JPH0742501B2 - Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing - Google Patents

Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing

Info

Publication number
JPH0742501B2
JPH0742501B2 JP2174982A JP17498290A JPH0742501B2 JP H0742501 B2 JPH0742501 B2 JP H0742501B2 JP 2174982 A JP2174982 A JP 2174982A JP 17498290 A JP17498290 A JP 17498290A JP H0742501 B2 JPH0742501 B2 JP H0742501B2
Authority
JP
Japan
Prior art keywords
temperature
less
annealing
magnetic
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2174982A
Other languages
Japanese (ja)
Other versions
JPH0463228A (en
Inventor
季志雄 持永
和隆 東根
千秋 中尾
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2174982A priority Critical patent/JPH0742501B2/en
Publication of JPH0463228A publication Critical patent/JPH0463228A/en
Publication of JPH0742501B2 publication Critical patent/JPH0742501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁性焼鈍前後の鉄損・磁束密度の両者ともに優
れた無方向性電磁鋼板の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a non-oriented electrical steel sheet which is excellent in both iron loss and magnetic flux density before and after magnetic annealing.

(従来の技術) 無方向性電磁鋼板は大型、中型回転機汎用モーター、自
動車モーター、家電用モーター、変圧器等の鉄心材料と
して使用される。この鋼板は磁気特性レベルによってグ
レード分けされており、所望電気機器成品の目的に応じ
て使い分けて用いられる。
(Prior Art) Non-oriented electrical steel sheets are used as iron core materials for large-sized, medium-sized rotating machines, general-purpose motors, automobile motors, household electric motors, transformers, and the like. This steel sheet is graded according to the magnetic characteristic level, and is used properly according to the purpose of the desired electrical equipment product.

近年のエネルギー節減、電気機器の特性向上、小型化等
のために、これら電気機器に使用される鉄心材料の磁気
特性の向上が強く望まれている。特に汎用モーター、自
動車用モーター、家電用モーター等に使用される中級か
ら低級無方向性電磁鋼板の磁気特性を一段と向上するこ
とが重要である。
In order to save energy in recent years, improve the characteristics of electric devices, and reduce the size, it is strongly desired to improve the magnetic properties of iron core materials used in these electric devices. In particular, it is important to further improve the magnetic properties of intermediate to low grade non-oriented electrical steel sheets used for general-purpose motors, motors for automobiles, motors for home appliances and the like.

電磁鋼板の使用方法は、コイルまたはシート状の成品を
需要家での種々の電気機器用の部品形状に打抜いた後、
積層し、所定のコアに形成するわけであるが、積層後、
磁性向上を目的とした磁性焼鈍を実施する場合としない
場合の2通りがある。
The method of using the electromagnetic steel sheet is that after punching coil or sheet-shaped products into parts shapes for various electric devices at customers,
It is laminated and formed into a predetermined core.
There are two cases, that is, the case where magnetic annealing for the purpose of improving magnetism is carried out and the case where it is not carried out.

この磁性焼鈍とは、需要家での打ち抜き加工によって鋼
板中に歪が入り、この歪のために、鉄損を大幅に劣化さ
せる。そこでこの歪を除去することと、鋼板の1次粒成
長を行わせ鉄損を向上させることを目的に750℃×2hr程
度の熱処理を窒素雰囲気中で行うものである。
With this magnetic annealing, the steel sheet is distorted by punching by a consumer, and this distortion causes the iron loss to deteriorate significantly. Therefore, heat treatment at about 750 ° C. × 2 hr is performed in a nitrogen atmosphere for the purpose of removing this strain and improving the iron loss by performing primary grain growth of the steel sheet.

一般に無方向性電磁鋼板を使用する場合、磁性焼鈍なし
の状態で使用されていたが、最近は電気メーカーのコス
ト低減を目的に低級無方向性電磁鋼板を使用し、積層
後、磁性焼鈍を行うことによって中高級の無方向性電磁
鋼板の磁性レベルに改善して使用するケースが多くなっ
てきた。
In general, when non-oriented electrical steel sheets are used without magnetic annealing, recently low-oriented non-oriented electrical steel sheets are used for the purpose of reducing the cost of electric manufacturers, and magnetic annealing is performed after lamination. As a result, the number of cases of improving the magnetic level of medium- to high-grade non-oriented electrical steel sheets and using it has increased.

このような中低級の無方向性電磁鋼板における磁性焼鈍
の実施比率は年々高まってきており、現在では約70%が
磁性焼鈍後使用となってきている。このため、電磁鋼板
には、この磁性焼鈍前後の段階で優れた磁性を示すもの
が要求されており、こういった特性を持つ材料の開発競
争が展開されている。
The percentage of magnetic annealing performed on such medium- and low-grade non-oriented electrical steel sheets has been increasing year by year, and now about 70% is used after magnetic annealing. For this reason, electromagnetic steel sheets are required to exhibit excellent magnetism before and after the magnetic annealing, and competition for development of materials having such characteristics is being developed.

ところで、電気機器で発生する電力損失は、鉄損が主で
材料の無方向性電磁鋼板の鉄損に依存する。鉄損を低く
するにはSi含有量を高めればよいが、これはコスト高を
招きさらには磁束密度を低下させる。磁束密度の低下は
大きな励磁電流を要することになるから、起動・停止が
頻繁になされる汎用モーター等では電力損失が大となり
問題である。
By the way, the electric power loss generated in the electric equipment is mainly iron loss, and depends on the iron loss of the non-oriented electrical steel sheet of the material. The iron content can be lowered by increasing the Si content, but this causes an increase in cost and further lowers the magnetic flux density. Since the decrease of the magnetic flux density requires a large exciting current, the power loss becomes large in a general-purpose motor or the like that is frequently started and stopped, which is a problem.

従来から、無方向性電磁鋼板の製造において、磁気特性
向上のための熱間圧延技術が種々提案されている。特公
昭56−18045号公報及び特公昭56−33451号公報には、連
続鋳造されたままの高温スラブをその表面温度、中心温
度共800〜1050℃の温度範囲に40分以上確保して、AlNの
凝集処理を行い無害化を図ることを基本とする無方向性
電磁鋼板の製造方法が開示されている。
Conventionally, various hot rolling techniques for improving magnetic properties have been proposed in the production of non-oriented electrical steel sheets. Japanese Patent Publication No. 56-18045 and Japanese Patent Publication No. 56-33451 disclose that a high temperature slab as continuously cast is secured in the temperature range of 801 to 1050 ° C. for both surface temperature and center temperature for 40 minutes or more. A method for manufacturing a non-oriented electrical steel sheet is disclosed, which is basically based on the purpose of detoxifying the agglomeration treatment.

また、特公昭60−56403号公報には、Siを0.3%〜2.0%
含む極低炭素鋼スラブを熱間圧延後、800℃以上2分以
内の高温短時間の熱延板焼鈍を実施することが開示され
ている。
In addition, Japanese Examined Patent Publication No. 60-56403 discloses that Si is 0.3% to 2.0%.
It is disclosed that after the ultra low carbon steel slab containing is hot-rolled, it is annealed at a high temperature for a short time at a temperature of 800 ° C. or more and within 2 minutes.

更に、特開昭63−210237号公報には、高温巻き取りを実
施するうえでの問題点、即ち、スケール生成量の増大に
よる脱スケール性の問題、コイル内での温度不均一によ
る磁性特性のバラツキの問題を解決するため、高純度鋼
を出発材料として使用するとともに、700℃以上のフェ
ライト域内の低温域で熱間圧延を終了することにより熱
延板に十分な歪みを蓄積させ、600〜680℃での巻き取り
により熱延板の再結晶及び粒成長を行うことを開示して
いる。
Further, in Japanese Patent Laid-Open No. 63-210237, there are problems in carrying out high-temperature winding, that is, the problem of descaling due to an increase in the amount of scale formation, and the magnetic characteristics due to nonuniform temperature in the coil. In order to solve the problem of variation, high-purity steel is used as a starting material, and hot rolling is completed in the low temperature region of the ferrite region of 700 ° C or higher to accumulate sufficient strain in the hot rolled sheet, It is disclosed that the hot-rolled sheet is recrystallized and grains are grown by winding at 680 ° C.

(発明が解決しようとする課題) しかし、前記した特公昭56−18045号、特公昭56−33451
号、及び特公昭60−56403号の各公報に開示された技術
では、熱延板焼鈍が実施されているためにコスト高とな
ることは明らかである。
(Problems to be Solved by the Invention) However, Japanese Patent Publication No. 56-18045 and Japanese Patent Publication No. 56-33451 described above.
It is clear that the techniques disclosed in Japanese Patent Publication No. 60-56403 and Japanese Patent Publication No. 56-56403 are expensive because of the annealing of the hot rolled sheet.

また、特開昭63−210237号公報に開示された技術では、
熱間圧延前のスラブ加熱条件について何ら言及されてお
らずスラブ加熱条件によっては、磁気特性が大きく変動
するものである。
Further, in the technology disclosed in Japanese Patent Laid-Open No. 63-210237,
No mention is made of the slab heating conditions before hot rolling, and the magnetic properties vary greatly depending on the slab heating conditions.

本発明は、上記従来技術の問題点を有利に解決し、且つ
上記技術に対して新規な無方向性電磁鋼板の製造方法を
提供することを目的とする。
It is an object of the present invention to advantageously solve the above-mentioned problems of the prior art and to provide a novel method for manufacturing a non-oriented electrical steel sheet to the above technology.

(課題を解決するための手段) 本発明者らは、熱延板焼鈍を実施することと同様の効果
が期待できる対策を見出すべく、特に素材成分・加熱条
件・仕上圧延・及び巻き取りまでの条件について種々の
実験を行った結果、次の知見を得た。
(Means for Solving the Problem) In order to find a measure that can expect the same effect as performing hot-rolled sheet annealing, the inventors of the present invention particularly in terms of material components, heating conditions, finish rolling, and winding. As a result of various experiments on the conditions, the following findings were obtained.

素材中のMnを0.1〜0.4%の間に制御し、同時にSを0.
0050%以下に低下することに加えて、スラブの加熱温度
を1100℃以下に下げることによってMnSの熱延中の微細
析出を防止し、熱延段階において再結晶を十分に進行さ
せることが可能となり結晶粒の粒成長を大幅に促進で
き、その結果、鉄損の改善が可能となる。
The Mn in the material is controlled between 0.1 and 0.4%, and at the same time, S is set to 0.
In addition to lowering to 0050% or less, by lowering the heating temperature of the slab to 1100 ° C. or less, fine precipitation of MnS during hot rolling can be prevented, and recrystallization can be sufficiently advanced in the hot rolling stage. The grain growth of crystal grains can be greatly promoted, and as a result, iron loss can be improved.

熱延板段階での結晶粒の粒成長のためには、仕上圧延
機出口温度をAr3変態点以下で極力高めることが重要で
あるが、鋼成分中のCを0.0050%以下に下げることによ
って、このAr3変態点を高温側に移動することが可能で
ある。
In order to grow grains in the hot rolled sheet stage, it is important to raise the exit temperature of the finish rolling mill to below the Ar 3 transformation point as much as possible, but by lowering the C in the steel composition to below 0.0050%. , It is possible to move this Ar 3 transformation point to the high temperature side.

つまり、鋼中成分の0.0050%以下に下げることによって
Ar3変態点を高温側に移動し、この変態点直下の温度を
絶対値的に高め、その結果、より高温域での圧延が可能
となり、結晶粒成長が促進できる。この時同時に熱延板
の集合組織の改善も行われる。
In other words, by reducing the content of steel to less than 0.0050%
The Ar 3 transformation point is moved to the high temperature side, and the temperature immediately below this transformation point is raised in absolute value, and as a result, rolling in a higher temperature region becomes possible and crystal grain growth can be promoted. At the same time, the texture of the hot rolled sheet is also improved.

この熱延板の集合組織の改善は、さらに加熱温度を1100
℃以下に低下することと、仕上圧延機出口温度を上記Ar
3変態点以下で極力高温側((1)式で示す範囲)に制
御することの組合せで大きく進み、特に磁束密度の大幅
な改善をもたらす。
The improvement of the texture of this hot-rolled sheet was made by further increasing the heating temperature to 1100.
℃ below, and the finish rolling mill outlet temperature above the Ar
The combination of controlling to the highest temperature side (range shown by equation (1)) as much as possible at three transformation points or less makes a great progress, and particularly brings about a great improvement in magnetic flux density.

以上の如く、熱延段階のスラブ加熱温度を1100℃以下と
し、且つ仕上圧延機出口温度を(1)式の範囲におさめ
ることによって、熱延板段階での結晶粒の粒成長と集合
組織が著しく改善でき、これによる鉄損と磁束密度の向
上が図れる。
As described above, by setting the slab heating temperature in the hot rolling stage to 1100 ° C. or lower and keeping the finish rolling mill outlet temperature in the range of the formula (1), the grain growth and texture of the crystal grains in the hot rolling stage can be improved. It can be remarkably improved, and thereby the iron loss and the magnetic flux density can be improved.

本発明は以上の知見にもとずくものであって、本発明の
要旨は次の通りである。
The present invention is based on the above findings, and the gist of the present invention is as follows.

(1)重量%でC:0.005%以下 Si:1.5%以下 Al:0.5%以下 Mn:0.1〜0.4% P:0.15%以下 S:0.0050%以下 を含み残部が鉄および不可避的不純物からなる電磁鋼ス
ラブを熱延する際に、スラブを1100℃以下に焼き上げ、
その後仕上圧延機出口温度Y(℃)を(1)式で示され
た温度範囲に制御し、次いで注水冷却し650℃以下の温
度で巻き取り、続いて脱スケール、冷間圧延、焼鈍する
ことを特徴とする磁性焼鈍前後の磁気特性の優れた無方
向性電磁鋼板の製造方法。
(1)% by weight C: 0.005% or less Si: 1.5% or less Al: 0.5% or less Mn: 0.1 to 0.4% P: 0.15% or less S: 0.0050% or less The balance is iron and inevitable impurities When hot rolling the slab, bake the slab to 1100 ° C or below,
After that, the finish rolling mill outlet temperature Y (° C) is controlled within the temperature range shown by the formula (1), and then it is cooled by water injection and wound at a temperature of 650 ° C or lower, followed by descaling, cold rolling and annealing. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties before and after magnetic annealing.

870+80×Si(%)≧Y≧820+80×Si(%)…(1)式 (2)重量%でC:0.005%以下 Si:1.5%以下 Al:0.5%以下 Mn:0.1〜0.4% P:0.15%以下 S:0.0050%以下を含み、 更に、Cu:0.01〜1.0% Sn:0.02〜0.20% Sb:0.010〜0.30% B:0.0003〜0.0050% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる電磁鋼スラブを熱延する際に、スラブ
を1100℃以下に焼き上げ、その後仕上圧延機出口温度Y
(℃)を(1)式で示された温度範囲に制御し、次いで
注水冷却し650℃以下の温度で巻き取り、続いて脱スケ
ール、冷間圧延、焼鈍することを特徴とする磁性焼鈍前
後の磁気特性の優れた無方向性電磁鋼板の製造方法。
870 + 80 x Si (%) ≥ Y ≥ 820 + 80 x Si (%) (1) Formula (2) Weight% C: 0.005% or less Si: 1.5% or less Al: 0.5% or less Mn: 0.1 to 0.4% P: 0.15 % Or less S: 0.0050% or less, Cu: 0.01 to 1.0% Sn: 0.02 to 0.20% Sb: 0.010 to 0.30% B: 0.0003 to 0.0050% One or more, and the balance is iron. When hot rolling an electromagnetic steel slab consisting of unavoidable impurities, the slab is baked to 1100 ° C or lower, and then the finish rolling mill outlet temperature Y
Before and after magnetic annealing, characterized in that (° C) is controlled within the temperature range indicated by the formula (1), and then water cooling is performed and winding is performed at a temperature of 650 ° C or less, followed by descaling, cold rolling and annealing. For manufacturing a non-oriented electrical steel sheet having excellent magnetic properties.

870+80×Si(%)≧Y≧820+80×Si(%)…(1)式 (作用) 以下、本発明の内容を詳細に説明する。870 + 80 × Si (%) ≧ Y ≧ 820 + 80 × Si (%) (1) Formula (Operation) The details of the present invention will be described below.

第1図は、0.0050%以下の低S下における、熱延工程の
加熱温度と仕上圧延機出口温度と磁性焼鈍前後の磁気特
性との関係を示す実験データである。
FIG. 1 is experimental data showing the relationship between the heating temperature in the hot rolling step, the exit temperature of the finish rolling mill, and the magnetic properties before and after magnetic annealing under a low S of 0.0050% or less.

これは、C:0.003%、Si:0.15%、Mn:0.12%、P:0.07
%、S:0.0030%、solAl:0.0015%に溶製した溶鋼を連続
鋳造機にて250mm厚のスラブとし、これに続く、熱間圧
延工程において加熱温度を1050℃,1100℃,1150℃の3水
準に、仕上圧延機出口温度を(1)式の下限に外れる温
度の820℃、(1)式に入る温度として870℃の2水準の
計6水準に振り、続く巻き取り620℃で処理し、2.5mm厚
の熱延板を得、次いで脱スケール酸洗後0.5mm厚の板厚
まで冷間圧延し、さらに750℃×30秒の連続焼鈍を実施
し、成品としたものの磁性焼鈍前後の鉄損と磁束密度を
測定した結果を示したものである。
This is C: 0.003%, Si: 0.15%, Mn: 0.12%, P: 0.07
%, S: 0.0030%, solAl: 0.0015% molten steel was made into a slab with a thickness of 250 mm by a continuous casting machine, and in the subsequent hot rolling process, the heating temperature was 1050 ℃, 1100 ℃, 1150 ℃. As for the level, the finish rolling mill outlet temperature is shifted to the lower limit of the formula (1) at 820 ° C, and as the temperature to enter the formula (1), it is divided into two levels of 870 ° C and 6 levels in total, and the subsequent winding is performed at 620 ° C. , 2.5 mm thick hot-rolled sheet, then descaled pickling, cold rolled to a sheet thickness of 0.5 mm thickness, further continuous annealing at 750 ℃ × 30 seconds was carried out, before and after magnetic annealing of the product The results of measurement of iron loss and magnetic flux density are shown.

まず、加熱温度の影響であるが、1100℃以下の低温加熱
にすることによって磁性焼鈍前の鉄損及び磁性焼鈍後の
鉄損の両者が大きく改善されていることがわかる。そし
てこの傾向は特に、磁性焼鈍後の鉄損値について大きく
なっている。
First, regarding the influence of the heating temperature, it can be seen that both the iron loss before magnetic annealing and the iron loss after magnetic annealing are greatly improved by heating at a low temperature of 1100 ° C. or less. And this tendency becomes large especially about the iron loss value after magnetic annealing.

次に磁束密度について、同様に加熱温度の影響をみると
仕上圧延機出口温度が(1)式に外れる820℃において
は、磁性焼鈍前後の値は1100℃以下の低温加熱によって
若干向上していることが認められる。一方、仕上圧延機
出口温度が(1)式に含まれる870℃で同様の比較を行
うと、1100℃以下の低温加熱の領域で著しく磁束密度が
向上している。
Similarly, regarding the magnetic flux density, when the effect of heating temperature is also examined, at 820 ° C, where the exit temperature of the finishing mill deviates from equation (1), the values before and after magnetic annealing are slightly improved by low temperature heating below 1100 ° C. Is recognized. On the other hand, when the same comparison is performed at the finish rolling mill outlet temperature of 870 ° C included in the formula (1), the magnetic flux density is remarkably improved in the low temperature heating region of 1100 ° C or lower.

このように、磁束密度においては磁性焼鈍前後共に、11
00℃以下の低温加熱と(1)式に含まれる仕上圧延機出
口温度との組合せで大幅な改善が可能であることがわか
る。
Thus, in the magnetic flux density, 11 before and after magnetic annealing.
It can be seen that a significant improvement can be achieved by combining low-temperature heating at 00 ° C. or less and the finish rolling mill outlet temperature included in formula (1).

第2図にはさらに詳しく加熱温度と仕上圧延機出口温度
と磁性焼鈍前の磁束密度の関係を示すが、1150℃以上
(1150℃)の高温加熱の場合、磁性焼鈍前の磁束密度は
(1)式に含まれる温度領域において、Ar3変態点直下
まで温度を上げていっても磁束密度の向上代は少ない。
しかしながら1100℃以下(1050℃)の低温加熱を行った
場合(1)式に示された領域の組合せで圧延を行うこと
によって磁束密度が向上し、Ar3変態点直下までその傾
向は継続している。このような加熱温度と仕上温度の組
合せを選択することによって、磁束密度が大幅に向上す
ることを見出したのが本発明である。
Figure 2 shows the relationship between heating temperature, finish rolling mill outlet temperature and magnetic flux density before magnetic annealing in more detail. In the case of high temperature heating above 1150 ℃ (1150 ℃), the magnetic flux density before magnetic annealing is (1 In the temperature range included in the equation), there is little margin for improving the magnetic flux density even if the temperature is raised to just below the Ar 3 transformation point.
However, when heating at a low temperature of 1100 ° C or lower (1050 ° C), the magnetic flux density is improved by rolling in the combination of the regions shown in equation (1), and the tendency continues just below the Ar 3 transformation point. There is. It is the present invention that the magnetic flux density is significantly improved by selecting such a combination of the heating temperature and the finishing temperature.

つまり、1100℃以下の低温加熱によって磁性焼鈍前後の
鉄損を改善し、この低温加熱と(1)式に示す温度範囲
に仕上圧延機出口温度を制御することを組合せて、画期
的な磁性焼鈍前後の磁束密度の向上を可能にせしめたの
が本発明である。
In other words, by improving the iron loss before and after magnetic annealing by low temperature heating below 1100 ° C, and combining this low temperature heating and controlling the finish rolling mill outlet temperature within the temperature range shown in equation (1) The present invention has made it possible to improve the magnetic flux density before and after annealing.

以下にこの現象について説明する。This phenomenon will be described below.

第3図写真には、第1図の加熱温度、1150℃,1050℃,
仕上圧延機出口温度,820℃,870℃の4水準にあった材料
の熱延板段階での再結晶組織の金相写真を示す。見られ
るとおり加熱条件は1100℃以下(1050℃)の低温加熱を
行うことによって、再結晶粒径は大きくなっていること
がわかる。又、仕上圧延機出口温度条件は、Ar3変態点
以下より、832℃以上(870℃)のより高温側にもってい
くことによって更に粒径は大きくなり、この2つを組み
合わせた材料、すなわち1100℃以下の低温加熱と、
(1)式で示す高温仕上げの領域で処理した材料では、
従来の一般的な操業条件である1150℃以上(1150℃)の
高温加熱をし、830℃以下(820℃)の低温仕上げ時の結
晶粒径の22μに対して40μという倍の粒径になっている
ことが観察できる。
In the photograph of Fig. 3, the heating temperature of Fig. 1, 1150 ℃, 1050 ℃,
The metal phase photograph of the recrystallized structure of the material at four stages of the finish rolling mill outlet temperature, 820 ℃ and 870 ℃ at the hot rolled sheet stage is shown. As can be seen, the recrystallization grain size is increased by heating at a low temperature of 1100 ° C or lower (1050 ° C). Also, finishing mill exit temperature conditions, from the following Ar 3 transformation point, further particle size increases by bringing the higher temperature side of 832 ° C. or higher (870 ° C.), the material combines the two, i.e. 1100 Low temperature heating below ℃,
In the material treated in the high temperature finishing area shown by the equation (1),
High temperature heating of 1150 ° C or higher (1150 ° C), which is the conventional general operating condition, resulted in a double grain size of 40μ compared to 22μ of the grain size at low temperature finishing of 830 ° C or lower (820 ° C). Can be observed.

第4図写真は、加熱温度の差によって、熱延板段階でMn
Sの析出状態の違いを示した組織写真であるが、みられ
るとおり、1050℃の低温加熱によって、微細なMnSの析
出が認められなくなっていることがわかる。
The photograph in Fig. 4 shows Mn at the hot rolled sheet stage due to the difference in heating temperature.
Although it is a microstructure photograph showing the difference in the precipitation state of S, it can be seen that fine MnS precipitation is not observed by heating at a low temperature of 1050 ° C as seen.

以上の現象は、1050℃という低温加熱化によってスラブ
加熱時のMnSの固溶が防止され、このため熱延中に起こ
る微細なMnSの析出が抑制され、アルファ単相域での再
結晶化が進みやすくなることと、仕上圧延機出口温度を
Ar3変態点以下の領域で且つ、極力高温側にもっていく
ことによりアルファ単相域での熱延板中の再結晶を更に
進行させることの2つの組合せにより、巻き取り後の熱
延板での結晶粒の粒成長が図れるわけである。
The above phenomenon shows that solidification of MnS during slab heating is prevented by heating at a low temperature of 1050 ° C, and thus fine MnS precipitation that occurs during hot rolling is suppressed, and recrystallization in the alpha single-phase region is suppressed. It is easy to proceed and the finish rolling mill outlet temperature
In the hot rolled sheet after winding, by the combination of the two, which is in the region below the Ar 3 transformation point and further toward the high temperature side to further promote the recrystallization in the hot rolled sheet in the alpha single phase region. The grain growth of the crystal grains can be achieved.

第5図には、これら4条件で製造した熱延板の集合組織
の各方位粒の強度をみたものを示すが、磁束密度向上を
阻害する(100)方位粒のMax強度は、1100℃以下(1050
℃)の低温加熱と、(1)式に含まれる高温仕上げ(87
0℃)の組合わせによって大幅に低下しており、熱延板
の集合組織が改善されていることがわかる。
Fig. 5 shows the strength of each oriented grain in the texture of the hot-rolled sheet produced under these 4 conditions. The maximum strength of the (100) oriented grain that hinders the improvement of the magnetic flux density is 1100 ° C or less. (1050
(° C) low temperature heating and high temperature finishing included in formula (1) (87
It can be seen that the texture of the hot-rolled sheet is improved by the combination of (0 ° C), which is significantly decreased.

このように熱延板の結晶粒の粒成長以外に、集合組織の
方位からみても、1100℃以下の低温加熱と(1)式に示
す範囲での高温仕上げの圧延方法の組合せによって磁性
焼鈍前後の鉄損・磁束密度が改善される特徴を示してい
ることがわかる。
In addition to the grain growth of the crystal grains of the hot rolled sheet, the combination of the low temperature heating of 1100 ° C or less and the rolling method of high temperature finishing within the range shown in formula (1) before and after the magnetic annealing can be seen from the direction of the texture. It can be seen that the iron loss and magnetic flux density are improved.

以下に、本発明で適用する鋼成分組成について述べる。The steel component composition applied in the present invention will be described below.

Cは磁気特性を時効析出によって著しく低下させる。こ
のため本発明では磁気時効の影響の出ない範囲として上
限を0.0050%とした。
C significantly reduces the magnetic properties by aging precipitation. Therefore, in the present invention, the upper limit is set to 0.0050% as a range in which the influence of magnetic aging is not exerted.

また、本特許ではAr3変態点以下で且つ極力高温を狙う
ことにより、仕上圧延直後の熱延板の再結晶粒の粒成長
と熱延板集合組織改善をも行わせることを特徴としてい
るが、仕上温度が高い程この効果が大きいため、C値を
下げることによってAr3変態点温度を上昇させ(C値を
0.010%から0.005%に半減することによる温度上昇は約
30℃)、これによって結果的に仕上圧延温度の上昇を可
能とせしめ、磁性改善効果がより大きくでるような成分
設計としており、0.005%以下の低Cが条件となる。
Further, in this patent, by aiming as high temperature as possible below the Ar 3 transformation point and as high as possible, grain growth of recrystallized grains of the hot rolled sheet immediately after finish rolling and hot rolled sheet texture improvement are also characterized. The higher the finishing temperature, the greater this effect. Therefore, lowering the C value raises the Ar 3 transformation point temperature.
Temperature rise due to halving from 0.010% to 0.005% is about
30 ° C.), which results in an increase in the finish rolling temperature and a greater effect of improving the magnetism, and is designed to have a low C of 0.005% or less.

さらには、Cが高いと磁性焼鈍による鉄損の改善が非常
に小さく、この点からも本発明では低Cが必須である。
Further, when C is high, improvement in iron loss due to magnetic annealing is very small, and from this point as well, low C is essential in the present invention.

Siは固有抵抗増加により鉄損を低めるために含有される
ものであるが、その量を多くすると磁束密度を低下さ
せ、またコスト高となるもので上限を1.5%とする。下
限は特定する必要はないが0.05%が望ましい。
Si is contained in order to reduce iron loss due to an increase in specific resistance. However, if the amount is increased, the magnetic flux density is lowered, and the cost becomes high, so the upper limit is made 1.5%. The lower limit need not be specified, but is preferably 0.05%.

Alは固有抵抗増加により鉄損を低めるために含有させる
場合と、より低鉄損を狙い鋼中の酸化系介在物の含有量
を極力減らすために脱酸材として使用する場合、の2と
おりの使用目的があるが、0.5%を上限とした理由は、
効果のわりにはコストアップが大きくなりすぎるからで
ある。
There are two types of Al: when it is contained to reduce iron loss due to an increase in specific resistance, and when it is used as a deoxidizing material to reduce the content of oxidizing inclusions in steel as much as possible in order to lower iron loss. There is a purpose to use, but the reason for setting 0.5% as the upper limit is
This is because the cost increase becomes too large for the effect.

MnはSと反応し、MnSを形成することによって磁気特性
を出現させるための1次再結晶粒の成長を阻害する働き
があるために、従来より低S化対策が実施されてきた。
近年、製鋼段階における低S化技術が向上してきてお
り、本特許では0.0050%以下の低S化領域での限定理由
を述べる。
Mn reacts with S to form growth of MnS, which has the function of inhibiting the growth of primary recrystallized grains to exhibit magnetic properties. Therefore, measures for lowering S have been conventionally implemented.
In recent years, the technology for reducing S in the steelmaking stage has been improved, and in this patent, the reason for limitation in the S reduction area of 0.0050% or less will be described.

Sが0.0050%以上の高Sの条件では、MnSの熱延中の析
出量が多く、熱延段階、焼鈍段階での結晶粒の粒成長が
進行しにくく、鉄損が悪化する。ところが、0.0050%以
下の低S化領域では高Sの領域に比べてMnSの析出量が
低下し、この現象は軽減される。このため、直近までは
低S化され行えばMn値の制限理由はないと考えられてい
た。
Under the high S condition of S of 0.0050% or more, the amount of precipitation of MnS during hot rolling is large, grain growth of crystal grains in the hot rolling stage and the annealing stage is difficult to proceed, and iron loss is deteriorated. However, in the S-reduced region of 0.0050% or less, the precipitation amount of MnS is lower than that in the high-S region, and this phenomenon is reduced. Therefore, until recently, it was considered that there is no reason for limiting the Mn value if the S value is lowered.

しかし、本発明者らは0.0050%以下の低S化領域におけ
る特徴的なMn値とMnS析出状態の関係を見出した。この
関係とは、Mn値が0.1%を下回ると磁性焼鈍前後の鉄損
が悪化していくというものである。
However, the present inventors have found a characteristic relationship between the Mn value and the MnS precipitation state in the low S region of 0.0050% or less. This relationship means that the iron loss before and after magnetic annealing is deteriorated when the Mn value is less than 0.1%.

数々の調査の結果、このような低Sの領域では、Mn値が
0.1%よりも低い領域になると熱延板段階で微細なMnSの
析出が始まることを確認したのである。
As a result of various investigations, in such a low S region, the Mn value is
It was confirmed that fine MnS precipitation started in the hot-rolled sheet stage when the region was lower than 0.1%.

このような低S化におけるMnSの特徴的な挙動が観察さ
れたため、Mn値の下限は0.1%とした。
Since the characteristic behavior of MnS in such a reduction in S was observed, the lower limit of the Mn value was set to 0.1%.

次に上限についてであるが、Mn値を高めると磁束密度を
悪化させずに、鉄損を低くする効果があるけれども、そ
の含有量が増えるとコスト高となるので、0.4%以下と
する。
Next, regarding the upper limit, although increasing the Mn value has the effect of lowering the iron loss without deteriorating the magnetic flux density, but increasing the content increases the cost, so it is made 0.4% or less.

Pは、鋼板の硬度を高め、内抜き性を向上する作用があ
るが、反面その含有量が多くなると鉄損及び磁束密度が
劣化するので0.15%以下とする。
P has the effect of increasing the hardness of the steel sheet and improving the internal drawability, but on the other hand, if its content increases, core loss and magnetic flux density deteriorate, so it is made 0.15% or less.

SはMnとの間でMnSを形成し、熱延段階、焼鈍段階で粒
成長を阻害することは、既に記述してあるとおりであ
る。このため、近年、低S化が進められており、その含
有量が低い程、磁気特性には良いと考えている。そこ
で、現在の清浄鋼の溶製技術において経済面も考慮し
て、上限を0.0050%とした。
It has already been described that S forms MnS with Mn and inhibits grain growth in the hot rolling step and the annealing step. Therefore, in recent years, reduction of S has been promoted, and it is considered that the lower the content, the better the magnetic characteristics. Therefore, the upper limit was set to 0.0050% in consideration of economic aspects in the current melting technology of clean steel.

さらに、本発明においては、必要に応じてCu:0.01〜1.0
%、Sn:0.02〜0.20%、Sb:0.010〜0.30%、B:0.0003〜
0.0050%の中の1種または2種以上を含有させる。
Further, in the present invention, if necessary Cu: 0.01 ~ 1.0
%, Sn: 0.02-0.20%, Sb: 0.010-0.30%, B: 0.0003-
One or more of 0.0050% is contained.

Cu,Sn,Sb,Bはいずれも集合組織に影響し、磁束密度を高
める作用がある。この効果を引き出すにはCuは0.010%
以上、Snは0.02%以上、Sbは0.010%以上、Bは0.0003
%以上必要である。一方、これらの含有量が多くなると
鉄損を劣化させるのでCuは1.0%、Snは0.20%、Sbは0.3
0%、Bは0.0050%をそれぞれ上限とする。
Cu, Sn, Sb and B all affect the texture and have the effect of increasing the magnetic flux density. Cu is 0.010% to bring out this effect.
Above, Sn is 0.02% or more, Sb is 0.010% or more, B is 0.0003
% Or more is required. On the other hand, if the content of these elements increases, iron loss deteriorates, so Cu is 1.0%, Sn is 0.20%, and Sb is 0.3%.
The upper limits of 0% and B are 0.0050%.

〔スラブ加熱温度〕[Slab heating temperature]

この工程は、加熱炉抽出時のスラブ実温度で1100℃以下
にすることが条件である。本発明は、既述したとおり、
熱延段階で再結晶及び粒成長を促進させることと、集合
組織を改善することの二点の改善により、磁性焼鈍前後
の磁気特性を著しく向上させるところに大きな特徴があ
る。熱延板段階での再結晶及び粒成長を十分に促進させ
るためには、熱延段階でのMnSの微細析出を防止するこ
とが重要である。このMnSの微細析出はMn,S等の鋼中へ
の含有量に左右されることは勿論であるが、その挙動は
加熱段階でMnS,AlNの溶体化が起こり、この溶体化した
ものが熱延中に微細に析出するといったものである。こ
のため、加熱温度は極力低温が望ましく、本成分系にお
けるMnSの溶体化を防止する温度として1100℃以下を条
件とした。
The condition of this step is that the actual temperature of the slab at the time of extracting the heating furnace is 1100 ° C or lower. The present invention, as described above,
A major feature is that the magnetic properties before and after magnetic annealing are remarkably improved by improving the two points of promoting recrystallization and grain growth in the hot rolling stage and improving the texture. In order to sufficiently promote recrystallization and grain growth in the hot rolling stage, it is important to prevent fine precipitation of MnS in the hot rolling stage. This fine precipitation of MnS depends, of course, on the contents of Mn, S, etc. in the steel, but the behavior is that solution treatment of MnS, AlN occurs during the heating stage, and this solution is heat-treated. It is that it is finely precipitated during rolling. Therefore, it is desirable that the heating temperature is as low as possible, and the temperature at which the solution of MnS in this component system is prevented is 1100 ° C. or lower.

又、集合組織の改善効果が加熱温度と仕上圧延機の出口
温度との組合せで出現されることも既に述べたが、この
集合組織改善を行わしめるためには、加熱温度は1100℃
以下に制御する必要がある。
Also, it has already been mentioned that the effect of improving the texture appears in combination with the heating temperature and the exit temperature of the finishing mill, but in order to improve the texture, the heating temperature is 1100 ° C.
The following needs to be controlled.

とくに、下限は温度については規定していないが、熱延
板の板厚、板幅が精度良く得られる熱間圧延が実施でき
ることと、(1)式の温度範囲が仕上圧延機出口で確保
できる範囲であればよい。
In particular, although the lower limit does not specify the temperature, it is possible to carry out hot rolling in which the thickness and width of the hot rolled sheet can be obtained accurately, and the temperature range of formula (1) can be secured at the exit of the finishing mill. It only needs to be in the range.

〔熱延温度〕[Hot rolling temperature]

この工程は、仕上圧延機出口温度を(1)式に示された
範囲に制御することを条件とする。本発明は既述したと
おり、1100℃以下の低温加熱と(1)式に示された温度
範囲に仕上圧延機出口温度を制御することによって、熱
延板段階での再結晶及び粒成長を促進すること、磁束密
度の向上を阻害する(100)方位粒のMax強度を下げるこ
との2点に大きな特徴がある。
This step is conditioned on controlling the finish rolling mill outlet temperature within the range shown in the equation (1). As described above, the present invention promotes recrystallization and grain growth in the hot-rolled sheet stage by controlling the low-temperature heating at 1100 ° C. or lower and controlling the exit temperature of the finishing mill within the temperature range shown in equation (1). There are two major features in that, the maximum strength of the (100) oriented grains, which hinders the improvement of the magnetic flux density, is lowered.

(1)式の範囲を低めに外れる領域では、本発明の効果
が十分に得られない。一方、(1)式の範囲内でみると
極力高温側が磁性向上に対しては望ましい。
The effect of the present invention cannot be sufficiently obtained in a region outside the range of the formula (1). On the other hand, within the range of the formula (1), it is desirable that the temperature is as high as possible for improving the magnetism.

(1)式の上限に外れる場合は、次の理由によって本発
明の効果が十分に得られない。鉄損と磁束密度の向上
は、熱延板段階での結晶粒の粒成長度合いに比例する。
そしてこの粒成長は、α域内での仕上出口温度×時間に
よって決定されるわけであるが、仕上出口から巻き取り
までの時間は設備制約と温度狂いによって設備単位でほ
ぼ一定している。
If the value exceeds the upper limit of the expression (1), the effect of the present invention cannot be sufficiently obtained for the following reason. The improvement of iron loss and magnetic flux density is proportional to the degree of grain growth of crystal grains at the hot rolled sheet stage.
This grain growth is determined by the finish outlet temperature in the α region × time, but the time from the finish outlet to the winding is almost constant for each equipment due to equipment restrictions and temperature deviation.

こういった中、仕上出口温度が、(1)式上限を越える
場合、変態点温度を越えてα+γの2相域となるため、
この仕上出口から巻き取りまでの時間の中で変態点をむ
かえることになり、その結果、α域内での粒成長に費す
時間が短くなり、本発明の効果が十分に得られないわけ
である。
Under these circumstances, if the finish outlet temperature exceeds the upper limit of the formula (1), the temperature exceeds the transformation point temperature and becomes a two-phase region of α + γ,
The transformation point is changed in the time from the finish outlet to the winding, and as a result, the time spent for grain growth in the α region is shortened, and the effect of the present invention cannot be sufficiently obtained. .

〔巻き取り〕〔Winding〕

巻き取り温度を650℃以下の範囲とすることを条件とす
る。
The condition is that the winding temperature is within 650 ° C.

巻き取りは、熱延板の再結晶、粒成長を期待する立場か
ら言えば、高温巻き取りを行うのが有利である。具体的
には680℃以上の温度で巻き取るのが効果的であるとさ
れている。しかしながらこのような高温での巻き取り
は、脱スケール性の悪化、単位コイル内での特性値のバ
ラツキを起こすことは周知の事実である。
From the standpoint of expecting recrystallization and grain growth of the hot-rolled sheet, it is advantageous to wind the coil at a high temperature. Specifically, it is said that winding at a temperature of 680 ° C or higher is effective. However, it is a well-known fact that such winding at a high temperature causes deterioration in descaling property and variation in characteristic values within the unit coil.

本発明は、これら680℃以上の高温巻き取りによって起
こる諸問題を防止すべく、その上限を650℃とした。
又、下限については特に制限はないが、500℃以下の低
温での巻き取りでは、仕上圧延機出口以降の冷却が急冷
となり過ぎ、巻き取り形状の悪化をもたらすため、下限
は500℃程度が望ましい。
In the present invention, the upper limit is set to 650 ° C. in order to prevent various problems caused by the high temperature winding of 680 ° C. or higher.
Further, the lower limit is not particularly limited, but in winding at a low temperature of 500 ° C. or less, cooling after the exit of the finish rolling mill becomes too rapid and the winding shape is deteriorated, so the lower limit is preferably about 500 ° C. .

〔実施例1〕 C:0.0030%、Si:0.15%、Mn:0.15%、P:0.07%、solAl:
0.0014%、S:0.0032%の成分組成の鋼を転炉、RHを使用
して溶製し、これを続く連続鋳造機によって250mm厚の
スラブとなし、次にで熱延工程における加熱条件と仕上
圧延条件を表1に示す条件に振り、2.5mm厚の熱延板を
得た。
[Example 1] C: 0.0030%, Si: 0.15%, Mn: 0.15%, P: 0.07%, solAl:
Steel with a composition of 0.0014% and S: 0.0032% was smelted using a converter and RH, and then a continuous casting machine was used to form a 250 mm thick slab. Then, heating conditions and finish in the hot rolling process were performed. By rolling the rolling conditions to those shown in Table 1, a hot rolled sheet having a thickness of 2.5 mm was obtained.

この熱延板は、酸洗し脱スケールした後、冷間圧延機に
よって製品板厚の0.50mmに圧延し、750℃×30秒の連続
焼鈍を実施し、成品とした。
The hot rolled sheet was pickled, descaled, rolled by a cold rolling mill to a product sheet thickness of 0.50 mm, and continuously annealed at 750 ° C. for 30 seconds to obtain a finished product.

こうして得た各成品より、30mm×280mmのエプスタイン
試験片を圧延方向より8枚、圧延方向の直角方向から8
枚の計16枚採取し、磁性焼鈍前後の磁気特性を測定し
た。
From each product obtained in this way, 8 Epstein test pieces of 30 mm x 280 mm from the rolling direction and 8 from the direction perpendicular to the rolling direction.
A total of 16 sheets were sampled and the magnetic properties before and after magnetic annealing were measured.

尚、磁性焼鈍条件は、窒素雰囲気中で750℃×2hrとし
た。
The magnetic annealing conditions were 750 ° C. × 2 hours in a nitrogen atmosphere.

〔実施例2〕 C:0.0035%、Si:0.80%、Mn:0.22%、P:0.02%、solAl:
0.0018%、S:0.0035%の成分組成の鋼を転炉、RHを使用
して溶製し、これを続く連続鋳造機によって250mm厚の
スラブとなし、次いで熱延工程における加熱条件と仕上
圧延条件を表2に示す条件に振り、2.3mm厚の熱延板を
得た。
[Example 2] C: 0.0035%, Si: 0.80%, Mn: 0.22%, P: 0.02%, solAl:
Steel with a composition of 0.0018% and S: 0.0035% was smelted using a converter and RH, and then a continuous casting machine was used to form a slab with a thickness of 250 mm, and then heating conditions and finish rolling conditions in the hot rolling process. Was rolled under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness of 2.3 mm.

この熱延板は、酸洗し脱スケールした後、冷間圧延機に
よって製品板厚の0.50mmに圧延し、790℃×30秒の連続
焼鈍を実施し、成品とした。
The hot rolled sheet was pickled, descaled, rolled by a cold rolling mill to a product sheet thickness of 0.50 mm, and continuously annealed at 790 ° C. for 30 seconds to obtain a finished product.

こうして得た各成品より、30mm×280mmのエプスタイン
試験片を圧延方向より8枚、圧延方向の直角方向から8
枚の計16枚採取し、磁性焼鈍前後の磁気特性を測定し
た。
From each product obtained in this way, 8 Epstein test pieces of 30 mm x 280 mm from the rolling direction and 8 from the direction perpendicular to the rolling direction.
A total of 16 sheets were sampled and the magnetic properties before and after magnetic annealing were measured.

尚、磁性焼鈍条件は、窒素雰囲気中で750℃×2hrとし
た。
The magnetic annealing conditions were 750 ° C. × 2 hours in a nitrogen atmosphere.

〔実施例3〕 C:0.0035%、Si:0.50%、Mn:0.20%、P:0.07%、solAl:
0.0016%、S:0.0030%の成分組成を狙いこれに、Cu,Sn,
Sb,Bの1種または2種以上の元素を添加し、表3に示す
成分の250mm厚のスラブを製造した。
[Example 3] C: 0.0035%, Si: 0.50%, Mn: 0.20%, P: 0.07%, solAl:
Aiming at a composition of 0.0016% and S: 0.0030%, Cu, Sn,
One or more elements of Sb and B were added to produce a 250 mm thick slab having the components shown in Table 3.

これらのスラブを続く熱延工程において加熱条件と仕上
圧延条件を表4に示す条件に振り、2.3mm厚の熱延板を
得た。
In the subsequent hot rolling process of these slabs, heating conditions and finish rolling conditions were changed to those shown in Table 4 to obtain hot rolled sheets having a thickness of 2.3 mm.

この熱延板は、酸洗し脱スケールした後、冷間圧延機に
よって製品板厚の0.50mmに圧延し、780℃×30秒の連続
焼鈍を実施し、成品とした。
The hot-rolled sheet was pickled, descaled, rolled to a product sheet thickness of 0.50 mm by a cold rolling mill, and continuously annealed at 780 ° C. for 30 seconds to obtain a finished product.

こうして得た各成品より、30mm×280mmのエプスタイン
試験片を圧延方向より8枚、圧延方向の直角方向から8
枚の計16枚採取し、磁性焼鈍前後の磁気特性を測定し
た。
From each product obtained in this way, 8 Epstein test pieces of 30 mm x 280 mm from the rolling direction and 8 from the direction perpendicular to the rolling direction.
A total of 16 sheets were sampled and the magnetic properties before and after magnetic annealing were measured.

尚、磁性焼鈍条件は、窒素雰囲気中で750℃×2hrで実施
した。
The magnetic annealing conditions were 750 ° C. × 2 hr in a nitrogen atmosphere.

(発明の効果) 以上の如く、本発明により低中級品の磁性焼鈍前後の磁
性特性の極めて優れた無方向成電磁鋼が得られることが
わかる。
(Effects of the Invention) As described above, according to the present invention, it is found that a non-intermediate grain-oriented electrical steel having excellent magnetic properties before and after magnetic annealing of a low-grade product can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、熱延工程における加熱炉抽出時のスラブ実温
度と、仕上圧延機出口温度を変化させた時の磁性焼鈍前
後の磁気特性の変化を示す図。 第2図は、熱延工程における加熱炉抽出時のスラブ実温
度を1060〜1085℃と、1150〜1170℃の2水準としたとき
の仕上圧延機出口温度と磁性焼鈍前の磁束密度との関係
を示した図。 第3図顕微鏡写真(×50)は、熱延工程における加熱炉
抽出時のスラブ実温度が1050℃と1150℃の2水準、仕上
圧延出口温度が820℃と870℃の2水準の計4水準の熱延
条件をとった材料の熱延板の金属組織を示す。 第4図電子顕微鏡写真(×3000)は、熱延工程における
加熱炉抽出時のスラブ実温度が1050℃と1150℃の2水準
の時の熱延板でのMnSの結晶の構造(析出状態)を示
す。 第5図は、熱延工程における加熱炉抽出時のスラブ実温
度が1050℃と1150℃の2水準、仕上圧延出口温度が820
℃と870℃の2水準の計4水準の熱延条件をとった材料
の熱延板の集合組織のX線強度を測定した結果を示した
ものである。
FIG. 1 is a diagram showing changes in the magnetic properties before and after magnetic annealing when the slab actual temperature at the time of extracting a heating furnace in the hot rolling process and the finish rolling mill outlet temperature are changed. Fig. 2 shows the relationship between the finish rolling mill outlet temperature and the magnetic flux density before magnetic annealing when the slab actual temperature during extraction of the heating furnace in the hot rolling process is set to two levels of 1060 to 1085 ° C and 1150 to 1170 ° C. The figure which showed. Fig. 3 Micrograph (× 50) shows 4 levels in total, slab actual temperature of 1050 ℃ and 1150 ℃ at the time of furnace extraction during hot rolling process and finish rolling exit temperature of 820 ℃ and 870 ℃. 3 shows a metallographic structure of a hot-rolled sheet of a material subjected to the hot-rolling conditions of No. Fig. 4 Electron micrograph (× 3000) shows the structure of MnS crystals (precipitation state) in the hot-rolled sheet when the actual slab temperature during extraction in the heating furnace in the hot-rolling process is two levels of 1050 ° C and 1150 ° C. Indicates. Fig. 5 shows two levels of actual slab temperature of 1050 ℃ and 1150 ℃ during extraction of the heating furnace in the hot rolling process, and the finish rolling outlet temperature is 820.
2 shows the results of measuring the X-ray intensity of the texture of a hot-rolled sheet made of a material subjected to a total of 4 hot-rolling conditions of 2 ° C. and 870 ° C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.005%以下 Si:1.5%以下 Al:0.5%以下 Mn:0.1〜0.4% P:0.15%以下 S:0.0050%以下 を含み残部が鉄および不可避的不純物からなる電磁鋼ス
ラブを熱延する際に、スラブを1100℃以下に焼き上げ、
その後仕上圧延機出口温度Y(℃)を(1)式で示され
た温度範囲に制御し、次いで注水冷却し650℃以下の温
度で巻き取り、続いて脱スケール、冷間圧延、焼鈍する
ことを特徴とする磁性焼鈍前後の磁気特性の優れた無方
向性電磁鋼板の製造方法。 870+80×Si(%)≧Y≧820+80×Si(%)…(1)式
1. By weight% C: 0.005% or less Si: 1.5% or less Al: 0.5% or less Mn: 0.1 to 0.4% P: 0.15% or less S: 0.0050% or less, with the balance being iron and unavoidable impurities When hot rolling an electromagnetic steel slab, the slab is baked to 1100 ° C or below,
After that, the finish rolling mill outlet temperature Y (° C) is controlled within the temperature range shown by the formula (1), and then it is cooled by water injection and wound at a temperature of 650 ° C or lower, followed by descaling, cold rolling and annealing. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties before and after magnetic annealing. 870 + 80 × Si (%) ≧ Y ≧ 820 + 80 × Si (%)… (1) formula
【請求項2】重量%でC:0.005%以下 Si:1.5%以下 Al:0.5%以下 Mn:0.1〜0.4% P:0.15%以下 S:0.0050%以下を含み、 更に、Cu:0.01〜1.0% Sn:0.02〜0.20% Sb:0.010〜0.30% B:0.0003〜0.0050% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる電磁鋼スラブを熱延する際に、スラブ
を1100℃以下に焼き上げ、その後仕上厚延機出口温度Y
(℃)を(1)式で示された温度範囲に制御し、次いで
注水冷却し650℃以下の温度で巻き取り、続いて脱スケ
ール、冷間圧延、焼鈍することを特徴とする磁性焼鈍前
後の磁気特性の優れた無方向性電磁鋼板の製造方法。 870+80×Si(%)≧Y≧820+80×Si(%)…(1)式
2. C: 0.005% or less by weight% Si: 1.5% or less Al: 0.5% or less Mn: 0.1 to 0.4% P: 0.15% or less S: 0.0050% or less, further Cu: 0.01 to 1.0% Sn: 0.02-0.20% Sb: 0.010-0.30% B: 0.0003-0.0050% One or more types are contained, and the balance is made of iron and unavoidable impurities. Baked below 1100 ℃, then finish thickening machine exit temperature Y
Before and after magnetic annealing, characterized in that (° C) is controlled within the temperature range indicated by the formula (1), and then water cooling is performed and winding is performed at a temperature of 650 ° C or less, followed by descaling, cold rolling and annealing. For manufacturing a non-oriented electrical steel sheet having excellent magnetic properties. 870 + 80 × Si (%) ≧ Y ≧ 820 + 80 × Si (%)… (1) formula
JP2174982A 1990-07-02 1990-07-02 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing Expired - Fee Related JPH0742501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174982A JPH0742501B2 (en) 1990-07-02 1990-07-02 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174982A JPH0742501B2 (en) 1990-07-02 1990-07-02 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing

Publications (2)

Publication Number Publication Date
JPH0463228A JPH0463228A (en) 1992-02-28
JPH0742501B2 true JPH0742501B2 (en) 1995-05-10

Family

ID=15988152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174982A Expired - Fee Related JPH0742501B2 (en) 1990-07-02 1990-07-02 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing

Country Status (1)

Country Link
JP (1) JPH0742501B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479992B1 (en) * 1999-09-22 2005-03-30 주식회사 포스코 A non-oriented steel sheet with excellent magnetic property and a method for producing it
KR100544641B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method of manufacturing grain-oriented electrical steel sheet having low magnetostriction and superior magnetic property
JP4542306B2 (en) * 2002-04-05 2010-09-15 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
JP6110097B2 (en) * 2012-03-30 2017-04-05 日新製鋼株式会社 High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
KR101657849B1 (en) * 2014-12-26 2016-09-20 주식회사 포스코 Soft magnetic steel having excellent free cutting characteristics and method of manufacturing therof
KR101657848B1 (en) * 2014-12-26 2016-09-20 주식회사 포스코 Soft magnetic steel having excellent forging characteristic, soft magnetic part and method of manufacturing the same
CN110643891B (en) * 2018-06-26 2021-03-12 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof
CN113165033A (en) * 2018-11-26 2021-07-23 杰富意钢铁株式会社 Method for producing non-oriented electromagnetic steel sheet
CN112143974B (en) * 2020-09-27 2021-10-22 江苏省沙钢钢铁研究院有限公司 Production method of non-oriented silicon steel and non-oriented silicon steel
CN112609128B (en) * 2020-11-30 2022-06-17 武汉钢铁有限公司 Non-oriented silicon steel plate with excellent corrosion resistance for high-efficiency motor and production method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938814A (en) * 1972-08-18 1974-04-11
JPS5174923A (en) * 1974-12-25 1976-06-29 Kawasaki Steel Co Atsumimuraganaku katsudenjitokuseino ryokona teikeisodenjikotaino seizohoho
JPS5752410A (en) * 1980-08-21 1982-03-27 Matsushita Electric Ind Co Ltd Top plate molding method of cooking table
JPS60190521A (en) * 1984-03-08 1985-09-28 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet
JPS62180014A (en) * 1986-02-04 1987-08-07 Nippon Steel Corp Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture
JPS62199720A (en) * 1986-02-25 1987-09-03 Sumitomo Metal Ind Ltd Production of non-oriented electrical steel sheet having excellent magnetic characteristic
JPS63210237A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of non-oriented silicon steel sheet having high magnetic flux density
JPH0361323A (en) * 1989-07-31 1991-03-18 Nkk Corp Manufacture of nonoriented silicon steel sheet
JPH03264619A (en) * 1990-03-15 1991-11-25 Nippon Steel Corp Manufacture of nonoriented electrical steel sheet having superior magnetic characteristic by direct sending and rolling

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938814A (en) * 1972-08-18 1974-04-11
JPS5174923A (en) * 1974-12-25 1976-06-29 Kawasaki Steel Co Atsumimuraganaku katsudenjitokuseino ryokona teikeisodenjikotaino seizohoho
JPS5752410A (en) * 1980-08-21 1982-03-27 Matsushita Electric Ind Co Ltd Top plate molding method of cooking table
JPS60190521A (en) * 1984-03-08 1985-09-28 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet
JPS62180014A (en) * 1986-02-04 1987-08-07 Nippon Steel Corp Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture
JPS62199720A (en) * 1986-02-25 1987-09-03 Sumitomo Metal Ind Ltd Production of non-oriented electrical steel sheet having excellent magnetic characteristic
JPS63210237A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of non-oriented silicon steel sheet having high magnetic flux density
JPH0361323A (en) * 1989-07-31 1991-03-18 Nkk Corp Manufacture of nonoriented silicon steel sheet
JPH03264619A (en) * 1990-03-15 1991-11-25 Nippon Steel Corp Manufacture of nonoriented electrical steel sheet having superior magnetic characteristic by direct sending and rolling

Also Published As

Publication number Publication date
JPH0463228A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
EP2832866A1 (en) (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
JP2023551845A (en) High standard non-oriented silicon steel and its production method
WO1996000306A1 (en) Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JPH07116510B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH0583612B2 (en)
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP7288215B2 (en) Non-oriented electrical steel sheet
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JPH07116514B2 (en) Hot rolling method for non-oriented electrical steel sheet
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees