JPH0742758B2 - Structural member - Google Patents

Structural member

Info

Publication number
JPH0742758B2
JPH0742758B2 JP34044189A JP34044189A JPH0742758B2 JP H0742758 B2 JPH0742758 B2 JP H0742758B2 JP 34044189 A JP34044189 A JP 34044189A JP 34044189 A JP34044189 A JP 34044189A JP H0742758 B2 JPH0742758 B2 JP H0742758B2
Authority
JP
Japan
Prior art keywords
structural
structural member
fragile portion
conical shell
fragile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34044189A
Other languages
Japanese (ja)
Other versions
JPH03199560A (en
Inventor
克彦 今井
Original Assignee
川鉄建材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川鉄建材工業株式会社 filed Critical 川鉄建材工業株式会社
Priority to JP34044189A priority Critical patent/JPH0742758B2/en
Publication of JPH03199560A publication Critical patent/JPH03199560A/en
Publication of JPH0742758B2 publication Critical patent/JPH0742758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は構造部材に係り、詳しくは、トラス構造やすじ
かい構造を形成するため節点部材に接合される長尺な鋼
管などの構造部材に関するものである。
Description: TECHNICAL FIELD The present invention relates to a structural member, and more particularly to a structural member such as a long steel pipe joined to a nodal member to form a truss structure or a stiff structure. It is a thing.

〔従来の技術〕[Conventional technology]

長尺な鋼管などの構造部材を多数使用して、大きい立体
構造物を構築する場合には、各構造部材の先端が節点部
材に結合され、トラス構造やすじかい構造を構成させる
ことが多い。例えば、実公昭42-22992号公報などには、
そのような構造に適用される構造部材やそれに採用され
る接合装置が提案されている。
When many large structural members such as long steel pipes are used to construct a large three-dimensional structure, the tip of each structural member is often connected to a node member to form a truss structure or a fine structure. For example, in Japanese Utility Model Publication No. 42-22992,
A structural member applied to such a structure and a joining device adopted for the structural member have been proposed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、地震などにより作用する動的外力によって耐
力が決定されるような構造物をトラスで設計しようとす
る場合、構造部材を構成する圧縮材が座屈してしまえば
耐力が急激に低下するので、一般に座屈に対して十分安
全となるような設計がなされる。その結果、座屈耐力以
下で設計するため動的荷重に対して弾性応答となり、塑
性変形を利用する場合に比べてかなり大きな設計応力を
想定しておく必要がある。
By the way, when a truss is used to design a structure whose yield strength is determined by a dynamic external force acting due to an earthquake, etc., if the compression material that constitutes the structural member buckles, the yield strength will drop sharply. Generally, it is designed to be sufficiently safe against buckling. As a result, since the design is performed under the buckling proof strength, the response becomes elastic to the dynamic load, and it is necessary to assume a considerably large design stress as compared with the case where the plastic deformation is used.

また、トラス構造と類似するすじかい構造においても、
圧縮すじかいを弾性領域に保持しようとすると、地震が
あった場合などにはすじかいに大きな応力が発生するこ
とになり、隣接する柱や梁にも非常に大きな応力が発生
して、設計実務上問題となることはしばしば経験すると
ころである。なお、圧縮すじかいの座屈後耐力を評価し
て設計する方法もあるが、座屈後の急激な耐力低下を適
切に評価して、構造物に所要の耐震性能を付与すること
は現在のところ容易ではない。
In addition, even in the squid structure similar to the truss structure,
If an attempt is made to keep the compression line in the elastic region, large stress will be generated in the line when an earthquake occurs, and extremely large stress will also be generated in the adjacent columns and beams. The above problems are often experienced. There is also a method of designing by evaluating the post-buckling strength of the compression strands, but it is the current practice to give the structure the required seismic performance by appropriately evaluating the rapid decrease in the yield strength after buckling. But it's not easy.

第3図(a),(b)は外力を受けた場合に、座屈を生
じない場合と、生じる場合の鋼構造物の変形を模式的に
示している。これらの場合、耐震性の優劣は変形によっ
て生じる消費エネルギ(図中の斜線部面積AおよびB)
の大小によって論じられる。消費エネルギは塑性変形す
る第3図(b)の方が大きいので、第3図(a)より耐
震性が高い。また、第3図(a)の方が弾性耐力が大き
いため地震による応答応力が大きくなるという悪循環が
生じる問題がある。従来、トラスあるいはすじかい構造
では、座屈が不可避であるため第3図(b)のような性
状を得ることが不可能と考えられていた。一方、第3図
(b)のような性状を与える構造形式としては、すじか
いなしのラーメン構造がある。しかし、横方向の変形が
すじかいあるいはトラス構造にくらべ非常に大きいの
で、大量の鋼材を投入しなければならない問題がある。
FIGS. 3 (a) and 3 (b) schematically show the deformation of the steel structure when buckling does not occur and when it does, when an external force is applied. In these cases, the superiority and inferiority of seismic resistance is the energy consumed by deformation (areas A and B in the shaded area in the figure)
Argued by the size of. Since the energy consumption is larger in FIG. 3 (b) which is plastically deformed, the earthquake resistance is higher than that in FIG. 3 (a). In addition, there is a problem that a vicious cycle occurs in which the response stress due to the earthquake increases because the elastic proof strength is larger in FIG. 3 (a). Conventionally, it was considered impossible to obtain the properties as shown in FIG. 3 (b) because the buckling is unavoidable in the truss or the flat structure. On the other hand, as a structural type that gives properties as shown in FIG. 3 (b), there is a streak-free ramen structure. However, there is a problem in that a large amount of steel material must be input because the lateral deformation is much larger than that of the truss structure.

本発明は上述の問題に鑑みなされたもので、その目的
は、構造主材とエンド部材とからなる構造部材にあっ
て、両側のエンド部材と、それに一体化されている構造
主材とに工夫を施して、その両端部近傍に脆弱部を設
け、さらに、エンド部材の円錐殻部が脆弱部と共に塑性
変形させることにより、第3図(b)の性状を得ようと
することである。そして、すじかいあるいはトラス構造
程度の少量の鋼材により経済性を高めると共に、大規模
地震時にはラーメン構造のような塑性変形による大きな
耐震性を付与することができる構造部材を提供すること
である。
The present invention has been made in view of the above problems, and an object thereof is to provide a structural member including a structural main material and an end member, and devise an end member on both sides and a structural main material integrated with the end member. By providing the fragile portions near both ends thereof, and further, the conical shell portion of the end member is plastically deformed together with the fragile portions so as to obtain the properties shown in FIG. 3 (b). It is also an object of the present invention to provide a structural member capable of enhancing the economical efficiency by using a small amount of steel material having a thin or truss structure, and imparting large earthquake resistance due to plastic deformation such as a rigid frame structure at the time of a large-scale earthquake.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、節点部材に結合するための接合ボルトが取り
付けられるエンド部材を、構造主材の端部に備えた構造
部材に適用される。
INDUSTRIAL APPLICABILITY The present invention is applied to a structural member provided with an end member to which a joining bolt for connecting to a node member is attached at an end portion of a structural main material.

その特徴とするところは、第1図を参照して、構造主材
3の端部には、構造部材1の座屈耐力より小さい外力で
塑性変形される円筒状の脆弱部5が設けられ、エンド部
材4は構造主材3の円筒状の脆弱部に連続して接続され
る円錐殻部4Aを有し、その円錐殻部4Aは脆弱部5と同程
度の耐力で共に塑性変形するように成形されていること
である。
As for the feature, referring to FIG. 1, a cylindrical fragile portion 5 which is plastically deformed by an external force smaller than the buckling resistance of the structural member 1 is provided at the end of the structural main member 3, The end member 4 has a conical shell portion 4A continuously connected to the cylindrical fragile portion of the structural main member 3, and the conical shell portion 4A is plastically deformed together with the fragile portion 5 with the same yield strength. Being molded.

その脆弱部5は、焼鈍して形成することができる。The fragile portion 5 can be formed by annealing.

または、その脆弱部5を、構造主材3の肉厚tよりも薄
い肉厚t1とすることによって形成することもできる〔第
1図参照〕。
Alternatively, the fragile portion 5 can be formed by making the wall thickness t 1 smaller than the wall thickness t of the structural main material 3 [see FIG. 1].

〔作用〕[Action]

構造部材1に圧縮力が作用するとエンド部材4と構造主
材3に座屈耐力が掛かる。一方、構造主材3の端部に
は、構造部材1の座屈耐力より小さい外力で塑性変形す
るような円筒状の脆弱部5が設けられている。さらに、
脆弱部5が塑性変形するとき、共に塑性変形するように
形成された円錐殻部4Aを有するエンド部材4が、構造主
材3の端部の脆弱部5に連続するように一体化されてい
る。したがって、構造部材1を構成する構造主材3の脆
弱部5が最初に降伏して局部座屈(いわゆる提灯座屈)
する〔第5図および第6図参照〕。一方、円錐殻部4Aを
有するエンド部材4にも外力が作用するので、外力方向
断面内応力(主応力)と、円周方向の応力(周方向応
力)とが発生し、主応力より大きくかつ全周に現れる周
方向応力は、円錐殻部4Aを外方へ開かせるように作用す
る。そして、円錐殻部4が脆弱部5と共に塑性変形する
ように成形されているので、エンド部材4は開花時の花
のように開きながら、脆弱部5の塑性変形を助長しなが
ら塑性変形する。その結果、地震による構造部材1の消
費エネルギは、座屈する構造主材3の脆弱部5やエンド
部材4の円錐殻部4Aで吸収されると共に、残余のエネル
ギは熱として外部に発散され、構造部材1で形成された
鋼構造物の倒壊などが未然に防止される。
When a compressive force is applied to the structural member 1, the end members 4 and the structural main member 3 have buckling resistance. On the other hand, at the end of the structural main material 3, a cylindrical fragile portion 5 that is plastically deformed by an external force smaller than the buckling resistance of the structural member 1 is provided. further,
When the fragile portion 5 is plastically deformed, the end member 4 having the conical shell portion 4A formed so as to be plastically deformed together is integrated so as to be continuous with the fragile portion 5 at the end of the structural main material 3. . Therefore, the fragile portion 5 of the main structural member 3 that constitutes the structural member 1 yields first and local buckling (so-called lantern buckling) occurs.
(See FIGS. 5 and 6). On the other hand, since the external force also acts on the end member 4 having the conical shell portion 4A, internal stress in the cross section (principal stress) in the external force direction and stress in the circumferential direction (circumferential stress) occur, and the stress is larger than the main stress. The circumferential stress that appears on the entire circumference acts so as to open the conical shell portion 4A outward. Since the conical shell part 4 is formed so as to be plastically deformed together with the fragile part 5, the end member 4 is plastically deformed while promoting the plastic deformation of the fragile part 5 while opening like a flower at the time of flowering. As a result, the energy consumption of the structural member 1 due to the earthquake is absorbed by the fragile portion 5 of the buckling structural main member 3 and the conical shell portion 4A of the end member 4, and the remaining energy is radiated to the outside as heat, The collapse of the steel structure formed of the member 1 is prevented in advance.

なお、脆弱部5は、構造主材3の端部を焼鈍することに
より形成してもよく〔第5図参照〕、さらには、構造主
材3の端部を、構造主材3の肉厚tよりも薄い肉厚t1
形成してもよい〔第6図参照〕。
The fragile portion 5 may be formed by annealing the end portion of the structural main material 3 [see FIG. 5]. It may be formed to have a wall thickness t 1 smaller than t [see FIG. 6].

〔発明の効果〕〔The invention's effect〕

本発明によれば、構造部材が座屈する前に構造主材の端
部に形成された円筒状の脆弱部およびそれに連続するエ
ンド部材の円錐殻部が降伏し、軸方向長さに対して大き
な比率で塑性変形するので、第3図(b)に示したよう
な外力P1の場合の中規模地震に対しては構造主材やエン
ド部材を座屈させないで、構造主材の脆弱部や円錐殻部
を弾性範囲内で変形させ、外力P2の場合の大規模地震時
には構造部材を座屈させないで構造主材の一部である脆
弱部およびエンド部材の円錐殻部を降伏させるように設
計できる。したがって、ラーメン構造のような塑性変形
による大きな耐震性を付与することができ、すじかいあ
るいはトラス構造程度の鋼材使用量に留めることができ
る。
According to the present invention, the cylindrical fragile portion formed at the end of the structural main member and the conical shell portion of the end member continuous to the cylindrical fragile portion before the structural member buckles yields and is large with respect to the axial length. Since plastic deformation occurs at a ratio, the structure main member and end members are not buckled against a medium-scale earthquake in the case of an external force P 1 as shown in FIG. The conical shell is deformed within the elastic range so that the structural member does not buckle during a large-scale earthquake when an external force is P 2 and the conical shell of the fragile part and the end member, which are part of the structural main material, yields. Can be designed. Therefore, it is possible to provide a large earthquake resistance due to plastic deformation such as a rigid frame structure, and it is possible to limit the amount of steel material used to that of a streak or truss structure.

〔実施例〕〔Example〕

以下、本発明をその実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples thereof.

第1図は構造部材とそれに取り付けられた接合装置の断
面図、第2図は構造部材の全体外観図で、長尺な構造部
材1の先端が、節点部材2に放射状〔本例では十字状〕
に接合されるようになっている。構造部材1はパイプな
どの構造主材3とその端部に溶接などで一体化されたエ
ンド部材4とからなり、構造主材3の端部における溶接
部に近接した位置から、軸方向に延びる一定長さlの円
筒状の脆弱部5が設けられている。
FIG. 1 is a cross-sectional view of a structural member and a joining device attached to it, and FIG. 2 is an overall external view of the structural member. The tip of a long structural member 1 is radially directed to a node member 2 (a cross shape in this example). ]
It is designed to be joined to. The structural member 1 is composed of a structural main material 3 such as a pipe and an end member 4 integrated at its end by welding or the like, and extends in the axial direction from a position at the end of the structural main material 3 close to the welded portion. A cylindrical fragile portion 5 having a constant length 1 is provided.

その脆弱部5は、構造主材3の肉厚tより薄い肉厚t1
全周にわたってめぐらせた長さlの薄肉パイプ体に形成
されている。構造部材1に、大地震時のような大きな外
力が作用するとき、脆弱部5や後述の円錐殻部4Aを除く
構造部材1が弾性範囲内にあるときに、脆弱部5および
円錐殻部4Aが最初に降伏するようになっている。なお、
脆弱部5は、上記の薄肉パイプ体と異なり、その肉厚t
を変えることなく脆弱部にする個所を焼鈍することによ
り形成されるものであってもよい〔第5図参照〕。要
は、脆弱部5に付与される耐力が、円錐殻部4Aを除く構
造部材1の耐力に比べて小さくされたものであればよ
い。
The fragile portion 5 is formed in a thin-walled pipe body having a length l in which a wall thickness t 1 thinner than the wall thickness t of the main structural member 3 is encircled over the entire circumference. When a large external force acts on the structural member 1 such as during a large earthquake, when the structural member 1 excluding the fragile portion 5 and the conical shell portion 4A described later is within the elastic range, the fragile portion 5 and the conical shell portion 4A are included. Is supposed to surrender first. In addition,
The fragile portion 5 is different in thickness t from the thin pipe body described above.
Alternatively, it may be formed by annealing a portion to be a fragile portion without changing the temperature [see FIG. 5]. The point is that the proof stress applied to the fragile portion 5 may be smaller than the proof stress of the structural member 1 excluding the conical shell portion 4A.

一方、エンド部材4は、構造主材3の脆弱部5に連なる
中空の円錐殻部4Aと後述するスリーブ体15に当接される
短い円筒部4Bとを有している。その円錐殻部4Aの肉厚T1
も、構造部材1の受ける外力よりも小さい外力で降伏し
て塑性変形するように選定されている。そして、エンド
部材4の円錐殻部4Aは、前述の構造主材3の脆弱部5が
塑性変形するとき、ともに塑性変形して脆弱部5の変形
を助長するようになっている。
On the other hand, the end member 4 has a hollow conical shell portion 4A continuous with the fragile portion 5 of the structural main member 3 and a short cylindrical portion 4B that abuts on a sleeve body 15 described later. Thickness of the conical shell 4A T 1
Is also selected so that it yields and plastically deforms with an external force smaller than the external force received by the structural member 1. The conical shell portion 4A of the end member 4 is also plastically deformed when the fragile portion 5 of the structural main material 3 is plastically deformed, thereby promoting the deformation of the fragile portion 5.

このエンド部材4を介して、構造主材3をねじ孔6の形
成された節点部材2に接合するための接合ボルト7が設
けられる。この接合ボルト7にはボス部8が形成される
と共に、その両側端部のねじ部7a,7bが逆ねじに形成さ
れている。ボス部8を境にして節点部材2側に形成され
るねじ部は例えば右ねじであり、構造部材1を節点部材
2に取り付ける場合、接合ボルト7の回転に伴って基部
側に取り付けられたアンカーナット9が構造部材1内で
外れないように、ねじ部7aが左ねじとなっている。
Through this end member 4, a joining bolt 7 for joining the structural main material 3 to the node member 2 having the screw hole 6 is provided. A boss portion 8 is formed on the joining bolt 7, and screw portions 7a and 7b at both end portions thereof are formed as reverse threads. The threaded portion formed on the nodal member 2 side with the boss 8 as a boundary is, for example, a right-hand thread, and when the structural member 1 is attached to the nodal member 2, the anchor attached to the base side as the joining bolt 7 rotates. The screw portion 7a is a left-hand thread so that the nut 9 does not come off in the structural member 1.

上記エンド部材4の円筒部4Bの内部には、接合ボルト7
の基部側に螺合されるアンカーナット9の径より大きい
径の雌ねじ10が形成されている。エンド部材4の雌ねじ
10には、スリーブナットとでも言うべき雄ねじ11の形成
された支持部材12が螺合され、ねじ部にネジロック剤な
どの接着材が塗布されて緩み止めが図られている。その
支持部材12の中心部には、接合ボルト7の軸部7mを挿通
して支持する摺動孔13が設けられている。
Inside the cylindrical portion 4B of the end member 4, the joining bolt 7
A female screw 10 having a diameter larger than the diameter of the anchor nut 9 to be screwed on the base side is formed. Female thread of end member 4
A support member 12 having a male screw 11, which should be called a sleeve nut, is screwed onto the screw 10, and an adhesive material such as a screw lock agent is applied to the screw portion to prevent loosening. At the center of the support member 12, there is provided a slide hole 13 for inserting and supporting the shaft portion 7m of the joining bolt 7.

上記の支持部材12の摺動孔13には予め接合ボルト7の軸
部7mが挿通され、かつ、アンカーナット9をねじ部7aに
螺合させた後、その一体化物が支持部材12を介してエン
ド部材4に取り付けられるようになっているが、その支
持部材12と接合ボルト7のボス部8との間にスプリング
14が介在されている。このスプリング14はボス部8がエ
ンド部材4方向へ大きく退避できるように縮む一方、ボ
ス部8を節点部材2方向へ付勢するものである。
The shaft portion 7m of the joining bolt 7 is previously inserted into the sliding hole 13 of the support member 12, and the anchor nut 9 is screwed into the screw portion 7a. Although it is attached to the end member 4, a spring is provided between the support member 12 and the boss portion 8 of the joining bolt 7.
14 are intervening. This spring 14 contracts the boss portion 8 so that it can be largely retracted in the direction of the end member 4, while urging the boss portion 8 in the direction of the node member 2.

接合ボルト7の外部には、そのボス部8の外面に係合し
て回転を伝達するスリーブ体15が設けられている。それ
は、例えば六角状に形成されたボス部8に嵌まる六角筒
体で、その内部はボス部8の軸方向摺動を可能にしてい
る。そして、そのスリーブ体15の外面には、ボス部8を
回転するための回転力作用部16が形成されている。
A sleeve body 15 that engages with the outer surface of the boss portion 8 and transmits rotation is provided outside the joining bolt 7. For example, it is a hexagonal tubular body that fits into the boss portion 8 formed in a hexagonal shape, and the inside thereof allows the boss portion 8 to slide in the axial direction. A rotating force acting portion 16 for rotating the boss portion 8 is formed on the outer surface of the sleeve body 15.

なお、本発明の特徴となる構造主材3の脆弱部5を長さ
lの薄肉に形成する場合、機械加工により所要の肉厚t1
に仕上げられる。また、エンド部材4の円錐殻部4Aを成
形する場合、その肉厚T1は、従来から採用されている肉
厚に比べて、薄くなるように機械加工で仕上げられる。
このように脆弱部5や円錐殻部4Aは、構造部材1が座屈
する外力よりも小さい外力で、脆弱部5や円錐殻部4Aが
塑性化されるようになっている。
When the fragile portion 5 of the structural main material 3 which is a feature of the present invention is formed to be thin with a length l, a required thickness t 1 is obtained by machining.
Is finished. In the case of forming a conical shell portion 4A of the end member 4, the thickness T 1, as compared with the wall thickness being employed conventionally finished by machining to be thinner.
As described above, the fragile portion 5 and the conical shell portion 4A are plasticized by the external force smaller than the external force that causes the structural member 1 to buckle.

肉厚t1,T1の決定は、構造主材3の耐力を有限要素法等
を用いて簡単に行うことができる。そして、実験および
解析の結果では、実用に供する寸法の構造主材3やエン
ド部材4との一体化物を製作し、それに圧縮力Fを作用
させると、第4図に示すように、エンド部材4の円錐殻
部4Aの断面における主応力Sと、周方向のリング応力T
とが発生して、リング応力Tが主応力Sの3倍ないし5
倍になることが判明している。
The wall thicknesses t 1 and T 1 can be easily determined by using the finite element method or the like for the proof stress of the structural main material 3. Then, according to the results of the experiment and the analysis, when an integrated product with the structural main material 3 and the end member 4 having a practical size is manufactured, and a compressive force F is applied to it, as shown in FIG. Principal stress S in the cross section of the conical shell part 4A and ring stress T in the circumferential direction
Occurs and the ring stress T is 3 to 5 times the main stress S.
It has been found to double.

このリング応力Tは、エンド部材4が朝顔の花のように
外方へ開こうとするのを、桶の箍のように拘束するもの
と考えられる。しかし、円錐殻部4Aの肉厚T1が脆弱部5
と共に塑性変形するように従来より薄くされていて、弱
められたリング応力Tは円錐殻部4Aの全周にわたって均
等に生じている。そこで、エンド部材4の円錐殻部4Aが
脆弱部5の塑性変形を助長するように、ともに塑性変形
すると、鋼材であるエンド部材4や構造主材3の加力方
向の変形量は非常に大きいものとなる。
It is considered that the ring stress T restrains the end member 4 from opening outward like a morning glory flower like a broom of a trough. However, the wall thickness T 1 of the conical shell portion 4A is the weak portion 5
The ring stress T, which is made thinner than the conventional one so as to be plastically deformed together, is evenly generated over the entire circumference of the conical shell portion 4A. Therefore, when the conical shell portion 4A of the end member 4 is plastically deformed together so as to promote the plastic deformation of the fragile portion 5, the deformation amount of the steel end member 4 and the structural main material 3 in the force application direction is very large. Will be things.

一方、構造主材3の端部の変形範囲を適切に限定するた
めには、その端部から管軸方向に、〔0.3〜1.5〕×管径
Dで算出される長さをとり、それをlとする。そのlの
間において、構造主材3の脆弱部5を構造主材3が本来
有している降伏耐力より小さい降伏耐力となるように適
切な薄い肉厚t1に加工する。そして、その加工で、脆弱
部5の塑性変形が適正に選定されることになる。このよ
うに構造主材3の端部の一部を薄くしておくと、上述し
た厚みを肉厚tのままにして焼鈍して形成された脆弱部
5〔第5図参照〕と同様に、第6図に示すように、この
薄い肉厚のパイプ体には局部座屈(いわゆる提灯座屈)
が生じる。この局部座屈の発生によって、構造部材1は
耐力を減ずることなく縮みながら、円錐殻部4Aと共に塑
性変形することが知見され、本発明の構造部材には極め
て都合がよい。そして、構造主材3の座屈耐力は、脆弱
部5や円錐殻部4Aの最大耐力より大きく設定されている
ので、構造部材1に作用して脆弱部5や円錐殻部4Aが座
屈するときにも、構造部材1の耐力を急激に減じるよう
なことはない。
On the other hand, in order to properly limit the deformation range of the end portion of the structural main material 3, the length calculated from [0.3 to 1.5] × tube diameter D is taken from the end portion in the pipe axis direction and Let l. During the period l, the fragile portion 5 of the structural main material 3 is processed to have an appropriate thin wall thickness t 1 so as to have a yield strength smaller than the yield strength originally possessed by the structural main material 3. Then, the plastic deformation of the fragile portion 5 is properly selected by the processing. When a part of the end portion of the structural main material 3 is thinned in this way, like the fragile portion 5 formed by annealing while maintaining the above-mentioned thickness t as the thickness [see FIG. 5], As shown in FIG. 6, this thin pipe body is locally buckled (so-called lantern buckling).
Occurs. It has been found that, due to the occurrence of this local buckling, the structural member 1 shrinks without reducing the yield strength and plastically deforms together with the conical shell portion 4A, which is extremely convenient for the structural member of the present invention. Since the buckling strength of the structural main member 3 is set to be larger than the maximum strength of the fragile portion 5 and the conical shell portion 4A, when the fragile portion 5 and the conical shell portion 4A are buckled by acting on the structural member 1. However, the yield strength of the structural member 1 is not sharply reduced.

第7図には、構造主材3の端部に脆弱部5が形成されて
いる構造部材1の最大耐力と、脆弱部5が形成されてい
ない構造部材の最大耐力とが示されている。前者は、座
屈変形を伴った実線で囲む大きい面積となり、後者の構
造部材では最大耐力が破線で囲む小さい面積となってい
る。そして、前者が大中規模の地震による動的荷重を受
けるとき、中規模の地震では第3図(b)に示す外力P1
程度の弾性範囲内では構造部材1を座屈させない変形に
留め、外力P2の大規模の地震では構造部材1を座屈させ
ないで脆弱部5や円錐殻部4Aを降伏させるように設計で
き、構造物の性状として理想的なものが得られる。
FIG. 7 shows the maximum proof stress of the structural member 1 in which the fragile portion 5 is formed at the end of the structural main material 3 and the maximum proof stress of the structural member in which the fragile portion 5 is not formed. The former has a large area surrounded by a solid line accompanied by buckling deformation, and the latter structural member has a small area with a maximum proof stress surrounded by a broken line. When the former is subjected to a dynamic load due to a large-to-medium-scale earthquake, the external force P 1 shown in FIG.
It can be designed so that the structural member 1 is deformed so as not to buckle within the elastic range of a degree, and the fragile portion 5 and the conical shell portion 4A are yielded without buckling the structural member 1 in a large-scale earthquake with an external force P 2 . An ideal structure can be obtained.

すなわち、地震により生じた力が構造部材1に圧縮力と
して作用しても、構造主材3の一部である脆弱部5や円
錐殻部4Aを除く構造部材1が座屈することがないので、
建物の致命的な倒れや破壊が免れる。なお、後者は、前
者よりも大きい外力が作用しても弾性範囲内で外力に対
して、一点鎖線の耐力P0で応答することができるが、一
度、座屈を生じると急激に耐力を減ずることが判る。
That is, even if the force generated by the earthquake acts on the structural member 1 as a compressive force, the structural member 1 excluding the fragile portion 5 and the conical shell portion 4A, which are part of the structural main material 3, does not buckle.
Avoid deadly collapses and destruction of buildings. The latter can respond to the external force within the elastic range with the proof stress P 0 of the one-dot chain line even if an external force larger than that of the former is applied, but once buckling occurs, the proof stress decreases sharply. I understand.

ちなみに、第7図に示す実線部や第3図(b)のような
構造形式として、すじかいなしのラーメン構造がある
が、横方向の変形がすじかいあるいはトラス構造に比べ
て非常に大きい。したがって、大量の鋼材を投入する必
要があり、一方、本発明によれば、少量の鋼材により対
応させることができ経済的である。しかも、大規模地震
時にはラーメン構造のような塑性変形による大きな耐震
性を付与することができる。
By the way, as a solid line part shown in FIG. 7 and a structural type as shown in FIG. 3 (b), there is a stirrup-free ramen structure, but the lateral deformation is much larger than the streak or truss structure. Therefore, it is necessary to add a large amount of steel material, while according to the present invention, a small amount of steel material can be used, which is economical. Moreover, when a large-scale earthquake occurs, it is possible to impart great earthquake resistance due to plastic deformation such as a rigid frame structure.

第8図には、構造部材1に作用する圧縮力の外力Pと構
造主材3の脆弱部5の変形量(mm)との関係が示されて
いるが、これは実験によって得られたものである。この
実験に用いられた試験体は、全てJISのSS41級の鋼材で
製作され、構造主材3は外径76.3mm,肉厚2.8mmの鋼管
で、一方、エンド部材の円錐殻部の外径は76.3mm、全長
27mmである。
FIG. 8 shows the relationship between the external force P of the compressive force acting on the structural member 1 and the deformation amount (mm) of the fragile portion 5 of the structural main material 3, which is obtained by experiments. Is. The test specimens used in this experiment were all made of JIS SS41 grade steel, and the structural main material 3 was a steel pipe with an outer diameter of 76.3 mm and a wall thickness of 2.8 mm, while the outer diameter of the conical shell part of the end member. Is 76.3 mm, full length
It is 27 mm.

なお、図示の変形曲線のうち、実線は実験値による曲線
で、一点鎖線は計算値による曲線であり、両者は、円錐
殻部4Aと共に塑性変形した構造主材3の端部における脆
弱部5の塑性変形量を取り出して示され、そのエンド部
材4の円錐殻部4Aの塑性変形で助長された塑性変形量は
20mmに達している。そして、荷重・変形曲線の形状は耐
力低下のない第3図(b)のようになっている。もちろ
ん、脆弱部5や円錐殻部4Aを除く構造部材1は座屈して
いない。このような脆弱部5が構造主材3の両端に存在
するので、構造部材1の一本当たり40mm程度の変形能力
があるということになり、大規模地震時に要求されるす
じかいあるいはトラス材の変形能力を発揮させることも
可能である。
In addition, among the deformation curves shown in the figure, the solid line is the curve based on the experimental value, and the alternate long and short dash line is the curve based on the calculated value. The plastic deformation amount is shown and shown, and the plastic deformation amount promoted by the plastic deformation of the conical shell portion 4A of the end member 4 is
It has reached 20 mm. The shape of the load / deformation curve is as shown in FIG. Of course, the structural member 1 other than the fragile portion 5 and the conical shell portion 4A is not buckled. Since such fragile portions 5 are present at both ends of the structural main material 3, it means that each structural member 1 has a deformation capacity of about 40 mm. It is also possible to exert the deformability.

上述の例のような40mmの塑性能力を有するすじかい構造
の場合、第9図に示すように、建物の層間変形角(tan
θ=δ/h)が約1/50という非常に大きな変形まで、圧
縮すじかい1の耐力を低下させないで有効に働かせるこ
とができる。すなわち、四本の構造部材1のうち、圧縮
力を受ける圧縮すじかい1は二本の1a,1aである。それ
故、脆弱部5の塑性変形量δは40×2または20×4=80
mmとなるが、その方向は圧縮すじかい1aの取付方向であ
る。水平方向の変位δを用いて、層間変形角はtanθ
=δ/hである。l1(水平辺)とL(二本の圧縮すじか
い1aの長さである斜辺)とh=l1/2(垂直辺)よりなる
直角三角形の場合、垂直辺hで他の二辺を表示すると、
水平辺は2hであり、斜辺長はL=▲√▼hとなる。ま
た、水平辺δと斜辺δと垂直辺よりなる直角三角形
は、上記直角三角形と相似であり、δ=δ×l/L=δ
×2h/▲√▼h=80mm×2/▲√▼=71.3mmとなる。
したがって、層間変形角はtanθ=δ/hであるから、
それに、δ=71.3mmとh=3,500mmを代入とすると、
δ/h=71.3/3,500=1/49≒1/50となる。
In the case of a ridge structure having a plastic capacity of 40 mm as in the above example, as shown in FIG.
Up to a very large deformation of θ = δ 1 / h) of about 1/50, it can work effectively without lowering the yield strength of the compression streak 1. That is, of the four structural members 1, the compression stripes 1 that receive a compressive force are two 1a, 1a. Therefore, the plastic deformation amount δ of the fragile part 5 is 40 × 2 or 20 × 4 = 80.
mm, which is the mounting direction of the compression thread 1a. Using the horizontal displacement δ 1 , the interlayer deformation angle is tan θ
= Δ 1 / h. l 1 (horizontal edges) and L case of a right triangle consisting of (a length of two of the compression brace 1a hypotenuse) and h = l 1/2 (vertical side), the other two sides by vertical side h When displayed,
The horizontal side is 2h, and the hypotenuse length is L = ▲ √ ▼ h. A right-angled triangle consisting of a horizontal side δ 1 , a hypotenuse δ, and a vertical side is similar to the above-mentioned right-angled triangle, and δ 1 = δ × l / L = δ
× 2h / ▲ √ ▼ h = 80mm × 2 / ▲ √ ▼ = 71.3mm.
Therefore, the interlayer deformation angle is tan θ = δ 1 / h,
Substituting δ 1 = 71.3 mm and h = 3,500 mm,
δ 1 /h=71.3/3,500=1/49≈1/50.

第10図のトラス構造の例では、AないしFの全六個所で
各々20mm変形すると、相対的回転角αは、20×6/2,800
=1/23となり、構造物の変形能力という観点から見れば
極めて大きな変形量が許容される。なお、トラスの高さ
は2,800mmとしている。
In the example of the truss structure shown in FIG. 10, when the six positions A to F are respectively deformed by 20 mm, the relative rotation angle α is 20 × 6 / 2,800.
= 1/23, which means that an extremely large amount of deformation is allowed from the viewpoint of the deformability of the structure. The height of the truss is set to 2,800 mm.

以上、第2図に示した構造主材3の脆弱部5の塑性変形
を助長する円錐殻部4Aと短い円筒部4Bを備えたエンド部
材4について説明したが、本発明は第11図に示したよう
な長い円筒部4Cを有するエンド部材44を備えた構造部材
1にも適用することができる。もっとも、節点部材2と
エンド部材4との間に介在される接合装置は第2図やス
プリングを有しない第12図に示したものに限らないし、
構造主材3に一体化されたエンド部材の厚みも、第12図
に示したように一定幅でないものでもよい。要するに、
構造部材1で最も小さい耐力に設定された脆弱部の塑性
変形を有効に助長することができる円錐殻部4Aを備えた
エンド部材であればよい。
The end member 4 including the conical shell portion 4A and the short cylindrical portion 4B that promotes plastic deformation of the fragile portion 5 of the structural main material 3 shown in FIG. 2 has been described above, but the present invention is shown in FIG. It can also be applied to the structural member 1 including the end member 44 having such a long cylindrical portion 4C. However, the joining device interposed between the node member 2 and the end member 4 is not limited to the one shown in FIG. 2 and FIG. 12 having no spring,
The thickness of the end member integrated with the structural main material 3 may not be a constant width as shown in FIG. in short,
Any end member may be used as long as it has the conical shell portion 4A that can effectively promote the plastic deformation of the fragile portion having the smallest yield strength in the structural member 1.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における構造部材とそれに取
り付けられた接合装置の断面図、第2図は構造部材の全
体外観図、第3図(a)は外力を受けた場合に座屈を伴
わない鋼構造物の変形模式図、第3図(b)は外力を受
けた場合に座屈を伴う鋼構造物の変形模式図、第4図は
圧縮力を受けたエンド部材に発生する応力の説明図、第
5図は焼鈍により形成された脆弱部を有する鋼製の構造
部材の圧縮塑性変形図、第6図は薄い肉厚で形成された
脆弱部を有する鋼製の構造部材の圧縮塑性変形図、第7
図は脆弱部を有する場合と有しない場合の構造部材の耐
力説明図、第8図は圧縮力と構造主材に形成された脆弱
部の変形量との関係曲線図、第9図は圧縮すじかい構造
における建物の層間変形角の説明図、第10図はトラス構
造における相対的回転角の説明図、第11図は異なる形状
のエンド部材を有する構造部材の端部断面図、第12図は
異なる形状のエンド部材と接合装置を含む構造部材の端
部断面図である。 1,1a…構造部材、2…節点部材、3…構造主材、4,44…
エンド部材、4A…円錐殻部、5…脆弱部、7…接合ボル
ト、t,t1…肉厚。
FIG. 1 is a sectional view of a structural member and a joining device attached thereto in one embodiment of the present invention, FIG. 2 is an overall external view of the structural member, and FIG. 3 (a) is a buckling when an external force is applied. Fig. 3 (b) is a deformation schematic diagram of a steel structure without buckling, Fig. 3 (b) is a deformation schematic diagram of a steel structure with buckling when an external force is applied, and Fig. 4 is generated in an end member subjected to a compressive force. FIG. 5 is an explanatory view of stress, FIG. 5 is a compression plastic deformation view of a steel structural member having a fragile portion formed by annealing, and FIG. 6 is a steel structural member having a fragile portion formed with a thin wall thickness. Compressive plastic deformation diagram, 7th
The figure is an illustration of proof stress of structural members with and without a fragile portion. Fig. 8 is a relationship curve diagram between the compressive force and the deformation amount of the fragile portion formed in the structural main material. Fig. 9 is a compression streak. FIG. 10 is an explanatory view of the interlayer deformation angle of the building in the paddle structure, FIG. 10 is an explanatory view of the relative rotation angle in the truss structure, FIG. 11 is an end sectional view of a structural member having end members of different shapes, and FIG. 12 is It is an end sectional view of a structural member including an end member and a joining device of different shapes. 1,1a ... Structural member, 2 ... Nodal member, 3 ... Structural main material, 4,44 ...
End member, 4A ... conical shell portion, 5 ... fragile part, 7 ... fastening bolt, t, t 1 ... thick.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】節点部材に結合するための接合ボルトが取
り付けられるエンド部材を、構造主材の端部に備えた構
造部材において、 上記構造主材の端部には、構造部材の座屈耐力より小さ
い外力で塑性変形される円筒状の脆弱部が設けられ、 上記エンド部材は上記構造主材の前記円筒状の脆弱部に
連続して接続される円錐殻部を有し、その円錐殻部が上
記脆弱部と同程度の耐力で塑性変形するように成形さ
れ、円錐殻部と脆弱部とが共に塑性変形するようにした
ことを特徴とする構造部材。
Claim: What is claimed is: 1. A structural member comprising an end member to which a joining bolt for connecting to a node member is attached, at an end portion of a structural main material, wherein the end portion of the structural main material has a buckling resistance of the structural member. A cylindrical fragile portion that is plastically deformed by a smaller external force is provided, and the end member has a conical shell portion that is continuously connected to the cylindrical fragile portion of the structural main material. Is formed so as to be plastically deformed with a yield strength comparable to that of the fragile portion, and the conical shell portion and the fragile portion are both plastically deformed.
【請求項2】前記脆弱部は、焼鈍することにより形成さ
れていることを特徴とする請求項1に記載の構造部材。
2. The structural member according to claim 1, wherein the fragile portion is formed by annealing.
【請求項3】前記脆弱部は、構造主材の肉厚よりも薄い
肉厚に形成されていることを特徴とする請求項1に記載
の構造部材。
3. The structural member according to claim 1, wherein the fragile portion is formed with a thickness smaller than that of the main structural member.
JP34044189A 1989-12-28 1989-12-28 Structural member Expired - Lifetime JPH0742758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34044189A JPH0742758B2 (en) 1989-12-28 1989-12-28 Structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34044189A JPH0742758B2 (en) 1989-12-28 1989-12-28 Structural member

Publications (2)

Publication Number Publication Date
JPH03199560A JPH03199560A (en) 1991-08-30
JPH0742758B2 true JPH0742758B2 (en) 1995-05-10

Family

ID=18336994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34044189A Expired - Lifetime JPH0742758B2 (en) 1989-12-28 1989-12-28 Structural member

Country Status (1)

Country Link
JP (1) JPH0742758B2 (en)

Also Published As

Publication number Publication date
JPH03199560A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
US4901486A (en) Elasto-plastic damper
JP2671904B2 (en) Bolted elasto-plastic dampers and building joints
US4646504A (en) Fastening member for reticulated structure
CN105239674B (en) Self-resetting beam column of steel structure shock-resistant node based on marmem cup spring group
US20160237681A1 (en) Column base structure
JPS6248019B2 (en)
CN205475686U (en) Hollow hub node of assembled
CN110863578A (en) Novel U-shaped steel plate energy consumption support
JPH0742758B2 (en) Structural member
JP2515253Y2 (en) Joining device for structural members with stress limiting element
CN108625534B (en) Knurling formula is planted muscle anchor head device
JP3702818B2 (en) Double steel pipe type earthquake-resistant structural material
JPH0473497B2 (en)
CN109057247B (en) Connecting structure of decorative column and beam body structure and construction method thereof
JPH03199542A (en) Diagonal bracing member for steel structure
JP2004011209A (en) Yield predetermined-region surrounding structure of screw reinforcement and material-end fixing structure of component in reinforced concrete building
CN106567594B (en) A kind of end has the buckling induction support of circumferential screw type induction unit
JPH08128115A (en) Spherical joint for space truss and member-jointed space truss structure using the joint
US3786548A (en) Method of making prestressed beams
JP2006322158A (en) Earthquake resistant damper, and earthquake resistant structure of wooden skeleton
JP2000045395A (en) Connection type single pipe type structural member
JP3256026B2 (en) Elasto-plastic energy absorbing frame
RU61311U1 (en) ASSEMBLY ROD ELEMENT
JPH10231583A (en) Deformed steel bar reinforcement provided with metal extended anchor, and manufacture thereof
CN106639465A (en) Energy-consuming type buckling induction support with variable-angle four-fold induction unit at end

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100510