JPH0739161B2 - Double-sided conductor polyimide laminate and manufacturing method thereof - Google Patents

Double-sided conductor polyimide laminate and manufacturing method thereof

Info

Publication number
JPH0739161B2
JPH0739161B2 JP63071819A JP7181988A JPH0739161B2 JP H0739161 B2 JPH0739161 B2 JP H0739161B2 JP 63071819 A JP63071819 A JP 63071819A JP 7181988 A JP7181988 A JP 7181988A JP H0739161 B2 JPH0739161 B2 JP H0739161B2
Authority
JP
Japan
Prior art keywords
polyimide
double
conductor
sided
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63071819A
Other languages
Japanese (ja)
Other versions
JPH01244841A (en
Inventor
明 徳光
尚 渡辺
和弥 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63071819A priority Critical patent/JPH0739161B2/en
Priority to US07/329,139 priority patent/US4937133A/en
Priority to EP19890105469 priority patent/EP0335337B1/en
Priority to KR1019890003943A priority patent/KR930010058B1/en
Priority to DE1989625490 priority patent/DE68925490T2/en
Publication of JPH01244841A publication Critical patent/JPH01244841A/en
Publication of JPH0739161B2 publication Critical patent/JPH0739161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性、電気的特性、機械的特性に優れた両
面導体ポリイミド積層体に係り、特にフレキシブルプリ
ント基板として好適な回路加工性に優れた両面導体ポリ
イミド積層体及びその製造法に関する。
TECHNICAL FIELD The present invention relates to a double-sided conductor polyimide laminate having excellent heat resistance, electrical properties, and mechanical properties, and particularly to a circuit workability suitable as a flexible printed circuit board. The present invention relates to an excellent double-sided conductor polyimide laminate and a method for producing the same.

[従来の技術] 近年、電子部品及びそれを使った電子機器において、そ
の小型化、軽量化の要請が高まり、これに応じて配線材
料についてもその簡略化、高密度化の傾向が進み、フレ
キシブルプリント基板材料等についても例外ではない。
[Prior Art] In recent years, there has been an increasing demand for miniaturization and weight reduction of electronic components and electronic devices using the same, and accordingly, wiring materials have tended to be simplified and densified, resulting in flexibility. Printed circuit board materials are no exception.

フレキシブルプリント基板は、可撓性を有する印刷回路
基板であり、電気機器、電子機器の小型化、軽量化に大
いに貢献している。このフレキシブルプリント基板につ
いては、現在、その片面側のみに導体層を有する片面構
造のものと、絶縁体層を挟んでその両面側にそれぞれ導
体層を有する両面スルーホール構造のものとが実用化さ
れているが、特に両面スルーホール構造のものは基板の
両面に回路を形成することが可能であり、高密度実装の
ために近年では多く採用されている。
A flexible printed circuit board is a flexible printed circuit board, and contributes greatly to downsizing and weight reduction of electric devices and electronic devices. As the flexible printed circuit board, one having a single-sided structure having a conductor layer on only one side thereof and one having a double-sided through-hole structure having conductor layers on both sides of an insulating layer sandwiched between them are put into practical use. However, in particular, the double-sided through-hole structure allows circuits to be formed on both sides of the substrate, and has been widely adopted in recent years for high-density mounting.

しかしながら、このような両面スルーホール構造の場
合、絶縁体層であるベースフィルムを中心にその両面に
接着剤を介して導体の銅箔等を貼り合わせて形成されて
おり、片面構造のフレキシブルプリント基板と比較して
一般的にその柔軟性が低いという問題がある。
However, in the case of such a double-sided through-hole structure, a flexible printed circuit board having a single-sided structure is formed by sticking a conductor copper foil or the like on both sides of the base film, which is an insulator layer, via an adhesive. Generally, there is a problem that the flexibility is low as compared with.

また、実質的に接着剤層を有しているため、回路基板と
しての特性の低下、特にポリイミドベースフィルムの有
する優れた耐熱性、難燃性等を損ねているという問題が
ある。さらに、接着剤層を有する他の問題として回路加
工性が悪くなるという問題がある。具体的には、スルー
ホール加工時のドリリングによる樹脂スミアの発生や、
導体スルーホールめっき密着性の低下や、エッチング加
工時の寸法変化率が大きい等の問題が挙げられる。
Further, since it has an adhesive layer substantially, there is a problem that the characteristics as a circuit board are deteriorated, and particularly the excellent heat resistance and flame retardancy of the polyimide base film are impaired. Another problem with the adhesive layer is that the processability of the circuit deteriorates. Specifically, the occurrence of resin smear due to drilling during through hole processing,
There are problems such as a decrease in conductor through-hole plating adhesion and a large dimensional change rate during etching.

一方、ICの高密度化、プリント配線の微細化や高密度化
に伴ない、発熱が大きくなり、良熱伝導体を貼り合せる
ことが必要になる場合がある。また、よりコンパクトに
するため、ハウジングと配線を一体化する方向もある。
さらには、電気容量の異った配線を必要としたり、より
高温に耐える配線材を必要とすることもある。
On the other hand, along with the higher density of ICs and the miniaturization and higher density of printed wiring, heat generation may increase, and it may be necessary to bond a good heat conductor. There is also a direction to integrate the wiring with the housing in order to make it more compact.
Further, there are cases where wirings having different electric capacities are required and wiring materials capable of withstanding higher temperatures are required.

[発明が解決しようとする課題] 本発明の目的とするところは、回路加工時の寸法安定性
が高く、また、耐熱性、可撓性等の特性に優れた両面フ
レキシブルプリント基板を与えることのできる両面導体
ポリイミド積層体及びその製造法を提供することにあ
る。
[Problems to be Solved by the Invention] An object of the present invention is to provide a double-sided flexible printed circuit board having high dimensional stability during circuit processing and excellent heat resistance and flexibility. It is to provide a double-sided conductor polyimide laminate that can be manufactured and a method for producing the same.

[課題を解決するための手段] すなわち、本発明は、低熱膨張性ポリイミド系樹脂から
なる少なくとも1つの樹脂層と、ガラス転移点が350℃
以下である熱可塑性ポリイミド系樹脂からなる少なくと
も1つの樹脂層と、導体層とを有する両面導体ポリイミ
ド積層体であり、また、導体の片面上に低熱膨張ポリイ
ミド系樹脂前駆体溶液及び熱可塑性ポリイミド系樹脂又
はその前駆体溶液を用い、少なくとも1層の低熱膨張性
ポリイミド系樹脂層と、少なくとも1層の熱可塑性ポリ
イミド系樹脂層を、同時に又は逐次に形成し、これを熱
処理し、表面が熱可塑性ポリイミド系樹脂層である片面
導体ポリイミド積層体を製造する工程と、上面片面導体
ポリイミド積層体同志をその樹脂層を内側にして加熱加
圧下に圧着し、両面導体ポリイミド積層体とする工程と
を含むフレキシブルプリント基板用の両面導体ポリイミ
ド積層体の製造法である。
[Means for Solving the Problems] That is, according to the present invention, at least one resin layer made of a low thermal expansion polyimide resin and a glass transition point of 350 ° C.
A double-sided conductor polyimide laminate having at least one resin layer made of the following thermoplastic polyimide resin and a conductor layer, and a low thermal expansion polyimide resin precursor solution and a thermoplastic polyimide system on one surface of the conductor: Using a resin or its precursor solution, at least one low thermal expansion polyimide-based resin layer and at least one thermoplastic polyimide-based resin layer are formed simultaneously or sequentially and heat-treated to form a thermoplastic surface. A step of producing a single-sided conductor polyimide laminate which is a polyimide resin layer, and a step of forming a double-sided conductor polyimide laminate by pressing the upper surface single-sided conductor polyimide laminate with the resin layer inside under heat and pressure. A method for producing a double-sided conductor polyimide laminate for a flexible printed circuit board.

本発明で使用する低熱膨張性ポリイミド系樹脂として
は、それが線膨張係数20×10-6(1/K)以下のものであ
ることが好ましく、また、フィルムの耐熱性、可撓性等
において優れた性能を有するものがよい。ここでポリイ
ミド系樹脂とは、イミド環構造を有する樹脂の総称であ
り、例えばポリイミド、ポリアミドイミド、ポリエステ
ルイミド等が挙げられる。ここで、線膨張係数は、イミ
ド化反応が充分に終了した試料を用い、サーモメカニカ
ルアナライザー(TMA)を用いて、250℃に昇温後に10℃
/min.の速度で冷却して240℃から100℃までの平均線膨
張係数率を算出して求めたものである。
As the low thermal expansion polyimide resin used in the present invention, it is preferable that it has a linear expansion coefficient of 20 × 10 -6 (1 / K) or less, and in the heat resistance of the film, flexibility, etc. Those having excellent performance are preferable. Here, the polyimide-based resin is a general term for resins having an imide ring structure, and examples thereof include polyimide, polyamide-imide, and polyester-imide. Here, the linear expansion coefficient is 10 ° C after the temperature is raised to 250 ° C by using a thermomechanical analyzer (TMA) using a sample in which the imidization reaction is sufficiently completed.
It is obtained by calculating the average coefficient of linear expansion from 240 ° C to 100 ° C after cooling at a rate of / min.

このような性質を有する低熱膨張性ポリイミド系樹脂の
具体例としては、下記一般式(I) 〔但し、式中Ar1は、下記一般式 又は (但し、式中R1〜R8は低級アルキル基、低級アルコキシ
基又はハロゲン基を示し、互いに同じであっても異なっ
ていてもよく、また、n1〜n8は0〜4の整数である)で
示される2価の芳香族基である〕で表される単位構造を
有するポリアミドイミド樹脂や、下記一般式(II) (但し、式中R9〜R12は低級アルキル基、低級アルコキ
シ基又はハロゲン基を示す)で表される単位構造を有す
るポリイミド樹脂を挙げることができる。低熱膨張性の
観点から、好ましくは上記一般式(I)で表される単位
構造において、Ar1であるポリアミドイミド樹脂である。
Specific examples of the low thermal expansion polyimide-based resin having such properties include the following general formula (I) (However, in the formula, Ar 1 is the following general formula. Or (However, in the formula, R1 to R8 represent a lower alkyl group, a lower alkoxy group or a halogen group, and may be the same or different, and n1 to n8 are integers of 0 to 4) A divalent aromatic group] having a unit structure represented by the following general formula (II) (However, in the formula, R9 to R12 represent a lower alkyl group, a lower alkoxy group or a halogen group), and a polyimide resin having a unit structure. From the viewpoint of low thermal expansion, Ar 1 is preferably in the unit structure represented by the general formula (I). Which is a polyamide-imide resin.

また、本発明で使用する熱可塑性ポリイミド系樹脂とし
ては、そのガラス転移点が350℃以下のものであればい
かなる構造のものであってもよいが、好ましくは加熱加
圧下に圧着した際にその界面の接着強度が充分であるも
のがよい。
Further, the thermoplastic polyimide resin used in the present invention may have any structure as long as its glass transition point is 350 ° C. or lower, but it is preferable that it has a structure when pressure-bonded under heat and pressure. It is preferable that the adhesive strength at the interface is sufficient.

ここでいうところの熱可塑性ポリイミド系樹脂とは、ガ
ラス転移点以上の通常の状態で必ずしも充分な流動性を
示さなくてもよく、加圧によって接着可能なものも含ま
れる。
The term "thermoplastic polyimide-based resin" as used herein does not necessarily show sufficient fluidity in a normal state above the glass transition point, and includes those which can be bonded by pressure.

このような性質を示す熱可塑性ポリイミド系樹脂の具体
例としては、下記一般式(III) (但し、式中Ar2は2価の芳香族基であってその炭素数
が12以上である)で表される単位構造を有するものや、
一般式(IV) (但し、式中Ar3は2価の芳香族基であってその炭素数
が12以上である)で表される単位構造を有するものを挙
げることができる。
Specific examples of the thermoplastic polyimide resin exhibiting such properties include the following general formula (III) (Wherein Ar 2 is a divalent aromatic group having a carbon number of 12 or more),
General formula (IV) (However, in the formula, Ar 3 is a divalent aromatic group having a carbon number of 12 or more).

ここで、2価の芳香族基Ar2又Ar3はの具体例としては、
例えば、 等を挙げることができ、好ましくは である。
Here, as a specific example of the divalent aromatic group Ar 2 or Ar 3 ,
For example, And the like, and preferably Is.

また、これらのポリイミド系樹脂を一般式 又は (但し、式中R14及びR16は2価の有機基を示し、R13及
びR15は1価の有機基を示し、p及びqは1より大きい
整数を示す)で表わされるジアミノシロキサンで変成す
ることもできる。その他、低熱膨張性ポリイミド系樹
脂、熱可塑性ポリイミド系樹脂は、他の構造単位を含ん
でいてもよく、その配合割合によって線膨張係数、ガラ
ス転移点等を変化させることができる。さらに、場合に
よっては、他のポリイミド系樹脂をブレンドすることも
できる。
In addition, these polyimide-based resins are represented by the general formula Or (Wherein R14 and R16 represent a divalent organic group, R13 and R15 represent a monovalent organic group, and p and q represent an integer greater than 1). it can. In addition, the low thermal expansion polyimide-based resin and the thermoplastic polyimide-based resin may contain other structural units, and the linear expansion coefficient, the glass transition point and the like can be changed depending on the blending ratio. Further, depending on the case, other polyimide resins can be blended.

本発明の低熱膨張性ポリイミド前駆体及び熱可塑性ポリ
イミド前駆体は、ジアミンとテトラカルボン酸無水物と
を適当な溶剤中で重合させることにより得られる。ここ
でいう溶剤とは、ジアミン及び酸無水物に対して不活性
であり、かつ、生成物であるポリイミドをよく理解する
ものである必要がある。このような溶剤としては、例え
ばN,N−ジメチルホルムアミド、N,N−ジメチルアセトア
ミド、N−メチル−ピロリドン、ジメチルスルホキシ
ド、キノリン、イソキノリン、ジエチレングリコールジ
メチルエーテル、ジエチレングリコールジエチルエーテ
ル等が挙げられる。これらは単独であっても、また、混
合溶剤としても使用できる。重合後のポリイミド前駆体
溶液は、そのまま導体上にコーティングしてもよいが、
一旦ポリマーとして単離した後に適当な濃度で別の溶剤
に溶解して使用してもよい。
The low thermal expansion polyimide precursor and the thermoplastic polyimide precursor of the present invention are obtained by polymerizing diamine and tetracarboxylic acid anhydride in a suitable solvent. The solvent as used herein should be one that is inactive with respect to diamine and acid anhydride and that is well understood for the product polyimide. Examples of such a solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-pyrrolidone, dimethylsulfoxide, quinoline, isoquinoline, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and the like. These may be used alone or as a mixed solvent. The polyimide precursor solution after polymerization may be directly coated on the conductor,
After once isolated as a polymer, it may be dissolved in another solvent at an appropriate concentration and used.

また、ポリイミドに変換した状態でも溶剤溶解性を示す
場合には、ポリイミドに変換した後にポリイミド溶液と
してコーティングに使用してもよい。
In addition, when it shows solvent solubility even when it is converted to polyimide, it may be used for coating as a polyimide solution after being converted to polyimide.

本発明で使用するポリイミド前駆体溶液又はポリイミド
溶液には、公知の酸無水物系やアミン系硬化剤等の硬化
剤、シランカップリング剤、チタネートカップリング
剤、エポキシ化合物等の接着性付与剤、ゴム等の可撓性
付与剤等の各種の添加剤、触媒を加えてもよい。
The polyimide precursor solution or polyimide solution used in the present invention, a curing agent such as a known acid anhydride-based or amine-based curing agent, a silane coupling agent, a titanate coupling agent, an adhesion imparting agent such as an epoxy compound, Various additives such as a flexibility-imparting agent such as rubber and a catalyst may be added.

次に、本発明の両面導体ポリイミド積層体の製造法は、
基本的には次の2つの工程を含む。
Next, the manufacturing method of the double-sided conductor polyimide laminate of the present invention,
Basically, it includes the following two steps.

すなわち、導体の片面上に低熱膨張ポリイミド系樹脂前
駆体溶液及び熱可塑性ポリイミド系樹脂又はその前駆体
溶液を用い、少なくとも1層の低熱膨張性ポリイミド系
樹脂層と、少なくとも1層の熱可塑性ポリイミド系樹脂
層を、同時に又は逐次に形成し、これを熱処理し、表面
が熱可塑性ポリイミド系樹脂層である片面導体ポリイミ
ド積層体を製造する工程と、上記片面導体ポリイミド積
層体同志をその樹脂層を内側にして加熱加圧下に圧着
し、両面導体ポリイミド積層体とする工程である。
That is, a low thermal expansion polyimide-based resin precursor solution and a thermoplastic polyimide-based resin or a precursor solution thereof are used on one surface of a conductor, and at least one low thermal expansion polyimide-based resin layer and at least one thermoplastic polyimide-based resin layer are used. Forming a resin layer simultaneously or sequentially, heat-treating this, a step of producing a one-sided conductor polyimide laminate whose surface is a thermoplastic polyimide-based resin layer, and the one-sided conductor polyimide laminates inside the resin layer Is a step of pressing under heat and pressure to form a double-sided conductor polyimide laminate.

樹脂溶液の導体上へのコーティングの方法としては、い
かなる方法であってもよく、トクターブレード、ロール
コーター、ダイコーター、カーテンコーター等公知のコ
ーティング方法で行なうことができる。また、多層ダイ
のようなコーティング機器を使用して2種以上のポリイ
ミド系樹脂を用いて2層以上を同時にコーティングして
2層以上のポリイミド系樹脂を一度に形成することも可
能である。
Any method may be used for coating the resin solution on the conductor, and a known coating method such as a doctor blade, a roll coater, a die coater or a curtain coater may be used. It is also possible to simultaneously coat two or more layers with two or more polyimide resins using a coating device such as a multi-layer die to form two or more polyimide resins at once.

コーティングに使用するポリイミド前駆体溶液のポリマ
ー濃度は、ポリマーの重合度にもよるが、5〜30重量
%、好ましくは10〜20重量%である。ポリマー濃度が5
重量%以下では一回のコーティングによって充分な膜厚
が得られず、また、30重量%以上では溶液粘度が高くな
りすぎてコーティングが困難になる。
The polymer concentration of the polyimide precursor solution used for coating depends on the degree of polymerization of the polymer, but is 5 to 30% by weight, preferably 10 to 20% by weight. Polymer concentration is 5
If it is less than 10% by weight, a sufficient film thickness cannot be obtained by coating once, and if it is more than 30% by weight, the solution viscosity becomes too high and coating becomes difficult.

導体上に均一な厚みにコーティングされたポリアミック
酸溶液は、熱処理により溶剤が除去され、さらにイミド
閉環されることになるが、その場合に急激に高温で熱処
理すると、樹脂表面にスキン層が生成して溶剤が蒸発し
難くなったり、発泡したりするので、低温から徐々に高
温まで上昇させながら熱処理していくのが望ましい。こ
の際の最終的な熱処理温度としては300〜400℃が好まし
く、400℃以上ではポリイミドの熱分解が徐々に起り始
め、また、300℃以下ではポリイミド皮膜が導体面上に
充分に配向せず、平面性の良い積層体が得られない。こ
のようにして得られたポリイミド皮膜の厚みは、通常10
〜150μm程度である。
The polyamic acid solution coated on the conductor to a uniform thickness causes the solvent to be removed by heat treatment and further imide ring closure.In that case, if heat treatment is rapidly performed at high temperature, a skin layer is formed on the resin surface. Since it is difficult for the solvent to evaporate and foams, it is desirable to perform heat treatment while gradually increasing from a low temperature to a high temperature. The final heat treatment temperature at this time is preferably 300 to 400 ° C., thermal decomposition of the polyimide gradually begins to occur at 400 ° C. or more, and at 300 ° C. or less, the polyimide film is not sufficiently oriented on the conductor surface, A laminate having good flatness cannot be obtained. The thickness of the polyimide film thus obtained is usually 10
It is about 150 μm.

第一の工程では、導体上に低熱膨張性ポリイミド層と熱
可塑性ポリイミド層のそれぞれを最低限一層づつを有し
ていればよいが、同種のポリイミド樹脂層を2層以上有
していてもよい。ただ第二の工程の熱プレスでの加熱圧
着特性をよくするためには、樹脂表面層は熱可塑性ポリ
イミドであることが好ましい。また、導体上に形成され
た低熱膨張性ポリイミド層と熱可塑性ポリイミド層との
割合は、反りやカールがなくて平面性の良い片面導体ポ
リイミド積層体を得るためには、低熱膨張性ポリイミド
層が80重量%以上含まれていることが好ましい。
In the first step, at least one low thermal expansion polyimide layer and at least one thermoplastic polyimide layer may be provided on the conductor, but two or more polyimide resin layers of the same kind may be provided. . However, in order to improve the thermocompression bonding property in the hot pressing in the second step, the resin surface layer is preferably a thermoplastic polyimide. Further, the ratio of the low thermal expansion polyimide layer and the thermoplastic polyimide layer formed on the conductor, the low thermal expansion polyimide layer is, in order to obtain a single-sided conductor polyimide laminate having good flatness without warping or curling. It is preferably contained in an amount of 80% by weight or more.

第二の工程では、このようにして得られた片面導体ポリ
イミド積層体同志をその樹脂層を内側にして熱プレスに
より加熱加圧下に積層するわけであるが、熱プレスの方
法としては通常のハイドロプレス、真空プレス又は熱ラ
ムネーター等を使用することができる。この際の熱プレ
ス温度については、特に特定されるものではないが、熱
可塑性ポリイミド系樹脂のガラス転移点であることが望
ましい。また、熱プレス圧力については、プレスに使用
する機器の種類にもよるが、1〜500Kg/cm2、好ましく
は5〜50Kg/cm2が適当である。
In the second step, the single-sided conductor polyimide laminates obtained in this way are laminated under heat and pressure by hot pressing with the resin layer inside, but as a method of hot pressing, normal hydro A press, a vacuum press, a hot ramneter or the like can be used. The hot pressing temperature at this time is not particularly specified, but is preferably the glass transition point of the thermoplastic polyimide resin. As for the hot pressing pressure, depending on the type of equipment used to press, 1~500Kg / cm 2, and preferably is 5 to 50 kg / cm 2 suitable.

上記第一の工程及び第二の工程は、導体面の酸化を防止
するために、不活性ガス雰囲気下で行なうことも可能で
ある。
The first step and the second step can be performed in an inert gas atmosphere in order to prevent oxidation of the conductor surface.

以上のような本発明の製造法の他に、接着層を有しない
両面導体ポリイミド積層体の製造法として、無接着型片
面導体ポリイミド積層体のポリイミド系樹脂層にコロナ
放電処理、プラズマ処理等を施し、樹脂表面の接着性を
高めた後に樹脂層同志を貼り合わせ、両面導体積層体と
する方法も適用できる。
In addition to the production method of the present invention as described above, as a method for producing a double-sided conductor polyimide laminate having no adhesive layer, corona discharge treatment, plasma treatment, etc., on the polyimide-based resin layer of the non-adhesive single-sided conductor polyimide laminate It is also possible to apply a method of forming a double-sided conductor laminated body by applying the resin layers to each other after adhering the resin layer to improve the adhesiveness of the resin surface.

本発明の両面導体ポリイミド積層体は、絶縁体としての
ポリイミド樹脂層の両面に導体を有するものであるが、
導体としては、銅、アルミニウム、鉄、銀、パラジウ
ム、ニッケル、クロム、モリブデン、タングステン、亜
鉛又はそれらの合金等を挙げることができ、好ましくは
銅である。さらに、好ましくは少なくとも1層が銅であ
り、より好ましくは2層共に銅である。
The double-sided conductor polyimide laminate of the present invention has conductors on both sides of the polyimide resin layer as an insulator,
Examples of the conductor include copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc and alloys thereof, and copper is preferable. Further, preferably at least one layer is copper, and more preferably both layers are copper.

また、これらの導体についてはその表面に、接着力の向
上を目的として、サイディング、ニッケルメッキ、銅−
亜鉛合金メッキ、又は、アルミニウムアルコラート、ア
ルミニウムキレート、シランカップリング剤等によって
化学的あるいは機械的な表面処理を施してもよい。
In addition, these conductors have siding, nickel plating, copper-
Zinc alloy plating, or chemical or mechanical surface treatment with aluminum alcoholate, aluminum chelate, silane coupling agent, or the like may be performed.

[実施例] 以下、実施例及び比較例に基づいて、本発明を具体的に
説明するが、本発明はこれに限定されないことは勿論で
ある。
[Examples] Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but it goes without saying that the present invention is not limited thereto.

合成例1:低熱膨張性ポリイミド前駆体溶液の調製 1のガラス製セパラブルフラスコに窒素を通じながら
N,N−ジメチルアセトアミド556gを仕込み、続いて2′
−メトキシ−4,4′−ジアミノベンズアニリド28.30g
(0.110mol)と4,4′−ジアミノジフェニルエーテル22.
03g(0.110mol)とを撹拌下に仕込み、その後完全に溶
解させた。この溶液を10℃に冷却し、無水ピロメリット
酸47.84g(0.219mol)を30℃以下の温度に保たれるよう
に少量づつ添加し、添加終了後引続き室温で2時間撹拌
を続け、重合反応を完結させ、B型粘度計による25℃の
みかけ粘度が約800ポイズのポリイミド前駆体溶液を得
た。
Synthesis Example 1: Preparation of low-thermal-expansion polyimide precursor solution While passing nitrogen through the glass separable flask of 1.
Charge 556 g of N, N-dimethylacetamide, then 2 '
-Methoxy-4,4'-diaminobenzanilide 28.30 g
(0.110 mol) and 4,4'-diaminodiphenyl ether 22.
03 g (0.110 mol) was charged with stirring and then completely dissolved. This solution was cooled to 10 ° C, and 47.84 g (0.219 mol) of pyromellitic dianhydride was added little by little so that the temperature was kept below 30 ° C, and after the addition was completed, the mixture was continuously stirred at room temperature for 2 hours to carry out a polymerization reaction. Was completed, and a polyimide precursor solution having an apparent viscosity of about 800 poise at 25 ° C. by a B type viscometer was obtained.

合成例2:低熱膨張性ポリイミド前駆体溶液の調製 ジアミン成分としてp−フェニレンジアミン20.00g(0.
185mol)、酸無水物成分として3,3′,4,4′−ビフェニ
ルテトラカルボン酸無水物54.27g(0.184mol)、反応溶
剤としてN−メチル−2−ピロリドン420gを用いた以外
は、上記合成例1と同様にして、B型粘度計による25℃
のみかけ粘度が約850ポイズのポリイミド前駆体溶液を
得た。
Synthesis Example 2: Preparation of low thermal expansion polyimide precursor solution p-phenylenediamine 20.00 g (0.
185 mol), 54.27 g (0.184 mol) of 3,3 ', 4,4'-biphenyltetracarboxylic acid anhydride as an acid anhydride component, and 420 g of N-methyl-2-pyrrolidone as a reaction solvent. 25 ° C by a B-type viscometer in the same manner as in Example 1.
A polyimide precursor solution having an apparent viscosity of about 850 poise was obtained.

合成例3:熱可塑性ポリイミド前駆体溶液の調製 ジアミン成分として1,3−ビス(3−アミノフェノキ
シ)ベンゼン30.00g(0.103mol)、酸無水物成分として
3,3′,4,4′−ベンゾフェノンテトラカルボン酸無水物3
2.90g(0.102mol)、反応溶剤としてN,N−ジメチルアセ
トアミド252gを用いた以外は、上記合成例1と同様にし
て、B型粘度計による25℃のみかけ粘度が600ポイズの
ポリイミド前駆体溶液を得た。
Synthesis Example 3: Preparation of Thermoplastic Polyimide Precursor Solution 1,3-bis (3-aminophenoxy) benzene 30.00 g (0.103 mol) as a diamine component, and an acid anhydride component
3,3 ', 4,4'-benzophenone tetracarboxylic acid anhydride 3
2.90 g (0.102 mol) and a polyimide precursor solution having an apparent viscosity of 600 poise at 25 ° C. measured by a B-type viscometer in the same manner as in Synthesis Example 1 except that N, N-dimethylacetamide (252 g) was used as a reaction solvent. Got

合成例4:熱可塑性ポリイミド前駆体溶液の調製 ジアミン成分として3,3′−ジアミノフェニルスルホン2
0.00g(0.081mol)、酸無水物成分として3,3′,4,4′−
ベンゾフェノンテトラカルボン酸無水物25.96g(0.081m
ol)、反応溶剤としてジエチレングリコールジメチルエ
ーテル138gを用いた以外は、上記合成例1と同様にし
て、B型粘度計による25℃のみかけ粘度が100ポイズの
ポリイミド前駆体溶液を得た。
Synthesis Example 4: Preparation of thermoplastic polyimide precursor solution 3,3'-diaminophenyl sulfone 2 as diamine component
0.00g (0.081mol), 3,3 ', 4,4'-as acid anhydride component
Benzophenone tetracarboxylic acid anhydride 25.96 g (0.081 m
ol), except that 138 g of diethylene glycol dimethyl ether was used as a reaction solvent, a polyimide precursor solution having an apparent viscosity of 100 poise at 25 ° C. measured by a B-type viscometer was obtained in the same manner as in Synthesis Example 1 above.

合成例5:熱可塑性ポリイミド前駆体溶液の調製 ジアミン成分として2,2−ビス[4−(4−アミノフェ
ノキシ)フェニル]プロパン25.00g(0.061mol)、酸無
水物成分として3,3′−4,4′−ベンゾフェノンテトラカ
ルボン酸無水物19.62g(0.061mol)、反応溶剤としてN,
N−ジメチルアセトアミド178gを用いた以外は、上記合
成例1と同様にして、B型粘度計による25℃のみかけ粘
度が250ポイズのポリイミド前駆体溶液を得た。
Synthesis Example 5: Preparation of Thermoplastic Polyimide Precursor Solution 2,2-bis [4- (4-aminophenoxy) phenyl] propane 25.00 g (0.061 mol) as a diamine component and 3,3'-4 as an acid anhydride component , 4'-benzophenone tetracarboxylic acid anhydride 19.62g (0.061mol), N as a reaction solvent,
A polyimide precursor solution having an apparent viscosity of 250 poise at 25 ° C. measured by a B-type viscometer was obtained in the same manner as in Synthesis Example 1 except that 178 g of N-dimethylacetamide was used.

合成例6:熱可塑性ポリイミド前駆体溶液の調製 ジアミン成分として3,3′−ジアミノジフェニルスルホ
ン20.00g(0.081mol)、酸無水物成分として3,3′,4,
4′−ジフェニルスルフォンテトラカルボン酸無水物28.
86g(0.081mol)、反応溶剤としてジエチレングリコー
ルジメチルエーテル147gを用いた以外は、上記合成例1
と同様にして、B型粘度計による25℃のみかけ粘度が12
0ポイズのポリイミド前駆体溶液を得た。
Synthesis Example 6: Preparation of thermoplastic polyimide precursor solution 3,3'-diaminodiphenyl sulfone 20.00 g (0.081 mol) as a diamine component, 3,3 ', 4, as an acid anhydride component
4'-diphenylsulfone tetracarboxylic acid anhydride 28.
86 g (0.081 mol), except that 147 g of diethylene glycol dimethyl ether was used as the reaction solvent, the above synthesis example 1
In the same manner as above, the apparent viscosity at 25 ° C measured by a B-type viscometer is 12
A 0 poise polyimide precursor solution was obtained.

実施例1 合成例1で調製した低熱膨張性ポリイミド前駆体溶液を
200mm×200mmのSUS製枠に固定した35μm電解銅箔(日
鉱グールド(株)製)の粗化面にアプリケーターを用い
て240μmの厚みに均一に塗布した。これを130℃の熱風
オーブン中で10分間加熱し、溶剤のN,N−ジメチルアセ
トアミドを除去した。さらに、乾燥した上記樹脂層上
に、バーコーター9番を用いて合成例4で調製した熱可
塑性ポリイミド前駆体溶液を30μmの厚みで積層するよ
うに塗布した。これを熱風オーブン中に入れ、130℃及
び160℃でそれぞれ10分間づつ加熱し、さらに15分間か
けて360℃まで連続的に昇温させ、樹脂層の厚み25μm
の反りやカールがなくて平面性が良好な片面銅張ポリイ
ミド積層体を得た。
Example 1 The low thermal expansion polyimide precursor solution prepared in Synthesis Example 1 was used.
A 35 μm electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) fixed to a 200 mm × 200 mm SUS frame was uniformly coated with a thickness of 240 μm using an applicator. This was heated in a hot air oven at 130 ° C for 10 minutes to remove the solvent N, N-dimethylacetamide. Further, on the dried resin layer, a thermoplastic polyimide precursor solution prepared in Synthesis Example 4 was applied with a bar coater No. 9 so as to be laminated in a thickness of 30 μm. Put this in a hot air oven and heat at 130 ℃ and 160 ℃ for 10 minutes each, and further raise the temperature continuously up to 360 ℃ over 15 minutes.
A single-sided copper-clad polyimide laminate having good warp and curl and good flatness was obtained.

この片面銅張ポリイミド積層体の銅箔とポリイミド系樹
脂層の180゜引剥がし強さ(JIS C−6481)を測定した結
果は0.9Kg/cm2であり、また、銅箔エッチング後のポリ
イミドフィルムの線熱膨張係数は12×10-6(1/K)であ
った。
The 180 ° peel strength (JIS C-6481) of the copper foil and the polyimide resin layer of this single-sided copper-clad polyimide laminate was measured to be 0.9 Kg / cm 2 , and the polyimide film after copper foil etching The coefficient of linear thermal expansion was 12 × 10 -6 (1 / K).

次に、この片面銅張ポリイミド積層体の2枚をその樹脂
層を内側にして重ね合せ、油圧式プレス機で圧力50Kg/c
m2、温度340℃の条件下に10分間保持し、全体厚みが120
μmの両面導体ポリイミド積層体を得た。
Then, two sheets of this single-sided copper-clad polyimide laminate are stacked with the resin layer inside, and the pressure is 50 Kg / c with a hydraulic press.
Hold for 10 minutes under the condition of m 2 and temperature of 340 ℃, and the total thickness is 120
A μm double-sided conductor polyimide laminate was obtained.

熱圧着面での180゜引剥がし強さは1.2Kg/cm2であり、ま
た、この両面銅張ポリイミド積層体を熱風オーブン中20
0℃で180時間処理した後においても1.1Kg/cm2の接着力
を示し、接着力の低下は小さかった。
The 180 ° peel strength at the thermocompression bonding surface is 1.2 kg / cm 2 , and this double-sided copper-clad polyimide laminate is placed in a hot air oven for 20
The adhesive strength was 1.1 Kg / cm 2 even after treatment at 0 ° C for 180 hours, and the decrease in the adhesive strength was small.

実施例2 低熱膨張性ポリイミド前駆体溶液として合成例2の樹脂
溶液を使用し、熱可塑性ポリイミド前駆体溶液として合
成例3の樹脂溶液を用いた以外は、上記実施例1と同様
にして片面銅張ポリイミド積層体及び両面銅張ポリイミ
ド積層体を作製した。
Example 2 Single-sided copper was used in the same manner as in Example 1 except that the resin solution of Synthesis Example 2 was used as the low thermal expansion polyimide precursor solution and the resin solution of Synthesis Example 3 was used as the thermoplastic polyimide precursor solution. A laminated polyimide laminate and a double-sided copper-clad polyimide laminate were prepared.

片面銅張ポリイミド積層体の180゜引剥がし強さは0.7Kg
/cm2、ポリイミドフィルムの線熱膨張係数は9×10
-6(1/K)であった。
180 degree peel strength of one side copper clad polyimide laminate is 0.7Kg
/ cm 2 , the coefficient of linear thermal expansion of polyimide film is 9 × 10
It was -6 (1 / K).

また、両面銅張ポリイミド積層体の熱圧着面での180゜
引剥がし強さは1.5Kg/cm2であり、200℃で180時間後に
おいても1.3Kg/cm2の値を示し接着力の低下は小さかっ
た。
Also, 180 ° Peel strength at thermocompression bonding surface of the double-sided copper clad polyimide laminate is 1.5 Kg / cm 2, reduction of the adhesive force shows a value of 1.3 Kg / cm 2 even at 180 hours at 200 ° C. Was small.

実施例3 合成例5で調製した熱可塑性ポリイミド前駆体溶液を20
0mm×200mmのSUS製枠に固定した35μm電解銅箔(日鉱
グールド(株)製)の粗化面にバーコーター9番を用い
て30μmの厚みで塗布し、熱風オーブン中130℃で2分
間加熱し、溶剤を除去した。次に、第一の樹脂層に積層
するように合成例1の低熱膨張性ポリイミド前駆体溶液
及び合成例4の熱可塑性ポリイミド前駆体溶液を順次上
記実施例1と同様にして塗布し、熱処理を行ない、ポリ
イミド部分が3層からなる反りやカールのない平面性の
良好な片面銅張ポリイミド積層体を得た。この片面銅張
積層体の180゜の引剥がし強さは1.8Kg/cm2であり、エッ
チング後のポリイミドフィルムの線膨張係数は10×10-6
(1/K)であった。
Example 3 20% of the thermoplastic polyimide precursor solution prepared in Synthesis Example 5 was used.
Apply to a roughened surface of 35 μm electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) fixed to a 0 mm × 200 mm SUS frame with a bar coater No. 9 to a thickness of 30 μm, and heat in a hot air oven at 130 ° C. for 2 minutes The solvent was removed. Next, the low thermal expansion polyimide precursor solution of Synthesis Example 1 and the thermoplastic polyimide precursor solution of Synthesis Example 4 were sequentially applied in the same manner as in Example 1 so as to be laminated on the first resin layer, and heat treatment was performed. As a result, a single-sided copper-clad polyimide laminate having good planarity without warping or curling, in which the polyimide portion was composed of three layers, was obtained. The 180 ° peel strength of this single-sided copper-clad laminate was 1.8 Kg / cm 2 , and the linear expansion coefficient of the polyimide film after etching was 10 × 10 -6.
It was (1 / K).

次に、この片面銅張ポリイミド積層体の2枚を実施例1
と同様に熱圧着して積層し、両面銅張ポリイミド積層体
とした。熱圧着面での180゜引剥がし強さは1.2Kg/cm2
あり、200℃で180時間処理後の値も1.1Kg/cm2であって
接着力の低下は小さかった。
Next, two sheets of this single-sided copper-clad polyimide laminate were used in Example 1
In the same manner as above, thermocompression bonding and lamination were performed to obtain a double-sided copper-clad polyimide laminate. The 180 ° peel strength on the thermocompression bonded surface was 1.2 Kg / cm 2 , and the value after treatment at 200 ° C for 180 hours was 1.1 Kg / cm 2, showing a small decrease in adhesive strength.

実施例4 低熱膨張性ポリイミド前駆体溶液として合成例1の樹脂
溶液を、また、熱可塑性ポリイミド前駆体溶液として合
成例6の樹脂溶液を使用した以外は、実施例1と同様に
して、片面銅張ポリイミド積層体及び両面銅張ポリイミ
ド積層体を得た。
Example 4 Single-sided copper was used in the same manner as in Example 1 except that the resin solution of Synthesis Example 1 was used as the low thermal expansion polyimide precursor solution and the resin solution of Synthesis Example 6 was used as the thermoplastic polyimide precursor solution. A laminated polyimide laminate and a double-sided copper-clad polyimide laminate were obtained.

この片面銅張積層体の180゜引剥がし強さは0.7Kg/cm2
あり、エッチング後のポリイミドフィルムの線膨張係数
は11×10-6(1/K)であった。また両面銅張積層体の熱
圧着面での180゜引剥がし強さは1.4Kg/cm2であり、200
℃で180時間処理後の値も1.4Kg/cm2であって接着力の低
下はほとんどなかった。
The 180 ° peel strength of this one-sided copper-clad laminate was 0.7 Kg / cm 2 , and the linear expansion coefficient of the polyimide film after etching was 11 × 10 -6 (1 / K). The 180 ° peel strength of the double-sided copper-clad laminate on the thermocompression bonding surface is 1.4 Kg / cm 2 ,
The value after treatment at 180 ° C. for 180 hours was also 1.4 Kg / cm 2, showing almost no decrease in adhesive strength.

比較例1 低熱膨張性ポリイミド前駆体に代えて4,4′−ジアミノ
ジフェニルエーテルと無水ピロメリット酸の反応物のN,
N−ジメチルアセトアミド15重量%溶液を用いた以外
は、実施例1と同様にして、片面銅張ポリイミド積層体
を作製したが、カールが著しく熱プレスによる両面化は
できなかった。また、エッチング後のポリイミドフィル
ムの線膨張係数は45×10-6(1/K)であった。
Comparative Example 1 N, a reaction product of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was used instead of the low thermal expansion polyimide precursor.
A single-sided copper-clad polyimide laminate was produced in the same manner as in Example 1 except that a 15% by weight solution of N-dimethylacetamide was used, but curling was remarkable and double-sided formation by hot pressing was not possible. The linear expansion coefficient of the polyimide film after etching was 45 × 10 −6 (1 / K).

[発明の効果] 本発明の両面導体ポリイミド積層体は、本質的に接着剤
層を有しない構造であるため、ポリイミド系樹脂の長所
である耐熱性を生かすことができ、また、スルーホール
加工性、回路加工時の寸法安定性、可撓性等に優れた性
能を有し、しかも、片面の導体層のみエッチングしたよ
うな場合でもカールの発生が少ない。
EFFECTS OF THE INVENTION Since the double-sided conductor polyimide laminate of the present invention has a structure essentially having no adhesive layer, it is possible to take advantage of the heat resistance, which is an advantage of the polyimide resin, and also the through-hole processability. In addition, it has excellent performances such as dimensional stability and flexibility during circuit processing, and even when only one conductor layer is etched, curling is less likely to occur.

また、本発明の両面導体ポリイミド積層体の製造法によ
れば、直接塗工なのでその製造工程が簡略化され、生産
性が著しく向上する。
Further, according to the method for manufacturing a double-sided conductor polyimide laminate of the present invention, since the coating is direct, the manufacturing process is simplified and the productivity is remarkably improved.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1層の低熱膨張性ポリイミド樹
脂層と少なくとも1層のガラス転移点350℃以下の熱可
塑性ポリイミド樹脂層とを有する樹脂層と、この樹脂層
の両面に設けられた導体層とを有することを特徴とする
両面導体ポリイミド積層体。
1. A resin layer having at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide resin layer having a glass transition point of 350 ° C. or lower, and conductor layers provided on both sides of the resin layer. A double-sided conductor polyimide laminate, comprising:
【請求項2】低熱膨張性ポリイミド系樹脂が一般式
(I) 〔但し、式中Ar1は、下記一般式 又は (但し、式中R1〜R8は低級アルキル基、低級アルコキシ
基又はハロゲン基を示し、互いに同じであっても異なっ
ていてもよく、また、n1〜n8は0〜4の整数である)で
示される2価の芳香族基である〕で表される単位構造を
有する請求項1記載の両面導体ポリイミド積層体。
2. A low thermal expansion polyimide resin is represented by the general formula (I). (However, in the formula, Ar1 is the following general formula. Or (However, in the formula, R1 to R8 represent a lower alkyl group, a lower alkoxy group or a halogen group, and may be the same or different, and n1 to n8 are integers of 0 to 4) Which is a divalent aromatic group represented by the formula [1].
【請求項3】一般式(I)で表される単位構造におい
て、Ar1が である請求項2記載の両面導体ポリイミド積層体。
3. In the unit structure represented by the general formula (I), Ar1 is The double-sided conductor polyimide laminate according to claim 2.
【請求項4】低熱膨張性ポリイミド系樹脂が一般式(I
I) (但し、式中R9〜R12は低級アルキル基、低級アルコキ
シ基又はハロゲン基を示す)で表される単位構造を有す
る請求項1記載の両面導体ポリイミド積層体。
4. A low thermal expansion polyimide resin is represented by the general formula (I
I) The double-sided conductor polyimide laminate according to claim 1, having a unit structure represented by the formula (wherein R9 to R12 represent a lower alkyl group, a lower alkoxy group or a halogen group).
【請求項5】低熱膨張性ポリイミド系樹脂の熱膨張係数
が20×10-6(1/K)以下である請求項1ないし4のいず
れかに記載の両面導体ポリイミド積層体。
5. The double-sided conductor polyimide laminate according to claim 1, wherein the low thermal expansion polyimide resin has a thermal expansion coefficient of 20 × 10 −6 (1 / K) or less.
【請求項6】熱可塑性ポリイミド系樹脂が一般式(II
I) (但し、式中Ar2は2価の芳香族基であってその炭素数
が12以上である)で表される単位構造を有する請求項1
〜5のいずれかに記載の両面導体ポリイミド積層体。
6. A thermoplastic polyimide resin is represented by the general formula (II
I) (Wherein Ar2 is a divalent aromatic group having a carbon number of 12 or more).
The double-sided conductor polyimide laminate according to any one of 5 to 10.
【請求項7】熱可塑性ポリイミド系樹脂が一般式(IV) (但し、式中Ar3は2価の芳香族基であってその炭素数
が12以上である)で表される単位構造を有する請求項1
〜5のいずれかに記載の両面導体ポリイミド積層体。
7. A thermoplastic polyimide resin is represented by the general formula (IV): (Wherein Ar3 is a divalent aromatic group having a carbon number of 12 or more).
The double-sided conductor polyimide laminate according to any one of 5 to 10.
【請求項8】一般式(III)又は(IV)で表される単位
構造において、Ar2又はAr3が である請求項6又は7記載の両面導体ポリイミド積層
体。
8. A unit structure represented by the general formula (III) or (IV), wherein Ar2 or Ar3 is The double-sided conductor polyimide laminate according to claim 6 or 7.
【請求項9】導体の少なくとも1層が銅箔である請求項
1〜8のいずれかに記載の両面導体ポリイミド積層体。
9. The double-sided conductor polyimide laminate according to claim 1, wherein at least one layer of the conductor is a copper foil.
【請求項10】導体の片面上に低熱膨張ポリイミド系樹
脂前駆体溶液及び熱可塑性ポリイミド系樹脂又はその前
駆体溶液を用い、少なくとも1層の低熱膨張性ポリイミ
ド系樹脂層と少なくとも1層の熱可塑性ポリイミド系樹
脂層を同時に又は逐次に形成し、これを熱処理して一方
の面が導体であって他方の面が熱可塑性ポリイミド系樹
脂層である片面導体ポリイミド積層体を製造する工程
と、上記片面導体ポリイミド積層体同志をその樹脂層を
内側にして加熱加圧下に圧着し、両面導体ポリイミド積
層体とする工程とを含むことを特徴とする両面導体ポリ
イミド積層体の製造法。
10. A low thermal expansion polyimide resin precursor solution and a thermoplastic polyimide resin or a precursor solution thereof are used on one surface of a conductor, and at least one low thermal expansion polyimide resin layer and at least one thermoplastic resin are used. Forming a polyimide-based resin layer simultaneously or sequentially, heat-treating this to produce a single-sided conductor polyimide laminate in which one side is a conductor and the other side is a thermoplastic polyimide-based resin layer; A process for producing a double-sided conductor polyimide laminate, comprising the steps of pressing the conductor-polyimide laminates with the resin layer inside and heating and pressing to form a double-sided conductor polyimide laminate.
JP63071819A 1988-03-28 1988-03-28 Double-sided conductor polyimide laminate and manufacturing method thereof Expired - Lifetime JPH0739161B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63071819A JPH0739161B2 (en) 1988-03-28 1988-03-28 Double-sided conductor polyimide laminate and manufacturing method thereof
US07/329,139 US4937133A (en) 1988-03-28 1989-03-27 Flexible base materials for printed circuits
EP19890105469 EP0335337B1 (en) 1988-03-28 1989-03-28 Flexible base materials for printed circuits
KR1019890003943A KR930010058B1 (en) 1988-03-28 1989-03-28 Flexible base materials for printed circuit board
DE1989625490 DE68925490T2 (en) 1988-03-28 1989-03-28 Flexible basic materials for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071819A JPH0739161B2 (en) 1988-03-28 1988-03-28 Double-sided conductor polyimide laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01244841A JPH01244841A (en) 1989-09-29
JPH0739161B2 true JPH0739161B2 (en) 1995-05-01

Family

ID=13471544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071819A Expired - Lifetime JPH0739161B2 (en) 1988-03-28 1988-03-28 Double-sided conductor polyimide laminate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0739161B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320996C (en) * 2003-01-09 2007-06-13 株式会社钟化 Bonding sheet and one-side metal-clad laminate
KR100867528B1 (en) * 2006-04-27 2008-11-10 에스케이에너지 주식회사 Monomer for synthesizing polyimide, and polyimide precursor and flexible metal clad laminate including the same
US7459216B2 (en) 2002-08-20 2008-12-02 Nippon Mektron Limited Polyimide copolymer and metal laminate using the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719939B2 (en) * 1988-09-19 1995-03-06 三井東圧化学株式会社 Flexible double-sided metal foil laminate
JP3270378B2 (en) * 1997-11-25 2002-04-02 住友ベークライト株式会社 Metal / resin composite, method for producing the same, and substrate for flexible circuit wiring board
EP1606108B1 (en) 2003-03-26 2015-08-19 LG Chem Ltd. Double-sided metallic laminate and method for manufacturing the same
JP2005015596A (en) 2003-06-25 2005-01-20 Shin Etsu Chem Co Ltd Polyimide-based precursor resin solution composition sheet
JP2005329641A (en) * 2004-05-20 2005-12-02 Unitika Ltd Substrate for flexible printed circuit board and its production method
KR100668948B1 (en) * 2004-09-21 2007-01-12 주식회사 엘지화학 Metallic Laminate and Method for Preparing Thereof
JP4544588B2 (en) 2005-03-14 2010-09-15 株式会社エー・エム・ティー・研究所 Laminated body
JP4936729B2 (en) * 2006-01-12 2012-05-23 ユニチカ株式会社 Flexible printed wiring board substrate and manufacturing method thereof
TWI355329B (en) * 2006-09-18 2012-01-01 Chang Chun Plastics Co Ltd Polyimide composite flexible board and its prepara
JP2013123907A (en) * 2011-12-16 2013-06-24 Panasonic Corp Metal clad laminated plate and printed wiring board
JP6031396B2 (en) * 2013-03-29 2016-11-24 新日鉄住金化学株式会社 Manufacturing method of double-sided flexible metal-clad laminate
CN113637165A (en) * 2021-09-01 2021-11-12 大同共聚(西安)科技有限公司 Preparation method of double-sided conductive polyimide flexible circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740629B2 (en) * 1984-08-31 1995-05-01 株式会社日立製作所 Manufacturing method of multilayer wiring board for electronic devices
JPS61181829A (en) * 1985-02-06 1986-08-14 Hitachi Ltd Low-thermal expansion resin material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459216B2 (en) 2002-08-20 2008-12-02 Nippon Mektron Limited Polyimide copolymer and metal laminate using the same
CN1320996C (en) * 2003-01-09 2007-06-13 株式会社钟化 Bonding sheet and one-side metal-clad laminate
KR100867528B1 (en) * 2006-04-27 2008-11-10 에스케이에너지 주식회사 Monomer for synthesizing polyimide, and polyimide precursor and flexible metal clad laminate including the same

Also Published As

Publication number Publication date
JPH01244841A (en) 1989-09-29

Similar Documents

Publication Publication Date Title
KR930010058B1 (en) Flexible base materials for printed circuit board
US7348064B2 (en) Low temperature polyimide adhesive compositions and methods relating thereto
US7285321B2 (en) Multilayer substrates having at least two dissimilar polyimide layers, useful for electronics-type applications, and compositions relating thereto
JPH0739161B2 (en) Double-sided conductor polyimide laminate and manufacturing method thereof
JP2019194346A (en) Polyamide acid, polyimide, resin film and metal-clad laminate
JP7212515B2 (en) Metal-clad laminates and circuit boards
WO1995004100A1 (en) Thermoplastic polyimide polymer, thermoplastic polyimide film, polyimide laminate, and process for producing the laminate
CN113563585A (en) Polyimide and application thereof in metal laminated plate
KR20060129081A (en) Flexible printed wiring board and manufacturing method thereof
JP4510506B2 (en) Method for producing polyimide metal laminate
TWI360373B (en)
JP2927531B2 (en) Flexible printed circuit board and method of manufacturing the same
JPH0693537B2 (en) Method for producing double-sided conductor polyimide laminate
JP2001139807A (en) Method of manufacturing heat-resistant bonding sheet
JP3034838B2 (en) Method for producing double-sided conductor polyimide laminate
JPH0370399B2 (en)
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP2017145343A (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP2001191468A (en) Heat-resistant bonding sheet and copper clad laminated sheet using the same
JP6558755B2 (en) Polyamide acid, polyimide, resin film and metal-clad laminate
JP2001342270A (en) Method for producing heat-resistant bonding sheet and copper-clad laminated board produced by using heat- resistant bonding sheet
JP2001191467A (en) Heat-resistant bonding sheet and copper clad laminated sheet comprising the same
JP2008177244A (en) Multilayer wiring circuit board