮して図1の排ガス再循
環装置は第1及び第2EGR路r1,r2を設け、そこ
に同一形状の第1及び第2EGR弁14,15を配備
し、第1切換弁21、第2切換弁23を介しこれをコン
トローラ20によって制御するもので、特に、第1及び
第2EGR弁14,15の現リフト量h1,h2(h1
=h2)と目標再循環量Q0相当のリフト量h0との偏
差dAを算出すると共に、偏差dAが設定ずれ幅−c≦
dA≦bを上回る間は第1及び第2EGR弁14,15
を同時に偏差dAを打ち消す開弁量に制御し、偏差dA
が設定ずれ幅−c≦dA≦b内にある間は第1及び第2
EGR弁14,15の内の一方のみをその偏差dAを打
ち消すリフト量に制御するという機能を備える。以下、
このような装置の作動を図7のEGR制御ルーチン及び
図6の第1及び第2EGR弁14,15のリフト量特性
に沿って説明する。
In consideration of such a point, the exhaust gas recirculation system of FIG. 1 is provided with the first and second EGR passages r1 and r2, and the first and second EGR valves 14 and 15 of the same shape are provided therein, This is controlled by the controller 20 via the first switching valve 21 and the second switching valve 23. In particular, the current lift amounts h1 and h2 (h1 of the first and second EGR valves 14 and 15) are controlled.
= H2) and the lift amount h0 corresponding to the target recirculation amount Q0, the deviation dA is calculated, and the deviation dA is the set deviation width −c ≦.
While dA ≦ b is exceeded, the first and second EGR valves 14, 15
Is controlled to a valve opening amount that cancels the deviation dA at the same time.
Is within the setting deviation range −c ≦ dA ≦ b, the first and second
It has a function of controlling only one of the EGR valves 14 and 15 to a lift amount that cancels the deviation dA. Less than,
The operation of such a device will be described with reference to the EGR control routine of FIG. 7 and the lift amount characteristics of the first and second EGR valves 14 and 15 of FIG.

【0016】エンジン1及び排ガス再循環装置が駆動す
ると、まず、第1及び第2弁開度センサ18,19より
第1及び第2EGR弁14,15の開弁量相当のリフト
量h1,h2信号を取り込む。そして、ステップs2で
は現リフト量h1,h2よりこれらの内で小さい方の弁
14,15を設定しておく。次に、ステップs3ではレ
バー開度センサ16からのレバー開度θL信号やエンジ
ン回転センサ17からのエンジン回転速度Ne信号を取
り込むと共にこれらの値に相当する目標再循環量Q0相
当の開弁量であるリフト量h0(単一弁相当)を設定す
る。なお、この場合のリフト量h0は単一弁での値であ
り、単一弁と同一の流量を2個の同一EGR弁14,1
5を同時制御することによって得られる場合の目標再循
環量Q0相当の各リフト量はh0/2となる。
When the engine 1 and the exhaust gas recirculation device are driven, first, the lift amount h1 and h2 signals corresponding to the opening amounts of the first and second EGR valves 14 and 15 are output from the first and second valve opening degree sensors 18 and 19, respectively. Take in. Then, in step s2, the valves 14 and 15 that are smaller than the current lift amounts h1 and h2 are set. Next, at step s3, the lever opening θ L signal from the lever opening sensor 16 and the engine rotation speed Ne signal from the engine rotation sensor 17 are fetched and the valve opening amount corresponding to the target recirculation amount Q0 corresponding to these values is obtained. The lift amount h0 (corresponding to a single valve) is set. The lift amount h0 in this case is a value for a single valve, and the same flow rate as the single valve is used for the two identical EGR valves 14, 1.
Each lift amount corresponding to the target recirculation amount Q0 when obtained by simultaneously controlling 5 becomes h0 / 2.

【0017】ステップs4では第1及び第2EGR弁1
4,15の現再循環量Qn相当のリフト量h1,h2と
目標再循環量Q0相当のリフト量h0(単一弁相当)の
今回の偏差dAを求める。この後、ステップs5におい
て、今回の偏差dAが予め設定される許容幅−a≦dA
≦aに有るか否か判断し、Yesでリターンし、Noで
はステップs6、s7に進む。Yes、即ち、目標再循
環量Q0と現再循環量Qnの偏差が許容幅−a≦dA≦
a内の場合とは、目標再循環量Q0相当のリフト量h0
(単一弁相当)と2個の同一EGR弁14,15の各リ
フト量h1,h2の合計との差が極小さく、許容される
範囲内にある状態であり、これ以上の制御を不要とする
もので、図示しないメインルーチンにリターンする。
At step s4, the first and second EGR valves 1
The deviations dA of the lift amounts h1 and h2 corresponding to the current recirculation amounts Qn of 4, 15 and the lift amount h0 corresponding to the target recirculation amount Q0 (corresponding to a single valve) are obtained. After that, in step s5, the deviation dA of this time is set to a preset allowable width −a ≦ dA.
It is determined whether or not ≦ a, the process returns with Yes, and if No, the process proceeds to steps s6 and s7. Yes, that is, the deviation between the target recirculation amount Q0 and the current recirculation amount Qn is the allowable range −a ≦ dA ≦
In the case of a, the lift amount h0 corresponding to the target recirculation amount Q0
The difference between (the equivalent of a single valve) and the total of the lift amounts h1 and h2 of the two identical EGR valves 14 and 15 is extremely small and is within the allowable range, and no further control is required. Then, the process returns to the main routine (not shown).

【0018】他方、偏差dA<−aの場合にステップs
6に達すると、更に設定ずれ幅−c内に偏差dAが有る
か否か、即ち−c≦dA≦−aの判断が成され、設定ず
れ幅−c内ではステップs8に達し、設定ずれ幅−c以
上大きくずれている場合にはステップs9に進む。ステ
ップ8では、偏差dAが設定ずれ幅−c内にあるので、
第1及び第2EGR弁14,15の内の一方、ここで
は、ステップs2で求めた現リフト量h1,h2の内で
小さい方の弁(例えば今回は第1EGR弁14と仮定す
る)のみを駆動するとして、その偏差dAを打ち消すべ
く、リフト量h1(=h0−h2)に制御し、リターン
する。この場合、一方の第1EGR弁14のみを切換え
制御するので、単位リフト量Δh当たりの単位流量変化
分ΔQが比較的小さく、切換制御時の精度が良く、早期
に制御が収束する利点がある。
On the other hand, if the deviation dA <-a, the step s
When 6 is reached, it is further determined whether or not there is a deviation dA within the set deviation width -c, that is, -c≤dA≤-a is determined, and within the set deviation width -c, step s8 is reached and the set deviation width is reached. If the difference is more than -c, the process proceeds to step s9. At step 8, since the deviation dA is within the set deviation width -c,
Only one of the first and second EGR valves 14 and 15 is driven, here, the smaller valve (for example, the first EGR valve 14 is assumed this time) among the current lift amounts h1 and h2 obtained in step s2. However, in order to cancel the deviation dA, the lift amount h1 (= h0-h2) is controlled and the process returns. In this case, since only one of the first EGR valves 14 is switching-controlled, the unit flow rate change amount ΔQ per unit lift amount Δh is relatively small, the switching control accuracy is good, and the control converges early.

【0019】ステップs9では偏差dAが設定ずれ幅−
cを越えており、第1及び第2EGR弁14,15を同
時に駆動するとして、その偏差dAを打ち消すべく、リ
フト量{2×h1(orh2)=h0}を達成するよう
に両弁を同時に同量制御し、リターンする。この場合、
両EGR弁14,15を同時切換え制御するので、単位
リフト量Δh当たりの単位流量変化分が2×ΔQとなっ
て比較的大きく、応答性の良い切換制御ができる。他
方、偏差a<dAの場合にステップs7に達すると、更
に設定ずれ幅b内に偏差dAが有るか否か、即ちa≦d
A≦bの判断が成され、設定ずれ幅b内ではステップs
10に達し、設定ずれ幅b以上大きくずれている場合に
はステップs11に進む。
In step s9, the deviation dA is the set deviation width-
c and the first and second EGR valves 14 and 15 are driven at the same time, both valves are simultaneously driven to achieve the lift amount {2 × h1 (orh2) = h0} in order to cancel the deviation dA. Control the quantity and return. in this case,
Since both EGR valves 14 and 15 are controlled to be switched at the same time, the amount of change in the unit flow rate per unit lift amount Δh is 2 × ΔQ, which is relatively large, and switching control with good responsiveness can be performed. On the other hand, when step s7 is reached when the deviation a <dA, whether the deviation dA is further within the set deviation width b, that is, a ≦ d
The determination of A ≦ b is made, and step s
When it reaches 10, and it is largely deviated by the set deviation width b or more, the process proceeds to step s11.

【0020】ステップs10では、偏差dAが設定ずれ
幅b内にあるので、第1及び第2EGR弁14,15の
内の一方、ここでは、ステップs2で求めた現リフト量
h1,h2の内で小さい方の弁(例えば今回は第1EG
R弁14と仮定する)のみを駆動するとして、その偏差
dAを打ち消すべく、リフト量h1(=h0−h2)に
制御し、リターンする。この場合、一方の第1EGR弁
14のみを切換え制御するので、単位リフト量Δh当た
りの単位流量変化分ΔQが比較的小さく、切換制御時の
精度が良く、早期に制御が収束する利点がある。ステッ
プs11では偏差dAが設定ずれ幅bを越えており、第
1及び第2EGR弁14,15を同時に駆動するとし
て、その偏差dAを打ち消すべく、リフト量{2×h1
(orh2)=h0}を達成するように両弁を同時に同
量制御し、リターンする。この場合、両EGR弁14,
15を同時切換え制御するので、単位リフト量Δh当た
りの単位流量変化分が2×ΔQとなって比較的大きく、
応答性の良い切換制御ができる。
At step s10, since the deviation dA is within the set deviation width b, one of the first and second EGR valves 14 and 15, that is, the current lift amounts h1 and h2 obtained at step s2 here. The smaller valve (eg this time the first EG
Assuming that only the R valve 14 is driven, the lift amount h1 (= h0-h2) is controlled to cancel the deviation dA, and the process returns. In this case, since only one of the first EGR valves 14 is switching-controlled, the unit flow rate change amount ΔQ per unit lift amount Δh is relatively small, the switching control accuracy is good, and the control converges early. In step s11, the deviation dA exceeds the set deviation width b, and it is assumed that the first and second EGR valves 14 and 15 are simultaneously driven, and the lift amount {2 × h1 is set to cancel the deviation dA.
Both valves are simultaneously controlled by the same amount so as to achieve (orh2) = h0}, and the process returns. In this case, both EGR valves 14,
Since 15 is controlled to be switched at the same time, the unit flow rate change per unit lift amount Δh is 2 × ΔQ, which is relatively large.
Switching control with good responsiveness can be performed.

【0021】このように、目標再循環量Q0と現再循環
量Qnの偏差dAが設定ずれ幅−c≦dA≦b内の場合
は、第1及び第2EGR弁14,15の内、現リフト量
h1,h2の内で小さい方の弁のみを駆動し、その偏差
dAを打ち消すリフト量h1(=h0−h2)に制御す
るので、単位リフト量Δh当たりの単位流量変化分ΔQ
が比較的小さく、切換制御時の精度が良く、早期に制御
が収束し、しかも、現リフト量h1,h2の内で小さい
方の弁のみを駆動するので、両弁の相対的なリフト量の
相違を低減でき、同時駆動域に戻ったときの応答性が良
い。他方、偏差dAが設定ずれ幅−c≦dA≦bを越え
ている場合は、第1及び第2EGR弁14,15を同時
に駆動し、その偏差dAを打ち消すべく、リフト量{2
×h1(orh2)=h0}を達成するように両弁を同
時切換え制御するので、単位リフト量Δh当たりの単位
流量変化分が2×ΔQとなって比較的大きく、応答性の
良い切換制御ができる。
As described above, when the deviation dA between the target recirculation amount Q0 and the current recirculation amount Qn is within the set deviation range −c ≦ dA ≦ b, the current lift of the first and second EGR valves 14 and 15 is increased. Only the smaller valve of the amounts h1 and h2 is driven and the lift amount h1 (= h0-h2) that cancels the deviation dA is controlled, so that the unit flow rate change amount ΔQ per unit lift amount Δh is controlled.
Is relatively small, the accuracy of the switching control is good, the control converges early, and only the smaller valve of the current lift amounts h1 and h2 is driven, so the relative lift amount of both valves is increased. The difference can be reduced, and the responsiveness when returning to the simultaneous drive range is good. On the other hand, when the deviation dA exceeds the set deviation range −c ≦ dA ≦ b, the first and second EGR valves 14 and 15 are simultaneously driven, and the lift amount {2 is set to cancel the deviation dA.
Since both valves are controlled to be simultaneously switched so as to achieve × h1 (orh2) = h0}, the unit flow rate change per unit lift amount Δh becomes 2 × ΔQ, which is relatively large, and the switching control with good responsiveness is achieved. it can.

【0022】ここでは設定ずれ幅−c≦dA≦b内の場
合は、現リフト量h1,h2が小さい方の弁のみを駆動
したが、これの代えて、予め一方の弁に特定しておいて
も良い。更に、設定ずれ幅を−c≦dA≦bとしたが、
その他のずれ幅を設定することもできる。
In this case, if the set deviation range is within -c≤dA≤b, only the valve with the smaller current lift amount h1, h2 is driven, but instead of this, one valve is specified in advance. You may stay. Further, the setting deviation width is set to −c ≦ dA ≦ b,
Other shift widths can be set.

【0023】[0023]

【発明の効果】以上のように、本発明は第1及び第2流
量制御弁の各開弁量と目標再循環量相当の開弁量との偏
差を算出し、その偏差が設定ずれ幅外にあると第1及び
第2流量制御弁を偏差を打ち消す開弁量に同時に制御す
るので、応答性の良く目標のEGR量に近付けることが
でき、しかも、偏差が設定ずれ幅内に達していると第1
及び第2流量制御弁の内の一方のみを偏差を打ち消す開
弁量に制御するので、精度良く目標のEGR量に制御を
収束させることができるという利点がある。
As described above, according to the present invention, the deviation between each opening amount of the first and second flow control valves and the opening amount corresponding to the target recirculation amount is calculated, and the deviation is out of the set deviation range. Since the first and second flow rate control valves are simultaneously controlled to the valve opening amount that cancels the deviation, it is possible to approach the target EGR amount with good responsiveness, and the deviation is within the set deviation range. And the first
Since only one of the second flow rate control valve and the second flow rate control valve is controlled to the valve opening amount that cancels the deviation, there is an advantage that the control can be accurately converged to the target EGR amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排ガス再循環装置の概略全体構成図で
ある。
FIG. 1 is a schematic overall configuration diagram of an exhaust gas recirculation device of the present invention.

【図2】同一の第1及び第2EGR弁の拡大要部面図で
ある。
FIG. 2 is an enlarged main surface view of the same first and second EGR valves.

【図3】単一のEGR弁の拡大要部面図である。FIG. 3 is an enlarged main surface view of a single EGR valve.

【図4】図2及び図3のEGR弁の流量−リフト量の特
性線図である。
FIG. 4 is a characteristic diagram of flow rate-lift amount of the EGR valve of FIGS. 2 and 3.

【図5】図2及び図3のEGR弁の作動時の流量特性線
図である。
FIG. 5 is a flow rate characteristic diagram when the EGR valve of FIGS. 2 and 3 is in operation.

【図6】図1の装置で用いる一対のEGR弁の流量−リ
フト量の特性線図である。
6 is a characteristic diagram of flow rate-lift amount of a pair of EGR valves used in the apparatus of FIG.

【図7】図1の装置で用いるEGR制御ルーチンのフロ
ーチャートである。
FIG. 7 is a flowchart of an EGR control routine used in the device of FIG.

【図8】従来装置の要部断面図である。FIG. 8 is a sectional view of a main part of a conventional device.

【符号の説明】[Explanation of symbols]

10 エンジン 12 エンジン本体 14 第1EGR弁 15 第2EGR弁 16 レバー開度センサ 17 エンジン回転センサ 18 第1弁開度センサ 19 第2弁開度センサ 20 コントローラ 21 第1切換弁 23 第2切換弁 E 排気路 I 吸気路 θL レバー開度信号 Ne エンジン回転速度 Q0 目標再循環量 h0 開弁量 h1 開弁量 h2 開弁量 −a 設定ずれ幅 dA 偏差 b 設定ずれ幅10 engine 12 engine body 14 first EGR valve 15 second EGR valve 16 lever opening sensor 17 engine rotation sensor 18 first valve opening sensor 19 second valve opening sensor 20 controller 21 first switching valve 23 second switching valve E exhaust Path I Intake path θ L Lever opening signal Ne Engine speed Q0 Target recirculation amount h0 Valve opening amount h1 Valve opening amount h2 Valve opening amount -a Setting deviation width dA Deviation b Setting deviation width

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ディーゼルエンジンの排気路の排ガスを吸
気路に戻す第1及び第2排ガス再循環路と、上記第1排
ガス再循環路に設けられ同路の流路断面積を可変とする
第1流量制御弁と、上記第2排ガス再循環路に設けられ
同路の流路断面積を可変とする第2流量制御弁と、上記
ディーゼルエンジンの燃料噴射ポンプのレバー開度信号
を出力するレバー開度センサと、上記ディーゼルエンジ
ンのエンジン回転速度信号を出力するエンジン回転セン
サと、上記第1及び第2流量制御弁の開弁量信号を出力
する第1及び第2弁開度センサと、上記レバー開度信号
及び上記エンジン回転速度信号に基づき上記第1及び第
2流量制御弁の目標再循環量相当の各開弁量をそれぞれ
算出し、同各開弁量に上記第1及び第2流量制御弁を制
御する制御手段とを有し、上記制御手段は上記第1及び
第2流量制御弁の各開弁量と上記目標再循環量相当の開
弁量との各偏差をそれぞれ算出すると共に、それら各偏
差が設定ずれ幅を上回る間は上記第1及び第2流量制御
弁を同時に上記各偏差を打ち消す開弁量に制御し、上記
各偏差が上記設定ずれ幅内にある間は上記第1及び第2
流量制御弁の内の一方のみを上記偏差を打ち消す開弁量
に制御することを特徴とする排ガス再循環装置。
1. A first and a second exhaust gas recirculation passage for returning exhaust gas from an exhaust passage of a diesel engine to an intake passage, and a first passage provided in the first exhaust gas recirculation passage and having a variable passage sectional area. A first flow control valve, a second flow control valve that is provided in the second exhaust gas recirculation passage and has a variable flow passage cross-sectional area, and a lever that outputs a lever opening signal of the fuel injection pump of the diesel engine An opening degree sensor, an engine rotation sensor that outputs an engine rotation speed signal of the diesel engine, first and second valve opening degree sensors that output valve opening amount signals of the first and second flow rate control valves, and Based on the lever opening signal and the engine speed signal, the valve opening amounts corresponding to the target recirculation amounts of the first and second flow rate control valves are calculated, and the first and second flow rates are set to the respective valve opening amounts. Control means for controlling the control valve and The control means calculates respective deviations between the valve opening amounts of the first and second flow rate control valves and the valve opening amounts corresponding to the target recirculation amount, and the respective deviations set a deviation range. While exceeding, the first and second flow rate control valves are simultaneously controlled to the valve opening amount that cancels out the respective deviations, and while the respective deviations are within the set deviation width, the first and second deviations are controlled.
An exhaust gas recirculation device, wherein only one of the flow rate control valves is controlled to a valve opening amount that cancels the above deviation.
JP5146461A 1993-06-17 1993-06-17 Exhaust gas recirculation device Withdrawn JPH074321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146461A JPH074321A (en) 1993-06-17 1993-06-17 Exhaust gas recirculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146461A JPH074321A (en) 1993-06-17 1993-06-17 Exhaust gas recirculation device

Publications (1)

Publication Number Publication Date
JPH074321A true JPH074321A (en) 1995-01-10

Family

ID=15408166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146461A Withdrawn JPH074321A (en) 1993-06-17 1993-06-17 Exhaust gas recirculation device

Country Status (1)

Country Link
JP (1) JPH074321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097366A1 (en) * 2005-03-18 2006-09-21 Siemens Vdo Automotive Ag Method for recirculating a sub-stream of exhaust gas to an internal combustion engine of a motor vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097366A1 (en) * 2005-03-18 2006-09-21 Siemens Vdo Automotive Ag Method for recirculating a sub-stream of exhaust gas to an internal combustion engine of a motor vehicle

Similar Documents

Publication Publication Date Title
EP1106792B1 (en) Control apparatus for internal combustion engines
US4924840A (en) Fast response exhaust gas recirculation (EGR) system
US4416239A (en) Electronic control system for an internal combustion engine with correction means for correcting value determined by the control system with reference to atmospheric air pressure
EP1022442B1 (en) Intake-air quantity control apparatus for internal combustion engine with variable valve timing system
US20060225698A1 (en) Internal combustion engine, and control apparatus and method thereof
US4041913A (en) Exhaust gas recirculating system
EP1063407A1 (en) Internal combustion engine, control apparatus for an internal combustion engine, and its control method
US4257381A (en) Exhaust gas recirculation system controlled by a microcomputer for an internal combustion engine
JPS6158940A (en) Air-fuel ratio control device for engine
JPH074321A (en) Exhaust gas recirculation device
JPS6135372B2 (en)
JP3580558B2 (en) EGR device
JPH08270508A (en) Exhaust circulating device for internal combustion engine
JP2663296B2 (en) Engine exhaust gas recirculation control device
JPH08210195A (en) Exhaust rotary flow control device of diesel engine
JPH08218946A (en) Exhaust gas recirculation controller for diesel engine
JPH06294355A (en) Exhaust circulation control device for diesel engine
JPS6319709B2 (en)
JPH08165956A (en) Piston valve type carburetor
JPS61215426A (en) Exhaust gas recirculation device for diesel engine
JPH0713503B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3331418B2 (en) Engine air-fuel ratio control device
JPS6138341B2 (en)
JPH07217475A (en) Engine control device
JPH11153058A (en) Engine control device having idle intake pressure learning function

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905