JPH0741882A - Production of sintered titanium alloy - Google Patents

Production of sintered titanium alloy

Info

Publication number
JPH0741882A
JPH0741882A JP5190613A JP19061393A JPH0741882A JP H0741882 A JPH0741882 A JP H0741882A JP 5190613 A JP5190613 A JP 5190613A JP 19061393 A JP19061393 A JP 19061393A JP H0741882 A JPH0741882 A JP H0741882A
Authority
JP
Japan
Prior art keywords
powder
less
alloy
sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5190613A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Hideki Fujii
秀樹 藤井
Tatsuo Yamazaki
達夫 山崎
Takao Horitani
貴雄 堀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5190613A priority Critical patent/JPH0741882A/en
Publication of JPH0741882A publication Critical patent/JPH0741882A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered Ti alloy high in relative density and having excellent mechanical properties, at the time of producing a sintered Ti allay, by regulating the oxygen content in Ti powder to be used and the size distribution. CONSTITUTION:At the time of producing a sintered Ti alloy by using extra-low chlorine Ti powder produced by a hydrogenation and dehydrogenation method as a raw material, as the raw material Ti powder, a powdery mixture in which 40 to 70% is constituted of Ti powder having 45 to 150mum grain size and 0.1 to 0.24wt.% oxygen content, 5 to 20% is constituted of Ti powder for adding alloy elements contg. at least one kind among Y, Er and B and having 3 to 10mum average grain size, and the balance Ti powder having 10 to 45mum grain size and 0.2 to 0.37wt.% oxygen content is used. At the time of producing a sintered Ti alloy contg. Al, Al and V, Fe or Al, Fe or the like, Ti powder for adding allay elements obtd. by incorporating Y, Er, B or the like into a Ti-Al series master alloy, a Ti-Al-V series master allay, a Ti-Fe series master alloy and a Ti-Al-Fe series master alloy respectively is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金法による焼結
チタン合金の製造方法に関する。さらに詳しくは素粉末
混合法による焼結チタン合金の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered titanium alloy by powder metallurgy. More specifically, it relates to a method for producing a sintered titanium alloy by the elementary powder mixing method.

【0002】[0002]

【従来の技術】粉末冶金法は材料から最終形状に近い形
の製品を直接製造する、いわゆるニアーネットシェイプ
技術の一つで、加工性や成形性あるいは被削性に乏しい
チタン合金製品を得るための製造方法として適してい
る。特に、素粉末混合法はチタン粉末と合金元素添加用
粉末を混合して容器に充填し、これを圧力3〜8ton/cm
2で成形して圧粉体とした後、真空中1100〜130
0℃で1〜8時間の焼結と合金化熱処理を同時に行う方
法であり、焼結前に軟質のチタン粉末が大部分を占める
ことより良好な成形性を有しており室温において精密な
形状の圧粉体を得ることができるという利点を有してい
る。
2. Description of the Related Art The powder metallurgy method is one of so-called near net shape technology for directly producing a product having a shape close to a final shape from a material, and for obtaining a titanium alloy product having poor workability, formability or machinability. Is suitable as a manufacturing method. Particularly, in the elementary powder mixing method, titanium powder and alloying element addition powder are mixed and filled in a container, and the pressure is 3 to 8 ton / cm.
After forming into a green compact by molding in 2 , it is 1100 to 130 in vacuum
This is a method in which sintering and alloying heat treatment are performed simultaneously at 0 ° C for 1 to 8 hours, and since soft titanium powder occupies the majority before sintering, it has good formability and a precise shape at room temperature. It has an advantage that a green compact of can be obtained.

【0003】しかし、素粉末混合法は上記のような高温
・長時間の焼結を行っても焼結密度が不十分で内部ポア
が残存しているため疲労強度が低いという欠点がある。
これを解決する方法として、HIP処理により高密度化
し内部ポアを完全に消滅させ疲労強度を向上させる方法
があるものの、製造コストが著しく高くなる。
However, the elemental powder mixing method has a drawback that the fatigue strength is low because the sintering density is insufficient and the internal pores remain even after the above-mentioned sintering at high temperature for a long time.
As a method of solving this, there is a method of increasing the density by HIP treatment to completely eliminate the internal pores and improving the fatigue strength, but the manufacturing cost becomes significantly high.

【0004】これに対して特公平2−50172号公報
には、平均粒径40〜177μmのチタン粉末と、粉砕
により高エネルギーを付与した平均粒径0.5〜20μ
mの合金形成粒子(本発明中の合金元素添加用粉末に相
当する)を使用し、粉末の表面エネルギーを高くするこ
とにより、焼結段階で理論値に対して99.0%以上の
密度を得る方法が記載されている。
On the other hand, Japanese Patent Publication No. 2-50172 discloses a titanium powder having an average particle size of 40 to 177 μm and an average particle size of 0.5 to 20 μm to which high energy is imparted by pulverization.
By using the alloy-forming particles of m (corresponding to the powder for alloying element addition in the present invention) and increasing the surface energy of the powder, a density of 99.0% or more with respect to the theoretical value is obtained at the sintering stage. The method of obtaining is described.

【0005】しかしこの方法はハンタースポンジファイ
ン(HSF)などの酸素を0.1重量%以下しか含有し
ない軟質のチタン粉末を使用した場合には、一般的な成
形・焼結条件で99.0%以上の高密度化が可能である
が、製造工程上0.1重量%を超える酸素を不可避的に
含有するため、硬質で成形性に劣る水素化脱水素法によ
り製造したチタン粉末(HDH粉末)を使用した場合に
は、上記の一般的な成形・焼結条件での高密度化は困難
であった。またHDH粉末は塩素を20ppm 以下しか含
んでおらず、塩素による結晶粒粗大化の抑制効果がない
ため塩素を0.05〜0.2重量%含むHSFを使用し
た場合と異なり焼結時に組織が粗大化し機械的特性、特
に疲労特性の劣化をもたらすという欠点もあった。
However, this method is 99.0% under general molding and sintering conditions when using a soft titanium powder such as Hunter Sponge Fine (HSF) containing less than 0.1% by weight of oxygen. Although the above densification is possible, titanium powder (HDH powder) produced by a hydrodehydrogenation method that is hard and inferior in moldability because it inevitably contains oxygen exceeding 0.1% by weight in the production process. However, it was difficult to increase the density under the above general molding and sintering conditions. Further, HDH powder contains less than 20 ppm of chlorine and has no effect of suppressing grain coarsening due to chlorine, so that the structure during sintering is different from that when HSF containing 0.05 to 0.2% by weight of chlorine is used. There is also a drawback that it coarsens and deteriorates mechanical properties, especially fatigue properties.

【0006】一方、1980年 American Institute of
Mining, metallurgical, and Petroleum Engineers, I
nc. 発行の「Titanium '80 Science and Technology 」
1185頁に記載されているようにTiまたはTi−6
Al−4V溶製材にErあるいはYを約1重量%以下添
加すると、これらの酸化物が合金中に生成し、これが粒
成長を抑制するため組織が微細化されるという知見があ
るが、この知見を素粉末混合法に応用しY,Er,Y2
3 ,Er2 3 あるいはTiB2 ,B4 C,BNなど
のB含有化合物を単独で直接添加、混合すると、チタン
粉末や合金元素添加用粉末の接触を阻害し、かつ粉末表
面の移動をピン止めするためHDH粉末の焼結特性をさ
らに劣化させ、その結果疲労強度がさらに低下するとい
う欠点があった。
On the other hand, 1980 American Institute of
Mining, metallurgical, and Petroleum Engineers, I
"Titanium '80 Science and Technology" published by nc.
Ti or Ti-6 as described on page 1185.
It has been found that when Er or Y is added in an amount of about 1% by weight or less to an Al-4V ingot, these oxides are generated in the alloy, which suppresses grain growth, resulting in a finer structure. Is applied to the elementary powder mixing method, and Y, Er, Y 2
O 3, Er 2 O 3 or TiB 2, B 4 C, is added directly alone B-containing compound, such as BN, upon mixing, to inhibit contact of the powder additive titanium powder and alloying elements, and the movement of the powder surface The pinning causes a further deterioration of the sintering characteristics of the HDH powder, resulting in a further decrease in fatigue strength.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、水素
化脱水素法により製造した極低塩素チタン粉末を用いた
粉末混合法にて焼結チタン合金を製造する方法におい
て、従来と同様の一般的な成形・焼結条件で99.5%
以上の高密度焼結チタン合金を、さらには結晶粒の粗大
化を抑制し従来より高い機械的特性を有する焼結チタン
合金を製造する方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention is a method for producing a sintered titanium alloy by a powder mixing method using an ultra-low chlorine titanium powder produced by a hydrodehydrogenation method. 99.5% under typical molding and sintering conditions
It is an object of the present invention to provide a method for producing the above-described high-density sintered titanium alloy, and further, a sintered titanium alloy that suppresses coarsening of crystal grains and has higher mechanical properties than ever before.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、(1)水素化脱水素法により製造した極低塩
素チタン粉末を用いた素粉末混合法で焼結チタン合金を
製造する方法において、使用粉末全重量の40%以上7
0%以下が、粒径45μm以上150μm以下で且つ
0.1重量%より多く0.24重量%以下の酸素を含有
するチタン粉末であり、使用粉末全重量の5%以上20
%以下が、平均粒径3μm以上10μm以下の合金元素
添加用粉末であり、残部が粒径10μm以上で45μm
未満で且つ0.2重量%以上0.37重量%以下の酸素
を含有するチタン粉末であることを特徴とする、焼結チ
タン合金の製造方法であり、(2)素粉末混合法にて焼
結チタン合金を製造する方法において、当該合金の0.
03重量%以上0.5重量%以下に相当する量のY,E
r,Bの少なくとも一種類を含有する合金元素添加用粉
末を使用することを特徴とする(1)記載の焼結チタン
合金の製造方法であり、(3)素粉末混合法にてAlを
含む焼結チタン合金を製造する方法において、合金元素
添加用粉末としてTi,Alの両元素とY,Er,Bの
少なくとも一種類を当該合金の0.03重量%以上0.
5重量%以下含有した粉末を使用することを特徴とする
(1)記載の焼結チタン合金の製造方法であり、(4)
素粉末混合法にてAl,Vを含む焼結チタン合金を製造
する方法において、合金元素添加用粉末としてAl,V
の両元素とY,Er,Bの少なくとも一種類を当該合金
の0.03重量%以上0.5重量%以下含有した粉末を
使用することを特徴とする(1)記載の焼結チタン合金
の製造方法であり、(5)素粉末混合法にてFeを含む
焼結チタン合金を製造する方法において、合金元素添加
用粉末としてTi,Feの両元素とY,Er,Bの少な
くとも一種類を当該合金の0.03重量%以上0.5重
量%以下含有した粉末を使用することを特徴とする
(1)記載の焼結チタン合金の製造方法であり、(6)
素粉末混合法にてAl,Feを含む焼結チタン合金を製
造する方法において、合金元素添加用粉末としてTi,
Al,Feの3元素とY,Er,Bの少なくとも一種類
を当該合金の0.03重量%以上1.5重量%以下含有
した粉末を使用することを特徴とする(1)記載の焼結
チタン合金の製造方法である。
In order to achieve the above object, the present invention provides (1) production of a sintered titanium alloy by an elementary powder mixing method using an ultra low chlorine titanium powder produced by a hydrodehydrogenation method. In the method, 40% or more of the total weight of the powder used 7
0% or less is a titanium powder having a particle size of 45 μm or more and 150 μm or less and containing oxygen in an amount of more than 0.1% by weight and 0.24% by weight or less, and 5% or more of the total weight of the used powder 20
% Or less is a powder for adding an alloy element having an average particle size of 3 μm or more and 10 μm or less, and the balance is 45 μm when the particle size is 10 μm or more.
A method for producing a sintered titanium alloy, characterized in that it is a titanium powder containing less than 0.2% by weight and 0.37% by weight or less of oxygen. In the method for producing a titanium-bound alloy, the alloy of 0.
Y, E in an amount corresponding to 03% by weight or more and 0.5% by weight or less
A method for producing a sintered titanium alloy according to (1), characterized in that a powder for adding an alloy element containing at least one of r and B is used, and (3) Al is included in the elementary powder mixing method. In the method for producing a sintered titanium alloy, both powders of Ti and Al and at least one of Y, Er and B are added as powders for addition of alloying elements in an amount of 0.03% by weight or more of the alloy.
(4) The method for producing a sintered titanium alloy according to (1), characterized in that a powder containing 5% by weight or less is used.
In a method for producing a sintered titanium alloy containing Al and V by an elementary powder mixing method, Al and V are used as alloy element addition powders.
Of the sintered titanium alloy according to (1), characterized in that a powder containing both of the above elements and at least one of Y, Er and B is contained in an amount of 0.03% by weight or more and 0.5% by weight or less of the alloy. (5) In the method of producing a sintered titanium alloy containing Fe by the elemental powder mixing method (5), both elements of Ti and Fe and at least one of Y, Er and B are used as the alloying element addition powder. A method for producing a sintered titanium alloy according to (1), characterized in that a powder containing 0.03% by weight or more and 0.5% by weight or less of the alloy is used.
In the method for producing a sintered titanium alloy containing Al and Fe by the elementary powder mixing method, Ti, Ti,
Sintering according to (1), characterized in that a powder containing three elements of Al and Fe and at least one of Y, Er and B in an amount of 0.03% by weight or more and 1.5% by weight or less of the alloy is used. It is a method for producing a titanium alloy.

【0009】ここで、合金元素添加用粉末とはTiある
いは合金元素のうち2元素以上からなる母合金粉末ある
いは合金化元素の単一金属粉末である。また合金元素添
加用粉末に含有されるY,Er,Bは単体でもよいし、
酸化物などの化合物、例えばY2 3 ,Er2 3 ,B
4 Cなどでもよい。さらにY,Er,Bのうち少なくと
も一種類を含有する合金元素添加用粉末を必要な合金元
素添加量の全部に使用してもよいし、一部に使用しても
よい。なお、本発明において、チタン合金中にはTiと
合金元素および0.4重量%以下の酸素の他、0.4重
量%未満のFe(Fe非含有合金の場合)、N,C,H
などの不純物を不可避的に含んでもよい。
Here, the alloying element-adding powder is a mother alloying powder of Ti or two or more of the alloying elements or a single metal powder of the alloying element. Further, Y, Er, B contained in the powder for adding the alloying element may be a single substance,
Compounds such as oxides such as Y 2 O 3 , Er 2 O 3 , B
4 C etc. may be used. Further, the powder for adding an alloying element containing at least one of Y, Er and B may be used for all of the required amount of the alloying element or a part thereof. In the present invention, in the titanium alloy, in addition to Ti and alloy elements and oxygen of 0.4 wt% or less, Fe of less than 0.4 wt% (in the case of Fe-free alloy), N, C, H
It may inevitably contain impurities such as.

【0010】[0010]

【作用】以下、本発明を詳細に説明する。本発明者等
は、酸素を0.1重量%より多く含むためハンタースポ
ンジファインより成形性に劣るものの、安定供給が可能
な水素化脱水素法により製造した極低塩素チタン粉末
(HDH粉末)を使用し、焼結段階で高密度で且つ高い
機械的特性を有する焼結チタン合金を得るため、粉末の
粒度分布、酸素量、組織制御などに関して研究を重ね
た。その結果、使用粉末の酸素含有量と粒度分布を最適
化することにより、さらには結晶粒成長を抑制する物質
の添加方法を工夫することにより、相対密度が99.5
%以上で高い機械的特性を達成できることを見いだし
た。ここで相対密度とは、同一な組成の合金を溶解法に
より製造した場合に得られる試料の密度を100%とし
た場合の密度である。
The present invention will be described in detail below. The inventors of the present invention have an extremely low chlorine titanium powder (HDH powder) produced by the hydrodehydrogenation method, which can be stably supplied, though it is inferior in moldability to Hunter sponge fine because it contains more than 0.1% by weight of oxygen. In order to obtain a sintered titanium alloy which is used and has a high density and high mechanical properties in the sintering stage, studies have been conducted on the particle size distribution of powder, the amount of oxygen, the structure control, and the like. As a result, the relative density was 99.5 by optimizing the oxygen content and particle size distribution of the powder used, and further devising the method of adding a substance that suppresses crystal grain growth.
It has been found that a high mechanical property can be achieved at a rate of 100% or more. Here, the relative density is a density when the density of a sample obtained when alloys having the same composition are manufactured by a melting method is 100%.

【0011】本発明1(請求項1の発明)では、0.1
重量%より多く0.24重量%以下の酸素を含有し、粒
径が45μm以上150μm以下のHDH粉末を使用粉
末全重量の40%以上70%以下使用し、平均粒径3μ
m以上10μm以下の合金元素添加用粉末を使用粉末全
重量の5%以上20%以下使用し、残部が0.2重量%
以上0.37重量%以下の酸素を含有し、粒径が10μ
m以上で45μm未満のHDH粉末を使用することとし
た。このような特定の酸素含有量の粉末を特定の割合で
使用し、さらには特定の粒径の合金元素添加用粉末を特
定の割合で添加することにより、圧粉成形性や最終製品
の機械的特性を低下させる含有酸素量の大幅な上昇防止
と、粉末の充填率と焼結特性の向上による焼結密度上昇
の両者を同時に満たすことができる。
In the present invention 1 (the invention of claim 1), 0.1
HDH powder containing more than 0.2% by weight and not more than 0.24% by weight and having a particle size of 45 μm or more and 150 μm or less is used.
A powder for adding an alloying element of m or more and 10 μm or less is used in an amount of 5% to 20% of the total weight of the powder, and the balance is 0.2% by weight.
Containing 0.37% by weight or less of oxygen and having a particle size of 10 μm
It was decided to use HDH powder of m or more and less than 45 μm. By using a powder with such a specific oxygen content in a specific ratio, and further adding a powder for adding an alloying element with a specific particle size in a specific ratio, the powder compactability and the mechanical properties of the final product can be improved. It is possible to simultaneously satisfy both a large increase in the amount of oxygen contained which deteriorates the characteristics and an increase in the sintering density due to the improvement of the powder filling rate and the sintering characteristics.

【0012】ここで使用するチタン粉末の粒径を10μ
m以上150μm以下にしたのは、150μmより粒径
が大きいと粉末の充填率が低下し十分な焼結密度が得ら
れないためであり、10μm未満にすると活性なチタン
では安全上取扱いが困難となるためである。さらに、粒
径45μm以上150μm以下のHDH粉末を使用粉末
全重量の40%以上70%以下としたのは、40%未満
では粒径が45μm未満のチタン粉末の割合が相対的に
増加し、製品の酸素量が上昇し機械的特性が急激に低下
するためであり、70%より多いと粗大な粉末が多くな
り焼結密度が低下し機械的特性が劣化するためである。
The particle size of the titanium powder used here is 10 μm.
The reason why the particle size is set to m or more and 150 μm or less is that if the particle size is larger than 150 μm, the powder filling rate decreases and a sufficient sintered density cannot be obtained. This is because Furthermore, the reason that the HDH powder having a particle size of 45 μm or more and 150 μm or less is set to 40% or more and 70% or less of the total weight of the powder used is that the ratio of titanium powder having a particle size of less than 45 μm is relatively increased when it is less than 40%. This is because the amount of oxygen increases and the mechanical properties sharply decrease, and when it is more than 70%, the coarse powder increases, the sintering density decreases, and the mechanical properties deteriorate.

【0013】またチタン粉末の酸素量の下限値(10〜
45μm粉末で0.2%、45〜150μm粉末で0.
1%)は、水素化脱水素法の製造工程上不可避的に含ま
れる値の下限値であり、上限値を粒径10μm以上45
μm未満の粉末で0.37%、45μm以上150μm
以下の粉末で0.24%とした理由は、10μm以上4
5μm未満の粉末では含有酸素量が0.37重量%より
多いと本発明の粉末混合比では焼結後の製品の酸素量が
増加し機械的特性が低下するためであり、45μm以上
150μm以下の粉末では含有酸素量が0.24重量%
より多いと圧粉成形性が低下し十分な焼結密度が得られ
ないためである。
The lower limit of the oxygen content of titanium powder (10 to 10
0.2% for 45 μm powder and 0.1% for 45-150 μm powder.
1%) is the lower limit of the value that is unavoidably included in the production process of the hydrodehydrogenation method, and the upper limit of the value is 10 μm or more and 45 μm or more.
0.37% for powder less than μm, 45 μm or more and 150 μm
The reason why the content of the following powder is 0.24% is 10 μm or more 4
This is because if the content of oxygen in the powder of less than 5 μm is more than 0.37% by weight, the oxygen content of the product after sintering will increase and the mechanical properties will decrease at the powder mixing ratio of the present invention. Oxygen content in powder is 0.24% by weight
This is because if the amount is larger than the above range, the powder compactability is lowered and a sufficient sintered density cannot be obtained.

【0014】一方、合金元素添加用粉末の平均粒径を3
μm以上10μm以下に制限したのは、3μm未満にす
ると粉末が凝集し均一に混合されないため成分偏析が起
きる理由による。また、10μmより大きくすると、チ
タン粉末間の空隙を埋めることによる充填密度向上効果
が小さくなるため、焼結密度が十分に向上しない。さら
に平均粒径を3μm以上10μm以下の合金元素添加用
粉末を使用粉末全重量の5%以上20%以下使用するこ
ととしたのは、5%未満だと、粉末が充填されていない
チタン粉末間の空隙の数が多くなり、充填密度が低下
し、さらには焼結密度が低下するためであり、20%よ
り多くすると微細な粉末が多いため凝集し均一に混合さ
れず成分偏析が起きるためである。
On the other hand, the average particle size of the alloying element addition powder is 3
The reason why the particle size is limited to 10 μm or more is that if the particle size is less than 3 μm, the powder agglomerates and is not mixed uniformly, so that segregation of components occurs. On the other hand, if it is larger than 10 μm, the effect of improving the packing density by filling the voids between the titanium powders becomes small, and the sintering density is not sufficiently improved. Further, the reason why the alloy element-adding powder having an average particle size of 3 μm or more and 10 μm or less is to be used in an amount of 5% or more and 20% or less of the total weight of the powder is that if the amount is less than 5%, This is because the number of voids increases, the packing density decreases, and further, the sintering density decreases. If it exceeds 20%, a large amount of fine powder agglomerates and is not uniformly mixed, resulting in segregation of components. is there.

【0015】さて、本発明2(請求項2の発明)は、さ
らに当該合金の0.03重量%以上0.5重量%以下に
相当するY,Er,Bの少なくとも1種類を含有する合
金元素添加用粉末を使用することとした。これは焼結密
度向上に加え、組織を微細化することにより機械的特
性、特に疲労特性をさらに向上させることを目的とする
ものである。しかし、従来の技術の項で説明したよう
に、これらの粉末を直接添加すると焼結密度が著しく低
下する。そこで本発明では、焼結密度を低下することな
く結晶粒粗大化を抑制し組織を微細化にするため、予め
合金元素添加用粉末の内部に結晶粒を抑制する物質を含
有させて使用することとした。すなわちY,Er,Bあ
るいはこれらの化合物の周囲を合金元素が被っている状
態の合金元素添加用粉末を使用することにより、Y,E
r,Bあるいはこれらを含む化合物がチタン粉末同士あ
るいはチタン粉末と合金元素の接触を阻害せず、且つ粉
末表面の移動を妨げることがなくなる。しかし、一方で
は焼結合金の結晶粒界移動を阻害し結晶粒成長を抑制す
る。その結果、従来と同様の条件での混合−充填−成形
−真空焼結の工程で、結晶粒微細化と99.5%以上の
高い相対密度を有し、高い機械的性質を有する焼結チタ
ン合金が得られる。なお、Y,Er,Bの添加量につい
て、当該チタン合金の0.03重量%未満では添加量が
少ないため組織微細化の効果が認められず、また0.5
重量%以下で既に十分な効果が得られており、0.5重
量%より多く添加するとY,Er,Bの粗大な塊ができ
破壊の起点となり機械的特性を低下させる。
The present invention 2 (the invention of claim 2) further comprises an alloy element containing at least one of Y, Er and B corresponding to 0.03% by weight or more and 0.5% by weight or less of the alloy. It was decided to use powder for addition. This is intended to further improve mechanical properties, particularly fatigue properties, by making the structure finer in addition to improving the sintering density. However, as described in the section of the prior art, when these powders are directly added, the sintered density is significantly reduced. Therefore, in the present invention, in order to suppress the crystal grain coarsening without reducing the sintered density and to make the structure finer, it is necessary to use a substance that suppresses the crystal grains in the powder for alloying element addition in advance. And That is, by using Y, Er, B or a powder for adding an alloy element in a state where the alloy element covers the periphery of these compounds, Y, E,
It does not occur that r, B or a compound containing these does not hinder the contact between titanium powders or between titanium powders and alloying elements, and does not hinder the movement of the powder surface. However, on the other hand, it inhibits the grain boundary migration of the sintered alloy and suppresses the grain growth. As a result, in the steps of mixing-filling-molding-vacuum sintering under the same conditions as conventional ones, sintered titanium having crystal grain refinement and a high relative density of 99.5% or more and high mechanical properties. An alloy is obtained. Regarding the addition amount of Y, Er, B, if the addition amount of the titanium alloy is less than 0.03% by weight, the effect of microstructure refinement is not recognized because the addition amount is small, and the addition amount is 0.5.
Sufficient effect has already been obtained at less than 0.5% by weight, and if more than 0.5% by weight is added, coarse Y, Er, and B lumps will be formed, which will cause fracture and deteriorate mechanical properties.

【0016】本発明3(請求項3の発明)は、Alを合
金元素として含む焼結チタン合金、例えばTi−6Al
−4V、Ti−5Al−2.5Fe、Ti−5Al−
2.5Snなどに本発明2を適用した場合で、例えばT
i−Al・2元母合金に予めY,Er,Bを含有させた
母合金を合金元素添加用粉末として使用する。
The present invention 3 (the invention of claim 3) is a sintered titanium alloy containing Al as an alloy element, for example, Ti-6Al.
-4V, Ti-5Al-2.5Fe, Ti-5Al-
When the present invention 2 is applied to 2.5Sn or the like, for example, T
A master alloy in which Y, Er, and B are contained in advance in an i-Al / binary master alloy is used as a powder for adding alloy elements.

【0017】本発明4(請求項4の発明)は、Al,V
を合金元素として含む焼結チタン合金、例えばTi−6
Al−4VやTi−10V−2Fe−3Alなどに本発
明2を適用した場合で、例えばAl−V・2元母合金に
予めY,Er,Bを含有させた母合金を合金元素添加用
粉末として使用する。
The present invention 4 (the invention of claim 4) is based on Al, V
Sintered titanium alloy containing Al as an alloy element, for example, Ti-6
When the present invention 2 is applied to Al-4V, Ti-10V-2Fe-3Al, etc., for example, a master alloy in which Y, Er, B is previously contained in an Al-V / binary master alloy is added as an alloy element powder. To use as.

【0018】本発明5(請求項5の発明)は、Feを合
金元素として含む焼結チタン合金、例えばTi−5Al
−2.5FeやTi−10V−2Fe−3Alなどに本
発明2を適用した場合で、例えばTi−Fe・2元母合
金に予めY,Er,Bを含有させた母合金を合金元素添
加用粉末として使用する。
The present invention 5 (the invention of claim 5) is a sintered titanium alloy containing Fe as an alloy element, for example, Ti-5Al.
When the present invention 2 is applied to -2.5Fe, Ti-10V-2Fe-3Al, etc., for example, a master alloy in which Y, Er, B is previously contained in a Ti-Fe / binary master alloy is used for adding alloy elements. Used as a powder.

【0019】本発明6(請求項6の発明)は、AlとF
eを合金元素として含む焼結チタン合金、例えばTi−
5Al−2.5FeやTi−10V−2Fe−3Alな
どに本発明2を適用した場合で、例えばTi−Al−F
e・3元母合金に、予めY,Er,Bを含有させた母合
金を合金元素添加用粉末として使用する。
The present invention 6 (the invention of claim 6) comprises Al and F
A sintered titanium alloy containing e as an alloying element, such as Ti-
In the case where the present invention 2 is applied to 5Al-2.5Fe or Ti-10V-2Fe-3Al, for example, Ti-Al-F
e. A ternary master alloy containing Y, Er, and B in advance is used as a powder for adding alloy elements.

【0020】[0020]

【実施例】以下、実施例によって本発明をさらに詳しく
説明する。試験に供した試料は以下の工程で作製した。
すなわち、所定の割合の粉末を混合し、成形用容器に充
填し、4.9ton/cm2 の圧力で冷間静水圧成形(CI
P)を行い圧粉体を作製し、1×10-3Paの真空中で1
250℃、2時間の焼結を行い、直径15mmで長さ15
0mmの円柱状試験片を作製した。この焼結合金に対し、
焼結密度(相対密度)測定、含有酸素量測定、β粒径測
定、引張試験による伸び測定、回転曲げ疲労試験を行っ
た。ここで、疲労強度は繰り返し数が107 回に達して
も破断しない負荷応力で評価した。
The present invention will be described in more detail with reference to the following examples. The sample used for the test was prepared by the following steps.
That is, powders in a predetermined ratio are mixed and filled in a molding container, and cold isostatic pressing (CI) is performed at a pressure of 4.9 ton / cm 2.
P) to produce a green compact, and 1 in a vacuum of 1 × 10 −3 Pa
Sintering at 250 ℃ for 2 hours, diameter 15mm and length 15
A 0 mm columnar test piece was prepared. For this sintered alloy,
Sintered density (relative density) measurement, oxygen content measurement, β particle size measurement, elongation measurement by a tensile test, and rotary bending fatigue test were performed. Here, the fatigue strength was evaluated by a load stress that does not break even when the number of repetitions reaches 10 7 .

【0021】まず最初に、本発明1について説明する。
粒径、含有酸素量の異なるHDH粉末、および合金元素
添加用粉末を、表1に示すように種々の割合で混合し、
圧粉成形、焼結を行った試料の焼結密度、含有酸素量、
β粒径、伸び、疲労強度を表2に示す。
First, the present invention 1 will be described.
HDH powders having different particle sizes and oxygen contents, and alloy element addition powders are mixed in various proportions as shown in Table 1,
Sintered density, oxygen content, of the compacted and sintered sample
Table 2 shows β particle size, elongation, and fatigue strength.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1において、試験番号1は、粒径45μ
m以上150μm以下のチタン粉末90%と平均粒径6
μmの60Al−40V粉末10%を使用した場合で、
従来法に相当する。従来の項で述べたように、ハンター
スポンジファインのような酸素含有量が0.1%以下の
チタン粉末を用いた場合には、この方法により高密度焼
結品が得られるが、表2に示すように、酸素含有量の高
いHDH粉末を用いた場合、98%程度の焼結密度しか
得られず、伸び、疲労強度も低い値である。
In Table 1, Test No. 1 has a particle size of 45 μm.
90% titanium powder with a particle size of m to 150 μm and an average particle size of 6
When using 10% of 60 Al-40V powder of μm,
It corresponds to the conventional method. As described in the conventional section, when titanium powder having an oxygen content of 0.1% or less such as Hunter Sponge Fine is used, a high density sintered product can be obtained by this method. As shown, when HDH powder having a high oxygen content is used, only a sintered density of about 98% is obtained, and the elongation and fatigue strength are also low values.

【0025】これに対し、本発明1の実施例である試験
番号3,4,5,8,10,12,15,16,19,
20は、いずれも99.5%以上の高い焼結密度が得ら
れており、焼結品の含有酸素量も0.35%以下で、1
2%以上の高い伸び値、および300MPa 以上の高い疲
労強度が得られている。これは、特定の酸素含有量の粉
末を特定の割合で、さらには特定の粒径の合金元素添加
用粉末を特定の割合で添加することにより、圧粉成形性
や最終製品の機械的特性を低下させる含有酸素量の大幅
な上昇防止と、粉末の充填率と焼結特性の向上による焼
結密度上昇の両者を同時に満たすことができた結果であ
る。
On the other hand, the test numbers 3, 4, 5, 8, 10, 12, 15, 16, 19, which are the embodiments of the present invention 1,
No. 20 has a high sintered density of 99.5% or more, and the oxygen content of the sintered product is 0.35% or less.
A high elongation value of 2% or more and a high fatigue strength of 300 MPa or more are obtained. This is because the powder with a specific oxygen content is added in a specific ratio, and further, the powder for adding an alloy element with a specific particle size is added in a specific ratio to improve the powder compactability and the mechanical properties of the final product. This is the result of being able to simultaneously satisfy both a large increase in the contained oxygen content to be reduced and an increase in the sintering density due to the improvement of the powder filling rate and the sintering characteristics.

【0026】一方、本発明1の比較例である試験番号
2,6,7,9,11,13,14,17,18,21
はいずれも、8%以下の低い伸び値と300MPa 以下の
低い疲労強度しか得られなかった。特に、試験番号21
はTi−6Al−4Vよりも高強度の組成であるにもか
かわらず、例えば試験番号5のTi−6Al−4Vより
も低い疲労強度しか得られていない。この理由は次の通
りである。試験番号2および7は、粒径45μm以上1
50μm以下のチタン粉末の割合が本発明1の範囲より
も多かったため、粗大なチタン粉末が多くなり焼結密度
が99%にも達せず、そのため伸び、疲労強度が低下し
た。試験番号6および9は、粒径45μm以上150μ
m以下のチタン粉末の割合が本発明1の範囲よりも少な
かったため、粒径が45μm未満のチタン粉末の割合が
相対的に増加し、製品の酸素量が0.35%以上にまで
増加し、伸び、疲労強度が低下した。試験番号11は、
45μm以上150μm以下のチタン粉末の含有酸素量
が本発明1の上限値である0.24重量%より多かった
ため、圧粉成形性が低下し十分な焼結密度が得られず、
伸び、疲労強度が低下した。試験番号13は、粒径10
μm以上45μm未満のチタン粉末の含有酸素量が本発
明1の上限値である0.37%を超えたため、焼結後の
製品の酸素量が0.35%以上にまで増加し、伸び、疲
労強度が低下した。また、試験番号14は合金元素添加
用粉末の平均粒径が本発明1の下限値以下であり、試験
番号21はTi−AlとTi−Feの添加量の総計が本
発明1の上限値である20%を超えたため、いずれも成
分偏析を生じ、十分な伸び、疲労強度が得られなかっ
た。また、試験番号17は、合金元素添加用粉末の平均
粒径が本発明1の上限値よりも大きかったため、チタン
粉末間の空隙を埋めることによる充填密度向上効果が小
さくなり、焼結密度が十分に向上せず、その結果、伸
び、疲労強度が低下した。試験番号18は、合金元素添
加用粉末の使用割合が、5%未満であったため、粉末が
充填されていないチタン粉末間の空隙の数が多くなり、
充填密度および焼結密度が低下し、その結果、伸び、疲
労強度が低下した。
On the other hand, test numbers 2, 6, 7, 9, 11, 13, 14, 17, 18, 21, which are comparative examples of the present invention 1.
In each case, only a low elongation value of 8% or less and a low fatigue strength of 300 MPa or less were obtained. In particular, test number 21
Despite having a higher strength composition than Ti-6Al-4V, for example, only a fatigue strength lower than that of Ti-6Al-4V of test number 5 was obtained. The reason for this is as follows. Test numbers 2 and 7 are particle sizes of 45 μm or more 1
Since the proportion of titanium powder having a particle size of 50 μm or less was higher than the range of the present invention 1, the amount of coarse titanium powder was large, and the sintered density did not reach 99%, so that the elongation and fatigue strength decreased. Test Nos. 6 and 9 have a particle size of 45 μm or more and 150 μm
Since the proportion of titanium powder of m or less was less than the range of the present invention 1, the proportion of titanium powder having a particle size of less than 45 μm was relatively increased, and the oxygen content of the product was increased to 0.35% or more. Elongation and fatigue strength decreased. Test number 11 is
Since the oxygen content of the titanium powder having a particle size of 45 μm or more and 150 μm or less was larger than 0.24% by weight, which is the upper limit of the present invention 1, the compacting property was reduced and a sufficient sintered density could not be obtained.
Elongation and fatigue strength decreased. Test number 13 is particle size 10
Since the oxygen content of the titanium powder having a size of μm or more and less than 45 μm exceeds 0.37%, which is the upper limit of the present invention 1, the oxygen content of the product after sintering increases to 0.35% or more, and elongation and fatigue The strength decreased. Further, Test No. 14 has an average particle size of the alloy element addition powder that is equal to or lower than the lower limit of Invention 1, and Test No. 21 has the total amount of Ti—Al and Ti—Fe added that is the upper limit of Invention 1. Since the content exceeds 20%, segregation of the components occurs in all cases, and sufficient elongation and fatigue strength cannot be obtained. Further, in Test No. 17, since the average particle diameter of the alloying element-adding powder was larger than the upper limit value of Invention 1, the effect of filling the voids between the titanium powders was small, and the effect of improving the packing density was small, and the sintering density was sufficient. As a result, the elongation and fatigue strength decreased. In Test No. 18, since the use ratio of the alloying element addition powder was less than 5%, the number of voids between the titanium powders not filled with the powder increased,
The packing density and the sintered density decreased, and as a result, the elongation and fatigue strength decreased.

【0027】次に、本発明2〜6の実施例について説明
する。粒径が45μm以上150μm以下で酸素を0.
15重量%含有するHDH粉末を使用粉末全重量の50
%、表3に示す合金元素添加用粉末、さらには粒径が4
5μm未満10μm以上で酸素を0.30重量%含有す
るHDH粉末を、母材の組成がTi−6Al−4V(試
験番号22〜33および37〜40)またはTi−5A
l−2.5Feで、Y,Er,Bの総量が母材に対して
表3に示すような値となるように混合し、成形、焼結を
行った。成形、焼結の条件、焼結品の寸法・形状、試験
方法・項目は先に述べた本発明1の説明と同じである。
Next, examples of the present inventions 2 to 6 will be described. When the particle size is 45 μm or more and 150 μm or less, oxygen is less than 0.
Use HDH powder containing 15% by weight 50% of total weight of powder
%, The alloy element addition powder shown in Table 3, and further the particle size is 4
HDH powder containing less than 5 μm and 10 μm or more and containing 0.30% by weight of oxygen, the composition of the base material is Ti-6Al-4V (test numbers 22 to 33 and 37 to 40) or Ti-5A.
1-2.5Fe was mixed so that the total amount of Y, Er, and B would be the values shown in Table 3 with respect to the base material, followed by molding and sintering. The conditions of molding and sintering, the size and shape of the sintered product, and the test method and items are the same as those described in the first embodiment.

【0028】[0028]

【表3】 [Table 3]

【0029】表3において、試験番号22〜25は、
Y,Y2 3 ,Er2 3 ,B4 Cの単体粉末をそのま
まチタン粉末および母材の合金元素添加用粉末(60A
l−40V)と混合した場合で、いずれも焼結密度が9
6%以下の低い値となっており、伸び、疲労強度は極端
に低い値となっている。これは、これらの粉末を直接添
加したため、チタン粉末や母材の合金元素添加用粉末の
接触を阻害し、且つ粉末表面の移動をピン止めし、水素
化脱水素により製造したチタン粉末の焼結特性をさらに
劣化させたことによる。
In Table 3, the test numbers 22 to 25 are
A single powder of Y, Y 2 O 3 , Er 2 O 3 , and B 4 C is used as it is as a titanium powder and a powder for adding an alloy element to the base metal (60 A).
1-40 V), the sintered density was 9 in each case.
It is a low value of 6% or less, and the elongation and fatigue strength are extremely low values. Since these powders were added directly, the contact of titanium powder and the powder for alloying element addition of the base metal was inhibited, and the movement of the powder surface was pinned, and the sintering of titanium powder produced by hydrodehydrogenation was performed. This is because the characteristics are further deteriorated.

【0030】一方、表3において、試験番号26〜40
では、母材の合金元素添加用物質(60Al−40V、
TiAl3 、TiFe、5Ti−5Al−2.5Fe)
の塊とY,Er,B,Y2 3 ,Er2 3 ,B4 C粉
末を混合し、真空アーク溶解し、さらにこれを粉砕し、
Y,Er,Bあるいはこれらの化合物の周囲を合金元素
が被っている状態の合金元素添加用粉末を作製し使用し
た場合である。
On the other hand, in Table 3, test numbers 26 to 40
Then, a substance for alloying element addition of the base material (60Al-40V,
TiAl 3 , TiFe, 5Ti-5Al-2.5Fe)
Mass and Y, Er, B, Y 2 O 3, Er 2 O 3, B 4 C powder were mixed, vacuum arc melting, and further pulverized into,
This is the case where a powder for alloying element addition in which Y, Er, B or the compound thereof is covered with the alloying element is prepared and used.

【0031】本発明の実施例である試験番号26〜36
および38,39は、Y,Er,Bあるいはこれらの化
合物を添加しなかった場合、例えば試験番号4(表1,
表2)と比べて、平均β粒径は4分の1あるいはそれ以
下になっており、一方焼結密度は99.5%以上の高い
値となっている。その結果、伸び、疲労強度は、Y,E
r,Bあるいはこれらの化合物を添加しなかった場合よ
りも高くなっており、特に疲労強度は370MPa 以上の
極めて高い値が得られた。これは、予め合金元素添加用
粉末の内部に結晶粒を抑制する物質を含有させて使用し
たことにより、チタン粉末同士あるいはチタン粉末と合
金元素の接触を阻害せず、且つ粉末表面の移動を妨げる
ことがなくなり、しかし、一方では焼結合金の結晶粒界
移動を阻害し結晶粒成長を抑制し、従来と同様の条件で
の混合−充填−成形−真空焼結の工程で、結晶粒微細化
と99.5%以上の高い相対密度を有し、高い機械的性
質が得られたものである。
Test Nos. 26 to 36, which are examples of the present invention
And 38 and 39, when Y, Er, B or these compounds are not added, for example, Test No. 4 (Table 1,
Compared with Table 2), the average β particle size is 1/4 or less, while the sintered density is a high value of 99.5% or more. As a result, the elongation and fatigue strength are Y, E
The values were higher than when r, B or these compounds were not added, and particularly, the fatigue strength was an extremely high value of 370 MPa or more. This is because the powder for alloying element addition contains a substance that suppresses crystal grains in advance, so that it does not hinder the contact between titanium powders or between titanium powders and alloying elements, and also prevents the movement of the powder surface. However, on the other hand, it inhibits the grain boundary movement of the sintered alloy and suppresses the grain growth, and in the process of mixing-filling-forming-vacuum sintering under the same conditions as the conventional one, the grain refinement is performed. It has a high relative density of 99.5% or more and high mechanical properties.

【0032】これに対し、試験番号37では、β粒径お
よび疲労強度は試験番号4と比較してほとんど変化して
おらず、Y2 3 の添加効果はほとんど見られなかっ
た。これは、Y2 3 の添加量が本発明の下限値である
0.03重量%未満であったためである。また試験番号
40では、β粒径は微細化したものの伸び、疲労強度は
低い値しか得られなかった。これは、Y2 3 の添加量
が、本発明の上限値を超えたため、Y2 3 の粗大な塊
が生成し、破壊の起点となり機械的特性を低下させたも
のである。
On the other hand, in the test number 37, the β grain size and the fatigue strength were almost unchanged as compared with the test number 4, and the effect of adding Y 2 O 3 was hardly seen. This is because the amount of Y 2 O 3 added was less than 0.03% by weight, which is the lower limit of the present invention. In Test No. 40, the β particle size was refined, but the elongation and fatigue strength were low. This is because the amount of Y 2 O 3 added exceeded the upper limit of the present invention, so that a coarse lump of Y 2 O 3 was generated, which became the starting point of fracture and deteriorated the mechanical properties.

【0033】[0033]

【発明の効果】以上説明したように本発明を適用するこ
とにより、水素化脱水素法により製造した極低塩素チタ
ン粉末を用いた素粉末混合法にて焼結チタン合金を製造
する方法において、従来と同様の一般的な成形・焼結条
件で99.5%以上の高密度焼結チタン合金を、さらに
は結晶粒の粗大化を抑制し従来より高い機械的特性を有
する焼結チタン合金を製造することができる。
By applying the present invention as described above, in a method for producing a sintered titanium alloy by an elementary powder mixing method using an ultra-low chlorine titanium powder produced by a hydrodehydrogenation method, Under the same general molding and sintering conditions as before, a high density sintered titanium alloy of 99.5% or more, and a sintered titanium alloy that suppresses the coarsening of crystal grains and has higher mechanical properties than before are used. It can be manufactured.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月15日[Submission date] February 15, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項6[Name of item to be corrected] Claim 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、水素
化脱水素法により製造した極低塩素チタン粉末を用いた
素粉末混合法にて焼結チタン合金を製造する方法におい
て、従来と同様の一般的な成形・焼結条件で99.5%
以上の高密度焼結チタン合金を、さらには結晶粒の粗大
化を抑制し従来より高い機械的特性を有する焼結チタン
合金を製造する方法を提供することを目的とする。
Therefore, the present invention uses an ultra low chlorine titanium powder produced by the hydrodehydrogenation method.
In the method of producing a sintered titanium alloy by the elementary powder mixing method , 99.5% under the same general molding and sintering conditions as the conventional one.
It is an object of the present invention to provide a method for producing the above-described high-density sintered titanium alloy, and further, a sintered titanium alloy that suppresses coarsening of crystal grains and has higher mechanical properties than ever before.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、(1)水素化脱水素法により製造した極低塩
素チタン粉末を用いた素粉末混合法で焼結チタン合金を
製造する方法において、使用粉末全重量の40%以上7
0%以下が、粒径45μm以上150μm以下で且つ
0.1重量%より多く0.24重量%以下の酸素を含有
するチタン粉末であり、使用粉末全重量の5%以上20
%以下が、平均粒径3μm以上10μm以下の合金元素
添加用粉末であり、残部が粒径10μm以上45μm未
で且つ0.2重量%以上0.37重量%以下の酸素を
含有するチタン粉末であることを特徴とする、焼結チタ
ン合金の製造方法であり、(2)素粉末混合法にて焼結
チタン合金を製造する方法において、当該合金の0.0
3重量%以上0.5重量%以下に相当する量のY,E
r,Bの少なくとも一種類を含有する合金元素添加用粉
末を使用することを特徴とする(1)記載の焼結チタン
合金の製造方法であり、(3)素粉末混合法にてAlを
含む焼結チタン合金を製造する方法において、合金元素
添加用粉末としてTi,Alの両元素とY,Er,Bの
少なくとも一種類を当該合金の0.03重量%以上0.
5重量%以下含有した粉末を使用することを特徴とする
(1)記載の焼結チタン合金の製造方法であり、(4)
素粉末混合法にてAl,Vを含む焼結チタン合金を製造
する方法において、合金元素添加用粉末としてAl,V
の両元素とY,Er,Bの少なくとも一種類を当該合金
の0.03重量%以上0.5重量%以下含有した粉末を
使用することを特徴とする(1)記載の焼結チタン合金
の製造方法であり、(5)素粉末混合法にてFeを含む
焼結チタン合金を製造する方法において、合金元素添加
用粉末としてTi,Feの両元素とY,Er,Bの少な
くとも一種類を当該合金の0.03重量%以上0.5重
量%以下含有した粉末を使用することを特徴とする
(1)記載の焼結チタン合金の製造方法であり、(6)
素粉末混合法にてAl,Feを含む焼結チタン合金を製
造する方法において、合金元素添加用粉末としてTi,
Al,Feの3元素とY,Er,Bの少なくとも一種類
を当該合金の0.03重量%以上0.5重量%以下含有
した粉末を使用することを特徴とする(1)記載の焼結
チタン合金の製造方法である。
In order to achieve the above object, the present invention provides (1) production of a sintered titanium alloy by an elementary powder mixing method using an ultra low chlorine titanium powder produced by a hydrodehydrogenation method. In the method, 40% or more of the total weight of the powder used 7
0% or less is a titanium powder having a particle size of 45 μm or more and 150 μm or less and containing oxygen in an amount of more than 0.1% by weight and 0.24% by weight or less, and 5% or more of the total weight of the used powder 20
% Or less is the powder for adding alloy elements having an average particle size of 3 μm or more and 10 μm or less, and the balance is 10 μm or more and 45 μm or less.
A method for producing a sintered titanium alloy, characterized in that it is a titanium powder containing oxygen in an amount of 0.2 wt% or more and 0.37 wt% or less. A method for producing a titanium-bound alloy, wherein the
An amount of Y, E equivalent to 3% by weight or more and 0.5% by weight or less
A method for producing a sintered titanium alloy according to (1), characterized in that a powder for adding an alloy element containing at least one of r and B is used, and (3) Al is included in the elementary powder mixing method. In the method for producing a sintered titanium alloy, both powders of Ti and Al and at least one of Y, Er and B are added as powders for addition of alloying elements in an amount of 0.03% by weight or more of the alloy.
(4) The method for producing a sintered titanium alloy according to (1), characterized in that a powder containing 5% by weight or less is used.
In a method for producing a sintered titanium alloy containing Al and V by an elementary powder mixing method, Al and V are used as alloy element addition powders.
Of the sintered titanium alloy according to (1), characterized in that a powder containing both of the above elements and at least one of Y, Er and B is contained in an amount of 0.03% by weight or more and 0.5% by weight or less of the alloy. (5) In the method of producing a sintered titanium alloy containing Fe by the elemental powder mixing method (5), both elements of Ti and Fe and at least one of Y, Er and B are used as the alloying element addition powder. A method for producing a sintered titanium alloy according to (1), characterized in that a powder containing 0.03% by weight or more and 0.5% by weight or less of the alloy is used.
In the method for producing a sintered titanium alloy containing Al and Fe by the elementary powder mixing method, Ti, Ti,
Sintering according to (1), characterized in that a powder containing three elements of Al and Fe and at least one of Y, Er and B in an amount of 0.03 wt% or more and 0.5 wt% or less of the alloy is used. It is a method for producing a titanium alloy.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明1(請求項1の発明)では、0.1
重量%より多く0.24重量%以下の酸素を含有し、粒
径が45μm以上150μm以下のHDH粉末を使用粉
末全重量の40%以上70%以下使用し、平均粒径3μ
m以上10μm以下の合金元素添加用粉末を使用粉末全
重量の5%以上20%以下使用し、残部が0.2重量%
以上0.37重量%以下の酸素を含有し、粒径が10μ
m以上で45μm未満のHDH粉末を使用することとし
た。このような特定の酸素含有量の粉末を特定の割合で
使用し、さらには特定の粒径の合金元素添加用粉末を特
定の割合で添加することにより、圧粉成形性や最終製品
の機械的特性を低下させる含有酸素量の大幅な上昇防止
と、粉末の充填率と焼結特性の向上による焼結密度上昇
の両者を同時に満たすことができる。
In the present invention 1 (the invention of claim 1), 0.1
HDH powder containing more than 0.2% by weight and not more than 0.24% by weight and having a particle size of 45 μm or more and 150 μm or less is used.
A powder for adding an alloying element of m or more and 10 μm or less is used in an amount of 5% to 20% of the total weight of the powder, and the balance is 0.2% by weight.
Containing 0.37% by weight or less of oxygen and having a particle size of 10 μm
It was decided to use HDH powder of m or more and less than 45 μm. By using a powder with such a specific oxygen content in a specific ratio, and further adding a powder for adding an alloying element with a specific particle size in a specific ratio, the powder compactability and the mechanical properties of the final product can be improved. It is possible to simultaneously satisfy both a large increase in the amount of oxygen contained which deteriorates the characteristics and an increase in the sintering density due to the improvement of the powder filling rate and the sintering characteristics.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【実施例】以下、実施例によって本発明をさらに詳しく
説明する。試験に供した試料は以下の工程で作製した。
すなわち、所定の割合の粉末を混合し、成形用容器に充
填し、4.9ton/cm2 の圧力で冷間静水圧成形(CI
P)を行い圧粉体を作製し、1×10-3Paの真空中で1
250℃、2時間の焼結を行い、直径15mmで長さ15
0mmの円柱状試験片を作製した。この焼結チタン合金
対し、焼結密度(相対密度)測定、含有酸素量測定、β
粒径測定、引張試験による伸び測定、回転曲げ疲労試験
を行った。ここで、疲労強度は繰り返し数が107 回に
達しても破断しない負荷応力で評価した。
The present invention will be described in more detail with reference to the following examples. The sample used for the test was prepared by the following steps.
That is, powders in a predetermined ratio are mixed and filled in a molding container, and cold isostatic pressing (CI) is performed at a pressure of 4.9 ton / cm 2.
P) to produce a green compact, and 1 in a vacuum of 1 × 10 −3 Pa
Sintering at 250 ℃ for 2 hours, diameter 15mm and length 15
A 0 mm columnar test piece was prepared. For this sintered titanium alloy , sintered density (relative density) measurement, oxygen content measurement, β
Particle size measurement, elongation measurement by a tensile test, and rotary bending fatigue test were performed. Here, the fatigue strength was evaluated by a load stress that does not break even when the number of repetitions reaches 10 7 .

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】[0022]

【表1】 [Table 1]

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】一方、本発明1の比較例である試験番号
2,6,7,9,11,13,14,17,18,21
はいずれも、8%以下の低い伸び値と300MPa 以下の
低い疲労強度しか得られなかった。特に、試験番号21
はTi−6Al−4Vよりも高強度の組成であるにもか
かわらず、例えば試験番号5のTi−6Al−4Vより
も低い疲労強度しか得られていない。この理由は次の通
りである。試験番号2および7は、粒径45μm以上1
50μm以下のチタン粉末の割合が本発明1の範囲より
も多かったため、粗大なチタン粉末が多くなり焼結密度
が99%にも達せず、そのため伸び、疲労強度が低下し
た。試験番号6および9は、粒径45μm以上150μ
m以下のチタン粉末の割合が本発明1の範囲よりも少な
かったため、粒径が45μm未満のチタン粉末の割合が
相対的に増加し、製品の酸素量が0.35%以上にまで
増加し、伸び、疲労強度が低下した。試験番号11は、
45μm以上150μm以下のチタン粉末の含有酸素量
が本発明1の上限値である0.24重量%より多かった
ため、圧粉成形性が低下し十分な焼結密度が得られず、
伸び、疲労強度が低下した。試験番号13は、粒径10
μm以上45μm未満のチタン粉末の含有酸素量が本発
明1の上限値である0.37%を超えたため、焼結後の
製品の酸素量が0.35%以上にまで増加し、伸び、疲
労強度が低下した。また、試験番号14は合金元素添加
用粉末の平均粒径が本発明1の下限値以下であり、試験
番号21はTiAlとTiFeの添加量の総計が本発明
1の上限値である20%を超えたため、いずれも成分偏
析を生じ、十分な伸び、疲労強度が得られなかった。ま
た、試験番号17は、合金元素添加用粉末の平均粒径が
本発明1の上限値よりも大きかったため、チタン粉末間
の空隙を埋めることによる充填密度向上効果が小さくな
り、焼結密度が十分に向上せず、その結果、伸び、疲労
強度が低下した。試験番号18は、合金元素添加用粉末
の使用割合が、5%未満であったため、粉末が充填され
ていないチタン粉末間の空隙の数が多くなり、充填密度
および焼結密度が低下し、その結果、伸び、疲労強度が
低下した。
On the other hand, test numbers 2, 6, 7, 9, 11, 13, 14, 17, 18, 21, which are comparative examples of the present invention 1.
In each case, only a low elongation value of 8% or less and a low fatigue strength of 300 MPa or less were obtained. In particular, test number 21
Despite having a higher strength composition than Ti-6Al-4V, for example, only a fatigue strength lower than that of Ti-6Al-4V of test number 5 was obtained. The reason for this is as follows. Test numbers 2 and 7 are particle sizes of 45 μm or more 1
Since the proportion of titanium powder having a particle size of 50 μm or less was higher than the range of the present invention 1, the amount of coarse titanium powder was large, and the sintered density did not reach 99%, so that the elongation and fatigue strength decreased. Test Nos. 6 and 9 have a particle size of 45 μm or more and 150 μm
Since the proportion of titanium powder of m or less was less than the range of the present invention 1, the proportion of titanium powder having a particle size of less than 45 μm was relatively increased, and the oxygen content of the product was increased to 0.35% or more. Elongation and fatigue strength decreased. Test number 11 is
Since the oxygen content of the titanium powder having a particle size of 45 μm or more and 150 μm or less was larger than 0.24% by weight, which is the upper limit value of the present invention 1, the compacting property was reduced and a sufficient sintered density could not be obtained.
Elongation and fatigue strength decreased. Test number 13 is particle size 10
Since the oxygen content of the titanium powder having a size of μm or more and less than 45 μm exceeds 0.37%, which is the upper limit of the present invention 1, the oxygen content of the product after sintering increases to 0.35% or more, and elongation and fatigue The strength decreased. Further, in Test No. 14, the average particle diameter of the powder for alloying element addition is less than or equal to the lower limit value of Invention 1, and in Test No. 21 the total addition amount of TiAl and TiFe is 20% which is the upper limit value of Invention 1. Therefore, in all cases, segregation of components occurred, and sufficient elongation and fatigue strength could not be obtained. In Test No. 17, the average particle diameter of the alloying element-adding powder was larger than the upper limit value of Invention 1, so that the effect of filling the voids between the titanium powders was less effective to improve the packing density and the sintering density was sufficient. As a result, the elongation and fatigue strength decreased. In Test No. 18, since the use ratio of the alloying element addition powder was less than 5%, the number of voids between the titanium powders not filled with the powder was increased, and the packing density and the sintering density were decreased. As a result, elongation and fatigue strength decreased.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】次に、本発明2〜6の実施例について説明
する。粒径が45μm以上150μm以下で酸素を0.
15重量%含有するHDH粉末を使用粉末全重量の50
%、表3に示す合金元素添加用粉末、さらには粒径が
0μm未満45μm以上で酸素を0.30重量%含有す
るHDH粉末を、母材の組成がTi−6Al−4V(試
験番号22〜33および37〜40)またはTi−5A
l−2.5Feで、Y,Er,Bの総量が母材に対して
表3に示すような値となるように混合し、成形、焼結を
行った。成形、焼結の条件、焼結品の寸法・形状、試験
方法・項目は先に述べた本発明1の説明と同じである。
Next, examples of the present inventions 2 to 6 will be described. When the particle size is 45 μm or more and 150 μm or less, oxygen is less than 0.
Use HDH powder containing 15% by weight 50% of total weight of powder
%, Powder for alloying element addition shown in Table 3, and particle size of 1
An HDH powder containing less than 0 μm and 45 μm or more and containing 0.30% by weight of oxygen has a base material composition of Ti-6Al-4V (test numbers 22 to 33 and 37 to 40) or Ti-5A.
1-2.5Fe was mixed so that the total amount of Y, Er, and B would be the values shown in Table 3 with respect to the base material, followed by molding and sintering. The conditions of molding and sintering, the size and shape of the sintered product, and the test method and items are the same as those described in the first embodiment.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】[0028]

【表3】 [Table 3]

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】表3において、試験番号22〜25は、
Y,Y2 3 ,Er2 3 ,B4 Cの単体粉末をそのま
まチタン粉末および母材の合金元素添加用粉末(60A
l−40V)と混合した場合で、いずれも焼結密度が9
6%以下の低い値となっており、伸び、疲労強度は極端
に低い値となっている。これは、これらの粉末を直接添
加したため、チタン粉末や母材の合金元素添加用粉末の
接触を阻害し、且つ粉末表面の移動をピン止めし、水素
化脱水素法により製造したチタン粉末の焼結特性をさら
に劣化させたことによる。
In Table 3, the test numbers 22 to 25 are
A single powder of Y, Y 2 O 3 , Er 2 O 3 , and B 4 C is used as it is as a titanium powder and a powder for adding an alloy element to the base metal (60 A).
1-40 V), the sintered density was 9 in each case.
It is a low value of 6% or less, and the elongation and fatigue strength are extremely low values. This is because these powders were added directly, so that they hinder the contact of the titanium powder and the alloying element addition powder of the base metal, and pin the movement of the powder surface to prevent hydrogen.
This is because the sintering characteristics of the titanium powder manufactured by the chemical dehydrogenation method were further deteriorated.

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】一方、表3において、試験番号26〜40
では、母材の合金元素添加用物質(60Al−40V、
TiAl3 、TiFe、5Ti−5Al−2.5Fe)
の塊とY,Er,B,Y2 3 ,Er2 3 ,B4 C粉
末を混合し、真空アーク溶解し、さらにこれらを粉砕
し、Y,Er,Bあるいはこれらの化合物の周囲を合金
元素が被っている状態の合金元素添加用粉末を作製し使
用した場合である。
On the other hand, in Table 3, test numbers 26 to 40
Then, a substance for alloying element addition of the base material (60Al-40V,
TiAl 3 , TiFe, 5Ti-5Al-2.5Fe)
Mass and Y, Er, B, Y 2 O 3, Er 2 O 3, B 4 C powder were mixed, vacuum arc melting, and further pulverized them, Y, Er, B or around these compounds This is a case where a powder for adding an alloy element in a state covered with the alloy element was prepared and used.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】本発明の実施例である試験番号26〜36
および38,39は、Y,Er,Bあるいはこれらの化
合物を添加しなかった場合、例えば試験番号4(表1,
表2)と比べて、平均β粒径は4分の1あるいはそれ以
下になっており、一方焼結密度は99.5%以上の高い
値となっている。その結果、伸び、疲労強度は、Y,E
r,Bあるいはこれらの化合物を添加しなかった場合よ
りも高くなっており、特に疲労強度は370MPa 以上の
極めて高い値が得られた。これは、予め合金元素添加用
粉末の内部に結晶粒の成長を抑制する物質を含有させて
使用したことにより、チタン粉末同士あるいはチタン粉
末と合金元素の接触を阻害せず、且つ粉末表面の移動を
妨げることがなくなり、しかし、一方では焼結合金の結
晶粒界移動を阻害し結晶粒成長を抑制し、従来と同様の
条件での混合−充填−成形−真空焼結の工程で、結晶粒
微細化と99.5%以上の高い相対密度を有し、高い機
械的性質が得られたものである。 ─────────────────────────────────────────────────────
Test Nos. 26 to 36, which are examples of the present invention
And 38 and 39, when Y, Er, B or these compounds are not added, for example, Test No. 4 (Table 1,
Compared with Table 2), the average β particle size is 1/4 or less, while the sintered density is a high value of 99.5% or more. As a result, the elongation and fatigue strength are Y, E
The values were higher than when r, B or these compounds were not added, and particularly, the fatigue strength was an extremely high value of 370 MPa or more. This is because the substance for suppressing the growth of crystal grains was previously contained in the alloying element addition powder, so that the titanium powders did not interfere with each other or the contact between the titanium powder and the alloying element, and the movement of the powder surface was prevented. However, on the other hand, on the other hand, it inhibits the grain boundary movement of the sintered alloy and suppresses the grain growth, and in the process of mixing-filling-molding-vacuum sintering under the same conditions as before, the crystal grains It has a fine structure and a high relative density of 99.5% or more, and has high mechanical properties. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月8日[Submission date] March 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明1(請求項1の発明)では、0.1
重量%より多く0.24重量%以下の酸素を含有し、粒
径が45μm以上150μm以下のHDH粉末を使用粉
末全重量の40%以上70%以下使用し、平均粒径3μ
m以上10μm以下の合金元素添加用粉末を使用粉末全
重量の5%以上20%以下使用し、残部が0.2重量%
以上0.37重量%以下の酸素を含有し、粒径が10μ
m以上45μm未満のHDH粉末を使用することとし
た。このような特定の酸素含有量の粉末を特定の割合で
使用し、さらには特定の粒径の合金元素添加用粉末を特
定の割合で添加することにより、圧粉成形性や最終製品
の機械的特性を低下させる含有酸素量の大幅な上昇防止
と、粉末の充填率と焼結特性の向上による焼結密度上昇
の両者を同時に満たすことができる。
In the present invention 1 (the invention of claim 1), 0.1
HDH powder containing more than 0.2% by weight and not more than 0.24% by weight and having a particle size of 45 μm or more and 150 μm or less is used.
A powder for adding an alloying element of m or more and 10 μm or less is used in an amount of 5% to 20% of the total weight of the powder, and the balance is 0.2% by weight.
Containing 0.37% by weight or less of oxygen and having a particle size of 10 μm
It was decided to use HDH powder of m or more and less than 45 μm . By using a powder with such a specific oxygen content in a specific ratio, and further adding a powder for adding an alloying element with a specific particle size in a specific ratio, the powder compactability and the mechanical properties of the final product can be improved. It is possible to simultaneously satisfy both a large increase in the amount of oxygen contained which deteriorates the characteristics and an increase in the sintering density due to the improvement of the powder filling rate and the sintering characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀谷 貴雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takao Horiya 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法により製造した極低塩素
チタン粉末を用いた素粉末混合法で焼結チタン合金を製
造する方法において、使用粉末全重量の40%以上70
%以下が、粒径45μm以上150μm以下で且つ0.
1重量%より多く0.24重量%以下の酸素を含有する
チタン粉末であり、使用粉末全重量の5%以上20%以
下が、平均粒径3μm以上10μm以下の合金元素添加
用粉末であり、残部が粒径10μm以上で45μm未満
で且つ0.2重量%以上0.37重量%以下の酸素を含
有するチタン粉末であることを特徴とする、焼結チタン
合金の製造方法。
1. In a method for producing a sintered titanium alloy by an elementary powder mixing method using an ultra-low chlorine titanium powder produced by a hydrodehydrogenation method, 40% or more of the total weight of the powder used is 70.
% Or less is 45 μm or more and 150 μm or less, and 0.
A titanium powder containing oxygen in an amount of more than 1% by weight and 0.24% by weight or less, and 5% or more and 20% or less of the total weight of the powder used is a powder for adding an alloy element having an average particle size of 3 μm or more and 10 μm or less, A method for producing a sintered titanium alloy, wherein the balance is titanium powder having a particle size of 10 μm or more and less than 45 μm and containing 0.2% by weight or more and 0.37% by weight or less of oxygen.
【請求項2】 素粉末混合法にて焼結チタン合金を製造
する方法において、当該焼結チタン合金の0.03重量
%以上0.5重量%以下に相当する量のY,Er,Bの
少なくとも一種類を含有する合金元素添加用粉末を使用
することを特徴とする請求項1記載の焼結チタン合金の
製造方法。
2. A method for producing a sintered titanium alloy by an elementary powder mixing method, wherein the amount of Y, Er, B is 0.03% by weight or more and 0.5% by weight or less of the sintered titanium alloy. The method for producing a sintered titanium alloy according to claim 1, wherein a powder for adding an alloy element containing at least one kind is used.
【請求項3】 素粉末混合法にてAlを含む焼結チタン
合金を製造する方法において、合金元素添加用粉末とし
てTi,Alの両元素とY,Er,Bの少なくとも一種
類を当該焼結チタン合金の0.03重量%以上0.5重
量%以下に相当する量を含有した粉末を使用することを
特徴とする請求項1記載の焼結チタン合金の製造方法。
3. A method of producing a sintered titanium alloy containing Al by an elemental powder mixing method, wherein both elements of Ti and Al and at least one of Y, Er and B are sintered as alloying element addition powder. The method for producing a sintered titanium alloy according to claim 1, wherein a powder containing an amount corresponding to 0.03% by weight or more and 0.5% by weight or less of the titanium alloy is used.
【請求項4】 素粉末混合法にてAl,Vを含む焼結チ
タン合金を製造する方法において、合金元素添加用粉末
としてAl,Vの両元素とY,Er,Bの少なくとも一
種類を当該焼結チタン合金の0.03重量%以上0.5
重量%以下含有した粉末を使用することを特徴とする請
求項1記載の焼結チタン合金の製造方法。
4. A method for producing a sintered titanium alloy containing Al and V by an elementary powder mixing method, wherein both elements of Al and V and at least one of Y, Er and B are used as powders for adding alloy elements. 0.03% by weight or more of sintered titanium alloy 0.5
The method for producing a sintered titanium alloy according to claim 1, wherein a powder containing less than or equal to wt% is used.
【請求項5】 素粉末混合法にてFeを含む焼結チタン
合金を製造する方法において、合金元素添加用粉末とし
てTi,Feの両元素とY,Er,Bの少なくとも一種
類を当該焼結チタン合金の0.03重量%以上0.5重
量%以下含有した粉末を使用することを特徴とする請求
項1記載の焼結チタン合金の製造方法。
5. A method for producing a sintered titanium alloy containing Fe by the elementary powder mixing method, wherein both elements of Ti and Fe and at least one of Y, Er and B are sintered as the powder for adding alloy elements. The method for producing a sintered titanium alloy according to claim 1, wherein a powder containing 0.03% by weight or more and 0.5% by weight or less of the titanium alloy is used.
【請求項6】 素粉末混合法にてAl,Feを含む焼結
チタン合金を製造する方法において、合金元素添加用粉
末としてTi,Al,Feの3元素とY,Er,Bの少
なくとも一種類を当該焼結チタン合金の0.03重量%
以上1.5重量%以下含有した粉末を使用することを特
徴とする請求項1記載の焼結チタン合金の製造方法。
6. A method for producing a sintered titanium alloy containing Al and Fe by the elementary powder mixing method, wherein at least one of Ti, Al and Fe and Y, Er and B is used as a powder for adding alloy elements. 0.03% by weight of the sintered titanium alloy
The method for producing a sintered titanium alloy according to claim 1, characterized in that powder containing not less than 1.5% by weight is used.
JP5190613A 1993-07-30 1993-07-30 Production of sintered titanium alloy Withdrawn JPH0741882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190613A JPH0741882A (en) 1993-07-30 1993-07-30 Production of sintered titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5190613A JPH0741882A (en) 1993-07-30 1993-07-30 Production of sintered titanium alloy

Publications (1)

Publication Number Publication Date
JPH0741882A true JPH0741882A (en) 1995-02-10

Family

ID=16260991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190613A Withdrawn JPH0741882A (en) 1993-07-30 1993-07-30 Production of sintered titanium alloy

Country Status (1)

Country Link
JP (1) JPH0741882A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) * 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
CN102407337A (en) * 2011-11-24 2012-04-11 李宝干 Method for manufacturing titanium and titanium alloy powder metallurgy special-shaped pieces
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
US9977518B2 (en) 2001-10-22 2018-05-22 Apple Inc. Scrolling based on rotational movement
US10139870B2 (en) 2006-07-06 2018-11-27 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US10180732B2 (en) 2006-10-11 2019-01-15 Apple Inc. Gimballed scroll wheel
US10353565B2 (en) 2002-02-25 2019-07-16 Apple Inc. Input apparatus and button arrangement for handheld device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) * 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
CN1097639C (en) * 1998-07-21 2003-01-01 株式会社丰田中央研究所 Titanium-based composition material, method for producing the same and engine valve
US6551371B1 (en) 1998-07-21 2003-04-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
US9977518B2 (en) 2001-10-22 2018-05-22 Apple Inc. Scrolling based on rotational movement
US10353565B2 (en) 2002-02-25 2019-07-16 Apple Inc. Input apparatus and button arrangement for handheld device
US10139870B2 (en) 2006-07-06 2018-11-27 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US10359813B2 (en) 2006-07-06 2019-07-23 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US10890953B2 (en) 2006-07-06 2021-01-12 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US10180732B2 (en) 2006-10-11 2019-01-15 Apple Inc. Gimballed scroll wheel
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
CN102407337A (en) * 2011-11-24 2012-04-11 李宝干 Method for manufacturing titanium and titanium alloy powder metallurgy special-shaped pieces

Similar Documents

Publication Publication Date Title
US7767138B2 (en) Process for the production of a molybdenum alloy
US20130071283A1 (en) Titanium alloy complex powder containing ceramic and process for production thereof, consolidated titanium alloy material using this powder and process for production thereof
EP0302430B1 (en) Alloyed steel powder for powder metallurgy
JPH08939B2 (en) Method for reducing variation in mechanical property values of tungsten-nickel-iron alloy
JPH0741882A (en) Production of sintered titanium alloy
US3141235A (en) Powdered tantalum articles
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
EP0323628B1 (en) Fine grain tungsten heavy alloys containing additives
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
CN1623005A (en) Stabilized grain size refractory metal powder metallurgy mill products
JPH05147916A (en) Production of fine tungsten-based carbide powder
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH0688153A (en) Production of sintered titanium alloy
JPH05148568A (en) High density powder titanium alloy for sintering
JPH06264158A (en) Production of tungsten carbide base sintered hard alloy having high strength and high hardness
JPH07113134A (en) Production of sintered titanium alloy
CN108103423A (en) A kind of press fitting cylinder body spring
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH0118137B2 (en)
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
JPH06306514A (en) Production of sintered titanium alloy
US20220371088A1 (en) Injection molding composition, method for producing injection molded body, and method for producing titanium sintered body
JP2643743B2 (en) High strength valve seat made of lead impregnated iron-based sintered alloy for internal combustion engine
JP3499142B2 (en) Manufacturing method of iron-based structural materials

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003