JPH0739897B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment

Info

Publication number
JPH0739897B2
JPH0739897B2 JP15912685A JP15912685A JPH0739897B2 JP H0739897 B2 JPH0739897 B2 JP H0739897B2 JP 15912685 A JP15912685 A JP 15912685A JP 15912685 A JP15912685 A JP 15912685A JP H0739897 B2 JPH0739897 B2 JP H0739897B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
heat exchanger
refrigeration cycle
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15912685A
Other languages
Japanese (ja)
Other versions
JPS6219656A (en
Inventor
隆夫 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15912685A priority Critical patent/JPH0739897B2/en
Publication of JPS6219656A publication Critical patent/JPS6219656A/en
Publication of JPH0739897B2 publication Critical patent/JPH0739897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、圧縮機、凝縮器、減圧装置、および蒸発器
などを順次連通してなる冷凍サイクルを備え、かつ蒸発
器に対する除霜機能を備えた冷凍サイクル装置に関す
る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention includes a refrigeration cycle in which a compressor, a condenser, a decompression device, an evaporator, and the like are sequentially connected, and a defrosting function for the evaporator. Refrigeration cycle device.

〔発明の技術的背景〕[Technical background of the invention]

一般に、ヒートポンプ式冷凍サイクルを備え、冷房運転
および暖房運転を可能とする空気調和機にあっては、暖
房運転時、蒸発器として作用する室外熱交換器に徐々に
霜が付着するようになり、そのままでは汲み上げ熱量が
減って暖房能力の低下を招いてしまう。
Generally, in an air conditioner that includes a heat pump type refrigeration cycle and enables cooling operation and heating operation, during heating operation, frost will gradually adhere to the outdoor heat exchanger that acts as an evaporator, If it is left as it is, the amount of heat drawn up will decrease and the heating capacity will decline.

そこで、従来、下記,,のような方法で室外熱交
換器の着霜量を検出し、その着霜量が一定以上になると
四方弁を復帰させて暖房サイクルを除霜サイクル(冷房
サイクル)に切換え、高温冷媒の熱によって室外熱交換
器の除霜を行なうようにしている。
Therefore, conventionally, the frosting amount of the outdoor heat exchanger is detected by the following methods, and when the frosting amount exceeds a certain amount, the four-way valve is returned to change the heating cycle to the defrosting cycle (cooling cycle). By switching, the outdoor heat exchanger is defrosted by the heat of the high-temperature refrigerant.

霜そのものを検知するセンサを室外熱交換器に取付
け、このセンサによって直接的に着霜量を検出する。
A sensor that detects the frost itself is attached to the outdoor heat exchanger, and this sensor directly detects the amount of frost.

室外熱交換器の通風抵抗や冷媒のエンタルピ差の変化
によって間接的に着霜量を検出する。
The amount of frost is indirectly detected by the change in ventilation resistance of the outdoor heat exchanger and the difference in enthalpy of the refrigerant.

特公昭57−47822号公報に示されるように、室外熱交
換器の温度(以下、蒸発器温度と称す)の変化量によっ
て間接的に着霜量を検出する。たとえば、第6図に示す
ように、蒸発器温度Teが運転開始時の状態から設定値Δ
Te下がったとき、着霜量が一定以上であると見なすもの
である。
As shown in Japanese Patent Publication No. 57-47822, the amount of frost formation is indirectly detected by the amount of change in the temperature of the outdoor heat exchanger (hereinafter referred to as the evaporator temperature). For example, as shown in FIG. 6, the evaporator temperature Te changes from the state at the start of operation to the set value Δ
When Te drops, it is considered that the amount of frost is above a certain level.

〔背景技術の問題点〕[Problems of background technology]

しかしながら、,の方法では、装置が大がかり且つ
複雑であり、しかも検出誤差が大きくて信頼性に乏しい
という欠点がある。
However, the methods (1) and (2) have the drawbacks that the device is large and complicated, and the detection error is large, resulting in poor reliability.

また、の方法では、差の設定値ΔTeが常に固定である
ため、着霜量に影響を及ぼす室外空気の温度変化に伴っ
て検出誤差を生じるという欠点がある。特に、室外空気
温度が低い場合には、着霜が速いにもかかわらずなかな
か除霜が始まらず、室外空気温度の低下そのものと合わ
せて汲み上げ熱量が大幅に低下し、暖房能力の大幅な低
下を招いてしまう。
In addition, the method (1) has a drawback that a detection error occurs due to the temperature change of the outdoor air that affects the amount of frost formation, because the set value ΔTe of the difference is always fixed. In particular, when the outdoor air temperature is low, defrosting does not start easily despite rapid frost formation. I will invite you.

〔発明の目的〕[Object of the Invention]

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、簡単な構成でありながら、蒸
発器の着霜状態を室外空気温度に影響を受けることなく
的確に検出することができ、これにより常に最適な除霜
を行なって暖房能力の低下を抑えることができる冷凍サ
イクル装置を提供することにある。
The present invention has been made in view of the above circumstances,
The purpose of this is to make it possible to accurately detect the frosted state of the evaporator without being affected by the outdoor air temperature, even though it has a simple structure. Another object of the present invention is to provide a refrigerating cycle device capable of suppressing a decrease in temperature.

〔発明の概要〕[Outline of Invention]

この発明は、圧縮機,凝縮器,減圧装置,蒸発器などを
順次連通してなる冷凍サイクル、前記蒸発器の温度を検
知する温度検知手段、運転開始から一定時間後の前記温
度検知手段の検知結果を記憶する記憶部、運転時、前記
記憶部に記憶した温度と前記温度検知手段の検知結果と
の比率を演算する手段、この演算結果が設定値に達する
と前記蒸発器に対する除霜を行なう手段から成るもので
ある。
The present invention relates to a refrigeration cycle in which a compressor, a condenser, a decompression device, an evaporator and the like are sequentially connected, a temperature detecting means for detecting the temperature of the evaporator, and a detection of the temperature detecting means after a certain time has passed from the start of operation A storage unit that stores the result, a unit that calculates the ratio between the temperature stored in the storage unit and the detection result of the temperature detection unit during operation, and defrosts the evaporator when the calculation result reaches a set value. It consists of means.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例について図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第2図に示すように、圧縮機1,四方弁2,室外熱交換器3,
減圧装置たとえば膨張弁4,室内熱交換器5などが順次連
通され、ヒートポンプ式冷凍サイクルが構成されてい
る。すなわち、冷房運転時は図示実線矢印の方向に冷媒
が流れて冷房サイクルが形成され、室外熱交換器3が凝
縮器として作用するとともに、室内熱交換器5が蒸発器
として作用するようになっている。暖房運転時は、四方
弁2が切換作動することにより図示破線矢印の方向の冷
媒が流れて暖房サイクルが形成され、室外熱交換器3が
蒸発器として作用するとともに、室内熱交換器5が凝縮
器として作用するようになっている。なお、室外熱交換
器3の近傍には室外ファン6が配設され、室内熱交換器
5の近傍には室内ファン7が配設されている。
As shown in FIG. 2, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3,
A pressure reducing device such as an expansion valve 4 and an indoor heat exchanger 5 are sequentially connected to form a heat pump type refrigeration cycle. That is, during the cooling operation, the refrigerant flows in the direction indicated by the solid line arrow to form a cooling cycle, and the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 5 acts as an evaporator. There is. During the heating operation, the switching operation of the four-way valve 2 causes the refrigerant in the direction of the broken line arrow to flow to form a heating cycle, and the outdoor heat exchanger 3 functions as an evaporator and the indoor heat exchanger 5 condenses. It works as a container. An outdoor fan 6 is provided near the outdoor heat exchanger 3, and an indoor fan 7 is provided near the indoor heat exchanger 5.

しかして、暖房運転時に室外熱交換器3の冷媒入口側と
なる冷媒配管には蒸発器温度センサ(サーミスタ)8が
取付けられ、この蒸発器温度センサ8の検知温度は蒸発
器温度検知回路9で電気信号(ディジタル信号)に変換
され、蒸発器温度データとして制御部10に供給される。
制御部10は、マイクロコンピュータおよびその周辺回路
などからなり、運転操作部11の操作状態、室内温度セン
サ(サーミスタ)12の検知温度、および上記蒸発器温度
検知回路9からの蒸発器温度データなどに応じて各種運
転制御を行なうものである。
An evaporator temperature sensor (thermistor) 8 is attached to the refrigerant pipe on the refrigerant inlet side of the outdoor heat exchanger 3 during the heating operation, and the temperature detected by the evaporator temperature sensor 8 is detected by the evaporator temperature detection circuit 9. It is converted into an electric signal (digital signal) and supplied to the controller 10 as evaporator temperature data.
The control unit 10 is composed of a microcomputer and its peripheral circuits and the like, and stores the operating state of the driving operation unit 11, the temperature detected by the indoor temperature sensor (thermistor) 12, the evaporator temperature data from the evaporator temperature detection circuit 9 and the like. Various operation controls are performed accordingly.

ところで、制御部10は除霜運転制御回路を内蔵してお
り、その具体的な構成を第3図に示す。すなわち、21は
演算回路で、この演算回路21にはタイマ回路22、温度記
憶部23、四方弁駆動回路24などが接続されている。演算
回路21は、蒸発器温度検知回路9からの蒸発器温度デー
タの基づく演算によって室外熱交換器3の着霜状態を判
断し、必要に応じて除霜指令を発するものである。タイ
マ回路22は、暖房運転の開始と同時に起動し、演算回路
21の処理の時間管理を行なうものである。温度記憶部23
は演算回路21の処理に基づき、暖房運転開始から一定時
間t1(たとえば15分)後の蒸発器温度TeをTe0として記
憶するものである。四方弁駆動回路24は、演算回路21の
処理に応じて四方弁2の駆動を行なうものである。
By the way, the control unit 10 has a built-in defrosting operation control circuit, and its concrete configuration is shown in FIG. That is, reference numeral 21 is an arithmetic circuit, and a timer circuit 22, a temperature storage unit 23, a four-way valve drive circuit 24, etc. are connected to the arithmetic circuit 21. The calculation circuit 21 determines the frosting state of the outdoor heat exchanger 3 by calculation based on the evaporator temperature data from the evaporator temperature detection circuit 9, and issues a defrosting command as necessary. The timer circuit 22 starts at the same time as the heating operation starts, and the arithmetic circuit
It manages the time of 21 processes. Temperature storage unit 23
Is based on the processing of the arithmetic circuit 21, and stores the evaporator temperature Te after a fixed time t 1 (for example, 15 minutes) from the start of the heating operation as Te 0 . The four-way valve drive circuit 24 drives the four-way valve 2 according to the processing of the arithmetic circuit 21.

つぎに、上記のような構成において第1図を参照しなが
ら動作を説明する。
Next, the operation of the above configuration will be described with reference to FIG.

運転操作部11で暖房運転および所望の室内温度を設定
し、かつ運転開始操作を行なう。すると、制御部10は、
圧縮機1、室外ファン6、および室内ファン7をそれぞ
れ運転オンするとともに、四方弁2を切換作動する。こ
うして、暖房サイクルが形成され、室外熱交換器3が蒸
発器として作用するとともに、室内熱交換器5が凝縮器
として作用し、その凝縮作用および室内ファン7の運転
によって室内に温風が吹出される。つまり、暖房運転の
開始となる。
The operation unit 11 sets the heating operation and the desired room temperature, and performs the operation start operation. Then, the control unit 10
The compressor 1, the outdoor fan 6, and the indoor fan 7 are each turned on, and the four-way valve 2 is switched. In this way, a heating cycle is formed, the outdoor heat exchanger 3 acts as an evaporator, the indoor heat exchanger 5 acts as a condenser, and the condensing action and operation of the indoor fan 7 blow hot air into the room. It That is, the heating operation is started.

ところで、暖房運転時、蒸発器として作用する室外熱交
換器3に徐々に霜が付着するようになり、そのままでは
汲み上げ熱量が少なくなり、暖房能力の低下を招いてし
まう。
By the way, during the heating operation, the frost gradually adheres to the outdoor heat exchanger 3 acting as an evaporator, and the amount of heat pumped up is reduced as it is, and the heating capacity is deteriorated.

しかして、暖房運転時、演算回路21は運転開始と同時に
起動するタイマ回路22の出力によって運転開始からの経
過時間を監視する。そして、一定時間t1(たとえば15
分)が経過すると、そのときの蒸発器温度検知回路9か
らの信号によって室外熱交換器3の温度つまり蒸発器温
度Teを検知し、それをTe0として温度記憶部23に記憶す
る。この場合、一定時間t1は、蒸発器温度Teが安定する
までの時間である。さらに、演算回路21は蒸発器温度Te
を逐次検知し、次の演算を行なう。
Therefore, during the heating operation, the arithmetic circuit 21 monitors the elapsed time from the start of operation by the output of the timer circuit 22 which is started at the same time as the start of operation. Then, for a fixed time t 1 (for example, 15
Minutes), the temperature of the outdoor heat exchanger 3, that is, the evaporator temperature Te is detected by the signal from the evaporator temperature detection circuit 9 at that time, and it is stored in the temperature storage unit 23 as Te 0 . In this case, the constant time t 1 is the time until the evaporator temperature Te stabilizes. Further, the arithmetic circuit 21 is arranged so that the evaporator temperature Te
Are sequentially detected and the next calculation is performed.

B=(Te+A)/(Te0+A) なお、Aは特定の数値であり、たとえば“20"としてい
る。
B = Note (Te + A) / (Te 0 + A), A is a specific number, for example, to "20".

すなわち、一定時間t1後の蒸発器温度Te0に数値Aを足
したものと、逐次検知される蒸発器温度Teに数値Aを足
したものとの比率を演算するようにしている。
That is, the ratio of the value obtained by adding the numerical value A to the evaporator temperature Te 0 after the fixed time t 1 and the value obtained by adding the numerical value A to the sequentially detected evaporator temperature Te is calculated.

そして、演算回路21は、演算して求めた値Bと設定値C
(たとえば0.5)とを比較し、BがCよりも大きければ
そのまま暖房運転を継続し、かつ上記演算を繰返す(1
秒間に数回の割合)。ただし、BがCと同じまたはそれ
よりも小さければ着霜量が一定以上で除霜が必要と見な
し、四方弁駆動回路24に対して四方弁復帰指令を発す
る。
The arithmetic circuit 21 then calculates the value B and the set value C
(For example, 0.5), if B is larger than C, the heating operation is continued and the above calculation is repeated (1
A few times a second). However, if B is the same as C or smaller than C, it is considered that the amount of frost is above a certain level and defrosting is necessary, and a four-way valve return command is issued to the four-way valve drive circuit 24.

たとえば、Te0が−5℃、蒸発器温度Teが−5℃であれ
ば、 B=(−0.5+20)/(−0.5+20)=1となり、B>C
なので、暖房運転が継続する。
For example, if Te 0 is -5 ° C and the evaporator temperature Te is -5 ° C, B = (-0.5 + 20) / (-0.5 + 20) = 1 and B> C
Therefore, heating operation continues.

Te0が−5℃、蒸発器温度Teが−12.5℃であれば、 B=(−12.5+20)/(−0.5+20)=0.5となり、B=
Cなので、四方弁復帰指令が発せられる。
If Te 0 is -5 ° C and the evaporator temperature Te is -12.5 ° C, B = (-12.5 + 20) / (-0.5 + 20) = 0.5 and B =
Since it is C, a four-way valve return command is issued.

四方弁復帰指令が発せられると、四方弁駆動回路24の作
動により四方弁2が復帰し、今までの暖房サイクルが除
霜サイクル(冷房サイクル)に切換わり、圧縮機1から
吐出される高温,高圧冷媒が室外熱交換器3に流入す
る。こうして、高温冷媒の熱によって室外熱交換器3に
付着している霜が徐々に除去される。つまり、室外熱交
換器3に対する除霜運転が行なわれる。
When a four-way valve return command is issued, the four-way valve 2 is restored by the operation of the four-way valve drive circuit 24, the heating cycle so far is switched to the defrost cycle (cooling cycle), and the high temperature discharged from the compressor 1 The high-pressure refrigerant flows into the outdoor heat exchanger 3. In this way, the frost adhering to the outdoor heat exchanger 3 is gradually removed by the heat of the high-temperature refrigerant. That is, the defrosting operation is performed on the outdoor heat exchanger 3.

この場合、着霜量が一定以上で除霜が必要と見なすとき
の蒸発器温度降下幅ΔTe(=Te0−Te)は、上記演算式
により第4図に示すようにTe0に比例して変化する。す
なわち、Te0=0℃であればΔTe=10℃、Te0=−10℃で
あればΔTe=5℃となる。
In this case, the evaporator temperature drop width ΔTe (= Te 0 −Te) when the amount of frost is above a certain level and defrosting is considered necessary is proportional to Te 0 as shown in FIG. Change. That is, if Te 0 = 0 ° C., ΔTe = 10 ° C., and if Te 0 = −10 ° C., ΔTe = 5 ° C.

こうして、第5図に示すように、室外熱交換器3を通る
室外空気の温度が高くてTe0が高い場合には、蒸発器温
度降下幅がΔTe1で除霜運転開始となる。これに対し、
室外空気温度が低くてTe0が低い場合には、Te0が高い場
合よりも小さい蒸発器温度降下幅ΔTe2(<ΔTe1)で除
霜運転開始となる。これにより、室外空気温度が高い場
合には着霜による放熱量Q(凝縮器として作用する室内
熱交換器5の放熱量)の低下はΔQ1であるが、室外空気
温度が低い場合の放熱量Qの低下はΔQ2(<ΔQ1)とな
る。つまり、室外空気温度が低くて汲み上げ熱量がただ
でさえ少ない状況の下では、着霜による放熱量Qの低下
を小さく抑えることができる。
Thus, as shown in FIG. 5, when the temperature of the outdoor air passing through the outdoor heat exchanger 3 is high and Te 0 is high, the evaporator temperature drop width is ΔTe 1 and the defrosting operation is started. In contrast,
When the outdoor air temperature is low and Te 0 is low, the defrosting operation starts with a smaller evaporator temperature drop width ΔTe 2 (<ΔTe 1 ) than when Te 0 is high. As a result, when the outdoor air temperature is high, the decrease in the heat radiation amount Q due to frost (the heat radiation amount of the indoor heat exchanger 5 acting as a condenser) is ΔQ 1 , but when the outdoor air temperature is low, the heat radiation amount is low. The decrease in Q is ΔQ 2 (<ΔQ 1 ). That is, in a situation where the outdoor air temperature is low and the amount of heat pumped up is small, it is possible to suppress a decrease in the amount of heat radiation Q due to frost formation.

このように、運転開始から一定時間t1後の蒸発器温度Te
0を基準とし、そのTe0に特定値Aを足したものと逐次検
知される蒸発器温度Teに特定値Aを足したもののとの比
率を演算し、この演算結果と設定値Cとの比較によって
除霜運転制御を行なうことにより、室外空気温度に影響
を受けることなく、室外熱交換器3の着霜状態に応じた
最適な除霜運転を行なうことができる。しかも、この最
適な除霜運転の実施例により、室外空気温度が低くて汲
み上げ熱量が少ない場合において、着霜による放熱量Q
の低下を小さく抑えることができ、よって暖房能力の低
下を極力抑えることができる。
In this way, the evaporator temperature Te after a certain time t 1 from the start of operation
Using 0 as a reference, the ratio between Te 0 plus the specific value A and the sequentially detected evaporator temperature Te plus the specific value A is calculated, and the calculated result is compared with the set value C. By performing the defrosting operation control by the above, it is possible to perform the optimum defrosting operation according to the frosted state of the outdoor heat exchanger 3 without being affected by the outdoor air temperature. Moreover, according to the embodiment of the optimum defrosting operation, when the outdoor air temperature is low and the pumping heat amount is small, the heat radiation amount Q due to frost formation
Of the heating capacity can be suppressed to a small level, and thus the deterioration of the heating capacity can be suppressed as much as possible.

なお、上記実施例では、暖房運転の開始から一定時間t1
後の蒸発器温度をTe0として記憶するようにしたが、運
転開始時(一定時間t1=零)における蒸発器温度の最大
値をTe0として記憶するようにしてもよい。運転開始か
ら零時間、すなわち運転スイッチが入ったと同時に検出
される蒸発器温度は、冷凍サイクル自体が運転されてい
ないため、室外気温と同じであり、十分に安定した基準
値となり得る。また、四方弁2の復帰による逆サイクル
除霜を行なうようにしたが、ガス冷媒のバイパス方式や
ヒータ加熱などによる除霜を行なうようにしてもよい。
さらに、演算に用いる数値A,Cについては、冷凍サイク
ルの状況などに応じて適宜定めればよい。また、空気調
和機を例に上げて説明したが、それに限らず、冷蔵庫や
冷蔵ショーケースにおいても同様に適用可能である。
It should be noted that, in the above-described embodiment, a certain time t 1 has elapsed since the start of the heating operation.
The subsequent evaporator temperature is stored as Te 0 , but the maximum value of the evaporator temperature at the start of operation (constant time t 1 = zero) may be stored as Te 0 . Zero hours from the start of operation, that is, the evaporator temperature detected at the same time when the operation switch is turned on is the same as the outdoor temperature because the refrigeration cycle itself is not operated, and can be a sufficiently stable reference value. Further, although the reverse cycle defrosting is performed by returning the four-way valve 2, the defrosting may be performed by the bypass system of the gas refrigerant or the heater heating.
Further, the numerical values A and C used for the calculation may be appropriately determined according to the condition of the refrigeration cycle and the like. Further, although the air conditioner has been described as an example, the present invention is not limited to this, and is similarly applicable to a refrigerator or a refrigerating showcase.

〔発明の効果〕〔The invention's effect〕

以上述べたようにこの発明によれば、簡単な構成であり
ながら、蒸発器の着霜状態を室外空気温度に影響を受け
ることなく的確に検出することができ、これにより常に
最適な除霜を行なって暖房能力の低下を抑えることがで
きる冷凍サイクル装置を提供できる。
As described above, according to the present invention, it is possible to accurately detect the frosted state of the evaporator without being affected by the outdoor air temperature, even though it has a simple structure, and thereby always perform optimum defrosting. It is possible to provide a refrigeration cycle device capable of suppressing a decrease in heating capacity.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の動作を説明するためのフ
ローチャート、第2図は同実施例における冷凍サイクル
および制御回路の概略的な構成を示す図、第3図は同実
施例における制御部の要部の構成を示す図、第4図は同
実施例において除霜が必要と見なすときの蒸発器温度降
下幅を説明するための図、第5図は同実施例における蒸
発器温度の変化および放熱量の変化を示す図、第6図は
従来の冷凍サイクル装置の除霜運転制御を説明するため
の図である。 1……圧縮機、2……四方弁、3……室外熱交換器、4
……膨張弁(減圧装置)、5……室内熱交換器、8……
蒸発器温度センサ、10……制御部、21……演算回路、22
……タイマ回路、23……温度記憶部、24……四方弁駆動
回路。
FIG. 1 is a flow chart for explaining the operation of an embodiment of the present invention, FIG. 2 is a diagram showing a schematic configuration of a refrigeration cycle and a control circuit in the embodiment, and FIG. 3 is a control in the embodiment. FIG. 4 is a diagram showing a configuration of a main part of a portion, FIG. 4 is a diagram for explaining an evaporator temperature drop width when defrosting is considered necessary in the same embodiment, and FIG. 5 is a diagram showing evaporator temperature in the same embodiment. FIG. 6 is a diagram showing changes and changes in the amount of heat radiation, and FIG. 6 is a diagram for explaining defrosting operation control of a conventional refrigeration cycle apparatus. 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4
...... Expansion valve (pressure reducing device), 5 ...... Indoor heat exchanger, 8 ......
Evaporator temperature sensor, 10 ... control unit, 21 ... arithmetic circuit, 22
...... Timer circuit, 23 ...... Temperature storage unit, 24 ...... Four-way valve drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、減圧装置、および蒸発器
などを順次連通してなる冷凍サイクルと、前記蒸発器の
温度を検知する温度検知手段と、運転開始から一定時間
後の前記温度検知手段の検知結果を記憶する記憶部と、
運転時、前記記憶部に記憶した温度と前記温度検知手段
の検知結果との比率を演算する手段と、この演算結果が
設定値に達すると前記蒸発器に対する除霜を行なう手段
とを具備したことを特徴とする冷凍サイクル装置。
1. A refrigeration cycle in which a compressor, a condenser, a decompression device, an evaporator and the like are sequentially connected, a temperature detecting means for detecting the temperature of the evaporator, and the temperature after a lapse of a predetermined time from the start of operation. A storage unit that stores the detection result of the detection unit,
During operation, a means for calculating the ratio between the temperature stored in the storage unit and the detection result of the temperature detecting means and a means for defrosting the evaporator when the calculation result reaches a set value are provided. Refrigeration cycle device characterized by.
JP15912685A 1985-07-18 1985-07-18 Refrigeration cycle equipment Expired - Lifetime JPH0739897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15912685A JPH0739897B2 (en) 1985-07-18 1985-07-18 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15912685A JPH0739897B2 (en) 1985-07-18 1985-07-18 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JPS6219656A JPS6219656A (en) 1987-01-28
JPH0739897B2 true JPH0739897B2 (en) 1995-05-01

Family

ID=15686804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15912685A Expired - Lifetime JPH0739897B2 (en) 1985-07-18 1985-07-18 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JPH0739897B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664690B2 (en) * 1987-08-31 1997-10-15 株式会社東芝 Air conditioner
JP4553886B2 (en) * 2006-11-24 2010-09-29 三菱電機株式会社 Air conditioner
EP2157380B1 (en) 2008-01-21 2019-10-02 Mitsubishi Electric Corporation Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon

Also Published As

Publication number Publication date
JPS6219656A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US4850200A (en) Refrigerating circuit device for air conditioning apparatus and control method thereof
JPH11182995A (en) Method and device for controlling air conditioner
US6334321B1 (en) Method and system for defrost control on reversible heat pumps
JP2002340386A (en) Control method for air conditioner
JPH0933146A (en) Defroster for air conditioner and control method thereof
JPH09210516A (en) Defrosting method for heat pump type air conditioner
JPH0278844A (en) Air conditioner
JPH0739897B2 (en) Refrigeration cycle equipment
JPS58115235A (en) Control circuit of air conditioner
JPH11257718A (en) Method of controlling air conditioner
JPH05346256A (en) Method for controlling compressor of air conditioner
JP2910849B1 (en) Air conditioner defrost control device
JPH11132605A (en) Air conditioner
JP3343915B2 (en) Defrost control device
JPS59200145A (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH0684832B2 (en) Defroster for air conditioner
KR0146310B1 (en) Defrost device and method of airconditioner
JP3169485B2 (en) Air conditioner
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JPS62125244A (en) Air conditioner
JPS6332269A (en) Heat pump system
KR20000055144A (en) Method for preventing freezing of the heat exchanger in the air conditioner
KR100309281B1 (en) Defrost control method in heat pump type air-conditioner
JP2664690B2 (en) Air conditioner