JPH0742537B2 - Heat resistant aluminum alloy - Google Patents

Heat resistant aluminum alloy

Info

Publication number
JPH0742537B2
JPH0742537B2 JP7394286A JP7394286A JPH0742537B2 JP H0742537 B2 JPH0742537 B2 JP H0742537B2 JP 7394286 A JP7394286 A JP 7394286A JP 7394286 A JP7394286 A JP 7394286A JP H0742537 B2 JPH0742537 B2 JP H0742537B2
Authority
JP
Japan
Prior art keywords
less
alloy
aluminum alloy
phase particles
intermetallic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7394286A
Other languages
Japanese (ja)
Other versions
JPS62230943A (en
Inventor
達史 黒淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7394286A priority Critical patent/JPH0742537B2/en
Publication of JPS62230943A publication Critical patent/JPS62230943A/en
Publication of JPH0742537B2 publication Critical patent/JPH0742537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱アルミニウム合金に関する。TECHNICAL FIELD The present invention relates to a heat-resistant aluminum alloy.

〔従来の技術〕[Conventional technology]

現在工業的に利用されている耐熱アルミニウム合金とし
ては展伸用合金としてJIS 2218合金、鋳物用としてAC8
A、AC8B及びAC8C合金がある。また特殊な合金としてS.
A.P.(AlとAl2O3粒子との複合材;Sintered Aluminum Po
wder Productの略)及びAl−8%Fe系急冷粉末合金があ
る。
JIS 2218 alloy is used as a wrought alloy and AC8 is used as a casting for the heat-resistant aluminum alloy currently industrially used.
There are A, AC8B and AC8C alloys. Also as a special alloy S.
AP (Composite material of Al and Al 2 O 3 particles; Sintered Aluminum Po
(abbreviation of wder Product) and Al-8% Fe-based quenched powder alloy.

〔発明が解決しようとする問題点〕 上記各合金のうちJIS 2218合金並びにAC8A、AC8B及びAC
8C合金は200℃以上での強度の低下が大きく、上限使用
温度に制限がある。一方S.A.P.及びAl−8%Fe系粉末合
金は、200℃以上での強度は改善されているが、複雑な
工程を経て製造されるためコストが高く、実用に供する
のに難点がある。
[Problems to be solved by the invention] Of the above alloys, JIS 2218 alloy and AC8A, AC8B and AC
The 8C alloy has a large decrease in strength at 200 ° C or higher, and there is a limit on the maximum operating temperature. On the other hand, SAP and Al-8% Fe-based powder alloys have improved strength at 200 ° C. or higher, but since they are manufactured through complicated steps, they are costly and difficult to put into practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、200℃以上での高温強度がJIS 2218合
金に代表される従来合金よりも優れ、かつ通常の鋳造法
及び加工方法を使用して比較的安価に製造することの出
来る、耐熱アルミニウム合金を提供することにある。
The object of the present invention is that the high-temperature strength at 200 ° C. or higher is superior to conventional alloys represented by JIS 2218 alloy, and can be manufactured at a relatively low cost by using ordinary casting methods and processing methods. To provide an aluminum alloy.

高温強度に優れたアルミニウム合金を得る基本的方法と
しては、マトリクスを固溶強化すること、マトリクス中
に金属間相粒子を微細に分散させ分散強化すること、結
晶粒の微細化と粒界への不溶性金属間相粒子の微細析出
による粒界強化等が考えられる。本発明者等は上記の強
化機構を考慮しつつその具体的実現のために種々の検討
を行なつた結果、本発明に到達した。
The basic methods for obtaining an aluminum alloy with excellent high-temperature strength are to strengthen the matrix by solid solution, finely disperse and strengthen the intermetallic phase particles in the matrix, refine the crystal grains, and Grain boundary strengthening due to fine precipitation of insoluble intermetallic phase particles is considered. The present inventors have arrived at the present invention as a result of various studies for the concrete realization of the above-mentioned strengthening mechanism.

即ち本発明の要旨は、重量でNi3〜12%及びMn0.3〜3%
と、Cr0.03〜1%、Zr0.03〜0.7%、V0.03〜0.7%、Co
0.03〜1%、Fe0.08〜1%及びTi0.02〜0.5%からなる
群から選ばれる少なくとも1種を合計で0.02〜2%と、
残余のアルミニウム並びに2%以下の不純物とからな
り、その鋳塊中に存在する金属間相粒子の平均粒径が2
μm以下でかつ粒子間距離が5μm以下であることを特
徴とする耐熱アルミニウム合金、に存する。
That is, the gist of the present invention is that Ni3-12% and Mn0.3-3% by weight.
And Cr0.03-1%, Zr0.03-0.7%, V0.03-0.7%, Co
0.03 to 1%, Fe 0.08 to 1%, and Ti 0.02 to 0.5%, and at least one selected from the group consisting of 0.02 to 2% in total,
The average particle size of the intermetallic phase particles, which consist of the remaining aluminum and impurities of 2% or less and are present in the ingot, is 2
The heat-resistant aluminum alloy is characterized in that the inter-particle distance is 5 μm or less and the inter-particle distance is 5 μm or less.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

アルミニウム中にNi、Mn、Cr、Zr、V、Co、Fe、Ti等の
遷移金属を含む合金を100℃/秒以上の冷却速度で急冷
凝固させると過冷却を生じ、凝固組織は、 微細結晶粒又は網状セル組織、 金属間相粒子の微細化、及び 準安定過飽和固溶体の生成、 の諸特徴を有することは知られている(第4回軽金属学
会シンポジウム、「アルミニウム遷移金属合金の急冷凝
固」(市川理衛))。
When an alloy containing a transition metal such as Ni, Mn, Cr, Zr, V, Co, Fe, and Ti in aluminum is rapidly solidified at a cooling rate of 100 ° C / sec or more, supercooling occurs, and the solidification structure is a fine crystal. It is known to have various features such as grain or network cell structure, refinement of intermetallic phase particles, and formation of metastable supersaturated solid solution (The 4th Symposium of the Japan Institute of Light Metals, "Rapid solidification of aluminum transition metal alloys") (Rie Ichikawa)).

本発明者は、上記の遷移金属を特定量含有し、かつ特定
の組織を有するアルミニウム合金が優れた特性を有する
ことを見出したのである。
The present inventor has found that an aluminum alloy containing the above-mentioned transition metal in a specific amount and having a specific structure has excellent properties.

上記の遷移金属の中で、Niは100〜500℃/秒の比較的小
さい凝固速度で、実質的にAl3Niからなる平均粒径が2
μm以下の微細な金属間相粒子を比較的多量に形成し、
高温度での分散強化に寄与する。そしてその必要な含有
量は3〜12%、好ましくは5〜10%である。Niが3%よ
り少ないと金属間相粒子の分散密度が小さく、粒子間距
離が5μmよりも大きくなり、目的とする高温強度が得
られず、また12%より多いと2μm以上の粗大な金属間
相粒子を形成し、高温強度の向上に寄与しない上に靭性
を低下させる。
Among the above transition metals, Ni has a relatively low solidification rate of 100 to 500 ° C./sec and an average particle size of Al 3 Ni of 2 or less.
forming a relatively large amount of fine intermetallic phase particles of μm or less,
Contributes to dispersion strengthening at high temperatures. And the required content is 3 to 12%, preferably 5 to 10%. If the Ni content is less than 3%, the dispersion density of the intermetallic phase particles will be small, and the interparticle distance will be greater than 5 μm, making it impossible to obtain the desired high-temperature strength. It forms phase particles, does not contribute to the improvement of high temperature strength, and reduces toughness.

またMnは100〜500℃/秒の比較的小さい凝固速度で比較
的多量の過飽和固溶体を形成し、高温での固溶強化に寄
与すると共に微細結晶粒又は網状セル組織を形成し、高
温での粒界強化に寄与すること及び一部は実質的にAl6M
nなる2μm以下の微細な金属間相粒子を形成し、高温
での分散強化に寄与する。そしてその必要な含有量は0.
3〜3%、好ましくは0.5〜2.5%である。Mnが0.3%より
少ないと主に固溶強化及び粒界強化への寄与が小さいこ
とにより目的とする高温強度が得られず、また3%より
多いと2μm以上の粗大な金属間相粒子を形成し、高温
強度の向上に寄与しない上に靭性を低下させる。
Further, Mn forms a relatively large amount of supersaturated solid solution at a relatively low solidification rate of 100 to 500 ° C / sec, contributes to solid solution strengthening at high temperature, and forms fine crystal grains or reticulated cell structure. Contributes to grain boundary strengthening, and in part is essentially Al 6 M
It forms fine intermetallic phase particles of 2 μm or less, which is n, and contributes to dispersion strengthening at high temperature. And the required content is 0.
It is 3 to 3%, preferably 0.5 to 2.5%. When Mn is less than 0.3%, the intended high temperature strength cannot be obtained mainly due to its small contribution to solid solution strengthening and grain boundary strengthening, and when it is more than 3%, coarse intermetallic phase particles of 2 μm or more are formed. However, it does not contribute to the improvement of high temperature strength and also reduces toughness.

さらにCr、Zr、V、Co、Fe及びTiは、高温強度に対しMn
とほぼ同様の寄与をなし、100〜500℃/秒の比較的低い
冷却速度でこれらの成分の少量の添加が微細結晶粒又は
網状セル組織を形成し、粒界強化すると共に再結晶温度
を高めて高温強度の向上に寄与する。これらの成分の過
飽和固溶度は小さい上、添加量が多すぎると実質的にAl
4Cr、Al3Zr、Al3V、Al9Co2、Al6Fe、Al3Ti及びこれらの
組合せからなる金属間相粒子は比較的粗大になり易く、
また添加量が少なすぎると目的とする高温強度が得られ
ないので、成分添加量は下記の範囲にあることが必要で
ある。即ち、Crは0.03〜1%、好ましくは0.05〜0.7
%、Zrは0.03〜0.7%、好ましくは0.05〜0.5%、Vは0.
03〜0.7%、好ましくは0.05〜0.5%、Coは0.03〜1%、
好ましくは0.05〜0.7%、Feは0.08〜1%、好ましくは
0.1〜0.8%、またTiは0.02〜0.5%、好ましくは0.05〜
0.3%の範囲から選ばれる。これらの成分は2種以上を
添加してもよく、その場合の合計含有量は0.02〜2%、
好ましくは0.05〜1.5%の範囲である。
Furthermore, Cr, Zr, V, Co, Fe and Ti are Mn against high temperature strength.
With a relatively low cooling rate of 100 to 500 ° C / sec, addition of a small amount of these components forms fine crystal grains or reticulated cell structure, strengthens the grain boundaries and increases the recrystallization temperature. Contributes to the improvement of high temperature strength. The supersaturated solid solubility of these components is small, and if the addition amount is too large, Al
Intermetallic phase particles composed of 4 Cr, Al 3 Zr, Al 3 V, Al 9 Co 2 , Al 6 Fe, Al 3 Ti and combinations thereof are likely to be relatively coarse,
If the added amount is too small, the desired high temperature strength cannot be obtained. Therefore, the added amount of the components must be within the following range. That is, Cr is 0.03 to 1%, preferably 0.05 to 0.7.
%, Zr is 0.03 to 0.7%, preferably 0.05 to 0.5%, and V is 0.
03-0.7%, preferably 0.05-0.5%, Co 0.03-1%,
Preferably 0.05-0.7%, Fe 0.08-1%, preferably
0.1-0.8%, Ti 0.02-0.5%, preferably 0.05-
It is selected from the range of 0.3%. Two or more of these components may be added, in which case the total content is 0.02 to 2%,
It is preferably in the range of 0.05 to 1.5%.

上記のNi及びMnとCr、Zr、V、Co、Fe及びTiの群から選
ばれる少なくとも1種との合金成分は、目的とする高温
強度を得るために不可欠な必須添加成分であるが、この
他に任意添加成分及び不純物として合計2%までの含有
が許される。具体的に個々の成分について例示すれば、
Cu1.2%以下、Mg1.2%以下、Zn1.2%以下、Si1%以下、
B0.3%以下等であり、これらの成分は単独で又は複合し
てマトリクスを強化し、靭性を向上させる等の効果を有
するが、多すぎると凝固時にデンドライトを形成して金
属間相粒子の分散を粗くし高温強度を低下させるので、
合計で2%以下とする必要がある。
The above-mentioned alloying components of Ni and Mn and at least one selected from the group consisting of Cr, Zr, V, Co, Fe and Ti are indispensable essential components for obtaining the desired high temperature strength. In addition, a total of up to 2% is allowed as an optional additive component and impurities. Specifically, for each component,
Cu1.2% or less, Mg1.2% or less, Zn1.2% or less, Si1% or less,
B 0.3% or less, these components alone or in combination to strengthen the matrix, has the effect of improving the toughness, etc., but if too much, it forms dendrites during solidification to form intermetallic phase particles. Since it disperses coarsely and reduces high temperature strength,
It is necessary to make it 2% or less in total.

目的とする高温強度を得るためには、上記の合金成分の
種類及び添加量の適当な選択のほかに、合金のマトリク
ス中に存在する金属間相粒子の大きさと分散度の制御が
重要な要素であり、粒子径は2μm以下、好ましくは1
μm以下で、粒子間距離は5μm以下、好ましくは3μ
m以下とする必要がある。
In order to obtain the desired high-temperature strength, it is important to control the size and dispersity of intermetallic particles existing in the matrix of the alloy, in addition to the appropriate selection of the type and addition amount of the alloy components described above. And the particle size is 2 μm or less, preferably 1
The distance between particles is 5 μm or less, preferably 3 μm or less.
It must be m or less.

鋳塊中における上記のような組織の形成は、通常、凝固
時の冷却速度を100℃/秒以上とすることにより達成さ
れる。その実際的な鋳造法としては、鋳塊の厚さが10mm
以下のダイカスト鋳造、双ロール法又は単ロール法によ
る直接鋳造、低圧鋳造、溶湯鍛造、アトマイズ鋳造及び
その他の急冷鋳造法等の汎用の方法を使用することが出
来、製造コストは比較的安価である。
The formation of the above-described structure in the ingot is usually achieved by setting the cooling rate during solidification to 100 ° C / sec or more. As a practical casting method, the thickness of the ingot is 10 mm
The following die-cast casting, direct casting by twin roll method or single roll method, low pressure casting, melt forging, atomizing casting and other general-purpose methods such as quench casting can be used, and the manufacturing cost is relatively low. .

本合金は鋳物用合金としても、また展伸用合金としても
使用出来る。熱処理条件としては最高加熱温度が通常55
0℃以下、好ましくは450℃以下となるようにすれば、金
属間相粒子の粗大成長が抑制され、高温強度を実質的に
損なうことなく使用出来るので好ましい。
The alloy can be used both as a casting alloy and as a wrought alloy. The maximum heating temperature is usually 55 for heat treatment conditions.
When the temperature is 0 ° C. or less, preferably 450 ° C. or less, coarse growth of intermetallic phase particles is suppressed, and it can be used without substantially impairing the high temperature strength, which is preferable.

〔実施例〕〔Example〕

次に実施例によつて本発明の態様をより具体的に説明す
るが、本発明は、その要旨を越えない限り、以下の実施
例によつて限定されるものではない。
Next, the embodiments of the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples as long as the gist thereof is not exceeded.

実施例1 表1に示す組成の合金を高周波溶解炉にて均一相となる
よう溶解して得られた融液を、水冷した双ロール間に給
湯し、厚さ5.5mm、幅70mmの鋳造板を作成した(図1に
鋳造装置の概要を示す)。融態からの冷却速度は250℃
/秒であつた。
Example 1 An alloy having the composition shown in Table 1 was melted in a high-frequency melting furnace so as to form a uniform phase, and the melt was supplied between water-cooled twin rolls to form a cast plate having a thickness of 5.5 mm and a width of 70 mm. Was prepared (Fig. 1 shows an outline of the casting apparatus). Cooling rate from molten state is 250 ℃
/ Sec.

該鋳造板を高温強度測定のための所定の温度300℃及び4
00℃で24時間予備加熱した後、JIS 13号B試験片形状に
切削して高温引張り試験に供した。高温引張り試験は、
所定の温度である300℃と400℃に30分間加熱した後、5m
m/分の速度で引張り、破断強度と伸びを測定した。その
結果を表2に示す。本発明合金G〜Qは比較合金A〜F
に比べて優れた高温強度を示した。
Predetermined temperature of the cast plate for high temperature strength measurement 300 ℃ and 4
After preheating at 00 ° C. for 24 hours, it was cut into a JIS No. 13B test piece shape and subjected to a high temperature tensile test. The high temperature tensile test
After heating to the prescribed temperature of 300 ℃ and 400 ℃ for 30 minutes, 5m
Tensile at a speed of m / min, breaking strength and elongation were measured. The results are shown in Table 2. Invention alloys G to Q are comparative alloys A to F
Showed excellent high-temperature strength compared to.

実施例2 表1に示す合金Hについて、凝固速度を250℃/秒、100
℃/秒及び50℃/秒の3条件で鋳造を行ない、金属間相
粒子の粒径と粒子間距離を変化させ高温強度との関係を
調べた。その結果を表3に示す。金属間相粒子の粒径が
2μmを越え、粒子間距離が5μmを越えると高温強度
の低下が著しかつた。
Example 2 For alloy H shown in Table 1, solidification rate was 250 ° C./sec, 100
Casting was performed under three conditions of ° C / sec and 50 ° C / sec, and the relationship between high temperature strength was investigated by changing the particle size of intermetallic phase particles and the distance between particles. The results are shown in Table 3. When the particle size of the intermetallic phase particles exceeded 2 μm and the interparticle distance exceeded 5 μm, the high temperature strength was markedly reduced.

〔発明の効果〕 本発明に係るAl−Ni−Mn系合金は、200℃以上での高温
強度が優れているので、ピストン部品、シリンダー部
品、コネクテイングロツドまたはガスタービンのインペ
ラー等輸送機用耐熱材として、またホツトプレート板、
遮熱板等耐熱性の要求される部品の用途に好適である。
[Advantages of the Invention] The Al-Ni-Mn alloy according to the present invention has excellent high-temperature strength at 200 ° C or higher, so that piston parts, cylinder parts, connecttein rods, gas turbine impellers, etc. As a heat resistant material, hot plate plate,
It is suitable for applications such as heat shields that require heat resistance.

【図面の簡単な説明】[Brief description of drawings]

図1は実施例で使用した双ロール法の直接鋳造装置の概
略を示す模式的断面図である。 1,1′:内部水冷ロール、2:湯溜 3:溶湯、4:鋳造板
FIG. 1 is a schematic cross-sectional view showing the outline of a twin-roll method direct casting apparatus used in Examples. 1,1 ′: Internal water cooling roll, 2: Hot water pool 3: Molten metal, 4: Cast plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量でNi3〜12%及びMn0.3〜3%と、Cr0.
03〜1%、Zr0.03〜0.7%、V0.03〜0.7%、Co0.03〜1
%、Fe0.08〜1%及びTi0.02〜0.5%からなる群から選
ばれる少なくとも1種を合計で0.02〜2%と、残余のア
ルミニウム並びに2%以下の不純物とからなり、その鋳
塊中に存在する金属間相粒子の平均粒径が2μm以下で
かつ粒子間距離が5μm以下であることを特徴とする耐
熱アルミニウム合金。
1. Ni3 to 12% and Mn 0.3 to 3% by weight, and Cr0.
03-1%, Zr0.03-0.7%, V0.03-0.7%, Co0.03-1
%, Fe 0.08 to 1%, and Ti 0.02 to 0.5%, and at least one selected from the group consisting of 0.02 to 2% in total and the remaining aluminum and impurities of 2% or less in the ingot. A heat-resistant aluminum alloy, characterized in that the intermetallic phase particles present in 2) have an average particle size of 2 μm or less and an interparticle distance of 5 μm or less.
【請求項2】重量でNi3〜12%及びMn0.3〜3%と、Cr0.
03〜1%、Zr0.03〜0.7%、V0.03〜0.7%、Co0.03〜1
%、Fe0.08〜1%及びTi0.02〜0.5%からなる群から選
ばれる少なくとも1種を合計で0.02〜2%と、残余のア
ルミニウム並びにCu1.2%以下、Mg1.2%以下、Zn1.2%
以下、Si1%以下及びB0.3%以下からなる群から選ばれ
る少なくとも1種及び不純物を合計で2%以下含んでな
り、その鋳塊中に存在する金属間相粒子の平均粒径が2
μm以下でかつ粒子間距離が5μm以下であることを特
徴とする耐熱アルミニウム合金。
2. Ni3-12% and Mn0.3-3% by weight and Cr0.
03-1%, Zr0.03-0.7%, V0.03-0.7%, Co0.03-1
%, Fe 0.08 to 1%, and Ti 0.02 to 0.5%, and at least one selected from the group consisting of 0.02 to 2% in total, the balance of aluminum and Cu 1.2% or less, Mg 1.2% or less, Zn1 .2%
Hereafter, at least one selected from the group consisting of Si 1% or less and B 0.3% or less and a total of 2% or less of impurities are contained, and the average particle diameter of the intermetallic phase particles present in the ingot is 2 or less.
A heat-resistant aluminum alloy, characterized in that the distance between particles is 5 μm or less and the distance between particles is 5 μm or less.
JP7394286A 1986-03-31 1986-03-31 Heat resistant aluminum alloy Expired - Lifetime JPH0742537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7394286A JPH0742537B2 (en) 1986-03-31 1986-03-31 Heat resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7394286A JPH0742537B2 (en) 1986-03-31 1986-03-31 Heat resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPS62230943A JPS62230943A (en) 1987-10-09
JPH0742537B2 true JPH0742537B2 (en) 1995-05-10

Family

ID=13532667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7394286A Expired - Lifetime JPH0742537B2 (en) 1986-03-31 1986-03-31 Heat resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0742537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2396436B1 (en) * 2010-04-07 2013-07-24 Rheinfelden Alloys GmbH & Co. KG Aluminium die casting alloy

Also Published As

Publication number Publication date
JPS62230943A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
EP0144898B1 (en) Aluminum alloy and method for producing same
US3989548A (en) Aluminum alloy products and methods of preparation
US4126487A (en) Producing improved metal alloy products (Al-Fe alloy and Al-Fe-Si alloy)
JP4982159B2 (en) Aluminum alloy billet
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
RU95122579A (en) MULTI-PHASE CASTINGS WITH MICROSTRUCTURAL REFINING
US20220325384A1 (en) Heat-resistant aluminum powder material
JP4764094B2 (en) Heat-resistant Al-based alloy
US3765877A (en) High strength aluminum base alloy
CA1224646A (en) Aluminium alloys
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JPH0742537B2 (en) Heat resistant aluminum alloy
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
TWI692530B (en) Aluminum alloy powder and its manufacturing method, aluminum alloy product and its manufacturing method
JP2711296B2 (en) Heat resistant aluminum alloy
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
CN106011563A (en) Hypo eutectic aluminum-magnesium alloy reinforcing method through melt compounding treatment
EP0137180B1 (en) Heat-resisting aluminium alloy
JP3355673B2 (en) Heat-resistant aluminum alloy and method for producing the same
CN102952984B (en) A kind of wrought magnesium alloys and preparation method thereof
JP2632818B2 (en) High-strength copper alloy with excellent thermal fatigue resistance
SU549495A1 (en) Aluminum based foundry alloy
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property