JPH0738937B2 - Deodorization method - Google Patents

Deodorization method

Info

Publication number
JPH0738937B2
JPH0738937B2 JP1175321A JP17532189A JPH0738937B2 JP H0738937 B2 JPH0738937 B2 JP H0738937B2 JP 1175321 A JP1175321 A JP 1175321A JP 17532189 A JP17532189 A JP 17532189A JP H0738937 B2 JPH0738937 B2 JP H0738937B2
Authority
JP
Japan
Prior art keywords
catalyst
component
ozone
group
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1175321A
Other languages
Japanese (ja)
Other versions
JPH0342016A (en
Inventor
定男 照井
邦夫 佐野
和良 西川
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1175321A priority Critical patent/JPH0738937B2/en
Priority to DE69021267T priority patent/DE69021267T2/en
Priority to EP90108817A priority patent/EP0399302B1/en
Priority to CA002016576A priority patent/CA2016576A1/en
Priority to KR1019900006705A priority patent/KR950003412B1/en
Publication of JPH0342016A publication Critical patent/JPH0342016A/en
Priority to US07/933,568 priority patent/US5472676A/en
Publication of JPH0738937B2 publication Critical patent/JPH0738937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体中に含有される悪臭成分を、オゾンを導
入しつつ触媒の存在下で接触酸化分解して除去する脱臭
方法に関するものである。
TECHNICAL FIELD The present invention relates to a deodorizing method for removing a malodorous component contained in a gas by catalytic oxidative decomposition in the presence of a catalyst while introducing ozone. is there.

[従来の技術] 近年、悪臭公害が社会問題として大きく取り上げられ、
悪臭の原因となる悪臭成分を取り除く為の脱臭技術が様
々な角度から検討されている。
[Prior Art] In recent years, bad smell pollution has been widely taken up as a social problem,
Deodorization technology for removing a malodorous component that causes a malodor has been studied from various angles.

これまでに実施されている脱臭方法としては(I)水洗
法,(II)薬剤洗浄法,(III)吸着法,(IV)直燃
法,(V)触媒燃焼法,(VI)オゾン酸化法等が知られ
ているが、夫々一長一短があり、実用上次の様な問題が
ある。
The deodorizing methods that have been used so far are (I) water washing method, (II) chemical washing method, (III) adsorption method, (IV) direct combustion method, (V) catalytic combustion method, (VI) ozone oxidation method Etc. are known, but each has merits and demerits, and there are practically the following problems.

水洗法および薬剤洗浄法はプロセス的には比較的簡単で
あるが、多量の水を使用するものであり、処理コストが
高いばかりでなく、排水処理の問題も生じる。また脱臭
効率も低い。
Although the water washing method and the chemical washing method are relatively simple in process, they use a large amount of water, so that not only the treatment cost is high, but also the problem of wastewater treatment occurs. Also, the deodorizing efficiency is low.

吸着法は活性炭等の吸着剤を用いて悪臭成分を除去する
ものであるが、条件によっては吸着熱による発火性の危
険があり、また短期間で脱臭効果が薄れてしまうので、
再生や吸着剤取換え等の維持管理上の問題がある。尚活
性炭の再生法としては水蒸気または加熱した不活性ガス
による脱着再生法が知られているが、水蒸気発生コスト
および発生する排水処理問題、或は不活性ガスの発生お
よび加熱費用等を要し、ランニングコストも決して安価
ではない。
The adsorption method removes malodorous components using an adsorbent such as activated carbon, but depending on the conditions, there is a risk of ignition due to the heat of adsorption, and the deodorizing effect will fade in a short period of time.
There are maintenance problems such as regeneration and replacement of adsorbent. As a method for regenerating activated carbon, a desorption regeneration method using steam or heated inert gas is known, but it requires steam generation cost and wastewater treatment problem to occur, or generation and heating cost of inert gas, Running costs are not cheap either.

直燃法は炉内温度を700〜900℃の高温に維持する為の燃
料が必要であり、ランニングコストが高くなる上に、NO
xの発生等2次公害の恐れもあり、また装置が大掛りに
なるという欠点がある。
The direct combustion method requires fuel to maintain the temperature inside the furnace at a high temperature of 700 to 900 ° C, which increases running costs and also causes NO
There is a risk of secondary pollution such as generation of x , and there is a drawback that the device becomes large.

触媒燃焼法は装置の維持が比較的容易であるという利点
を有するものの、触媒層を200〜450℃程度の高温に保つ
必要があり、処理に供する気体が低温の場合や可燃性物
質が低濃度である場合には、ランニングコストが高くな
るという欠点がある。
Although the catalytic combustion method has the advantage that the equipment is relatively easy to maintain, it is necessary to keep the catalyst layer at a high temperature of 200 to 450 ° C, and when the gas to be treated is at a low temperature or the combustible substance has a low concentration. However, there is a drawback that the running cost becomes high.

一方オゾン酸化法はオゾンの強力な酸化作用を利用して
悪臭成分を処理する方法であり、室温程度の比較的低温
で実施できるので前記各種方法に比べランニングコスト
が安く有利な方法である。しかしながらオゾンと悪臭成
分の気相中における反応速度が小さい為に長大な反応ゾ
ーンを必要とするという欠点がある。また未反応オゾン
は大気中に放出されるので、光化学スモッグ等の2次公
害を発生させる原因になるという欠点がある。
On the other hand, the ozone oxidation method is a method of treating a malodorous component by utilizing the strong oxidizing action of ozone, and since it can be carried out at a relatively low temperature of about room temperature, it is an advantageous method with a lower running cost than the above various methods. However, there is a drawback that a long reaction zone is required because the reaction rate of ozone and malodorous components in the gas phase is small. Further, since unreacted ozone is released into the atmosphere, it has a drawback that it causes secondary pollution such as photochemical smog.

[発明が解決しようとする課題] オゾン酸化法における上記欠点を解消する手段として、
触媒を利用する方法が提案されている。この方法は悪臭
成分含有ガス中にオゾンを導入し、触媒の存在下に悪臭
成分を分解処理するものである。この方法によれば大き
な反応スペースが無くとも悪臭成分とオゾンが速やかに
反応し、脱臭効率が飛躍的に向上するばかりでなく、オ
ゾンも完全に分解し、未反応オゾンが大気中に放出され
る心配はなくなる。
[Problems to be Solved by the Invention] As means for solving the above-mentioned drawbacks in the ozone oxidation method,
A method utilizing a catalyst has been proposed. In this method, ozone is introduced into the malodorous component-containing gas to decompose the malodorous component in the presence of a catalyst. According to this method, the malodorous component and ozone react rapidly without a large reaction space, and not only the deodorization efficiency is dramatically improved, but also ozone is completely decomposed and unreacted ozone is released into the atmosphere. Don't worry.

しかしながら当該方法においても、使用条件によっては
その効果が十分に発揮されないという事態が発生するこ
とがあった。即ち、長期間連続的に使用したり、過酷な
条件下で使用したりすると、触媒の活性が早期に低下す
るという欠点がある。尚悪臭成分にはオゾンによって分
解除去されにくい成分も存在し(例えば、アンモニア,
酢酸,酪酸等)、これらの存在も当該脱臭方法の評価を
下げる原因の1つになっている。
However, even in this method, there are cases in which the effect is not sufficiently exerted depending on the use conditions. That is, when used continuously for a long period of time or when used under severe conditions, there is a drawback that the activity of the catalyst decreases early. There are some odorous components that are difficult to decompose and remove by ozone (for example, ammonia,
The presence of acetic acid, butyric acid, etc.), etc., is also one of the causes of lowering the evaluation of the deodorizing method.

本発明はこうした状況のもとでなされたものであって、
その目的は、悪臭を長期に亘って効率よく除去でき、且
つ比較的安価に実施することのできる脱臭方法を提供す
ることにある。
The present invention has been made under these circumstances,
It is an object of the present invention to provide a deodorizing method capable of efficiently removing a bad odor over a long period of time and being relatively inexpensive.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、悪臭成分含有ガス中
にオゾンを導入し、触媒の存在下に悪臭成分を分解処理
する脱臭方法において、前記触媒を直接通電加熱して再
生し得る構成とすると共に、直接通電加熱温度を100〜2
50℃とする点に趣旨を有する脱臭方法である。
[Means for Solving the Problems] According to the present invention that has achieved the above object, in the deodorizing method of introducing ozone into a malodorous component-containing gas and decomposing the malodorous component in the presence of the catalyst, the catalyst is It has a structure that can be directly energized and heated for regeneration, and has a direct energization heating temperature of 100 to 2
This is a deodorizing method that has the point of setting the temperature to 50 ° C.

また本発明の目的は、下記(a)〜(c)の成分からな
る触媒を直接通電加熱して再生し得る構成にしても達成
される。
Further, the object of the present invention can be achieved even if the catalyst composed of the following components (a) to (c) is directly energized and heated to be regenerated.

(a)TiとSiの2元系酸化物,TiとZrの2元系酸化物,
およびTi,Si,Zrの3元系酸化物の少なくとも1種からな
る触媒成分、 (b)Mn,Fe,Co,Ni,Ag,Au,Pt,PdおよびRhよりなる群か
ら選択される1種または2種以上の元素からなる触媒成
分、 (c)金属粉,金属繊維,グラファイトおよび活性炭よ
りなる群から選択される1種または2種以上の導電体。
(A) Binary oxide of Ti and Si, Binary oxide of Ti and Zr,
And a catalyst component consisting of at least one ternary oxide of Ti, Si, Zr, (b) one selected from the group consisting of Mn, Fe, Co, Ni, Ag, Au, Pt, Pd and Rh. Alternatively, a catalyst component composed of two or more elements, and (c) one or more conductors selected from the group consisting of metal powder, metal fibers, graphite and activated carbon.

[作用] 本発明者らは、触媒を用いたオゾン酸化法を基本とし、
用いる触媒の性能を向上するという観点に立ち様々な角
度から検討を加えた。その結果、用いる触媒自体を直接
通電加熱し得る構成とすると共に、直接通電加熱温度を
100〜250℃とし、脱臭効果および余剰オゾンの処理効果
が低下する前に、該触媒を適当な時間通電加熱して触媒
を再生しながら使用すれば、脱臭効果および余剰のオゾ
ン処理効果に優れ且つその効果が長期に亘って安定して
発揮されることを見い出し、本発明を完成した。
[Operation] The present inventors are based on the ozone oxidation method using a catalyst,
From the viewpoint of improving the performance of the catalyst used, studies have been added from various angles. As a result, the catalyst itself to be used can be directly heated by electric current, and the temperature of direct electric heating can be increased.
If the temperature of the catalyst is 100 to 250 ° C. and before the deodorizing effect and the effect of treating excess ozone are reduced, the catalyst is heated while being energized for a suitable period of time to regenerate the catalyst, and the deodorizing effect and the excess ozone treating effect are excellent. It was found that the effect is stably exhibited over a long period of time, and the present invention was completed.

また本発明で用いる触媒として、特に下記(a)〜
(c)の成分からなる触媒(以下、触媒Aと呼ぶ)と
し、該触媒を直接通電加熱して再生し得る構成にすれ
ば、直接通電加熱温度を100〜250℃までに上昇させずと
も、本発明の効果が達成されることも見い出した。
Further, as the catalyst used in the present invention, particularly the following (a) to
If a catalyst comprising the component (c) (hereinafter referred to as catalyst A) is used and the catalyst can be directly energized to be regenerated, it is possible to raise the energization temperature to 100 to 250 ° C. It has also been found that the effects of the present invention are achieved.

(a)TiとSiの2元系酸化物,TiとZrの2元系酸化物,
およびTi,Si,Zrの3元系酸化物の少なくとも1種からな
る触媒成分、 (b)Mn,Fe,Co,Ni,Ag,Au,Pt,PdおよびRhよりなる群か
ら選択される1種または2種以上の元素からなる触媒成
分、 (c)金属粉,金属繊維,グラファイトおよび活性炭よ
りなる群から選択される1種または2種以上の導電体。
(A) Binary oxide of Ti and Si, Binary oxide of Ti and Zr,
And a catalyst component consisting of at least one ternary oxide of Ti, Si, Zr, (b) one selected from the group consisting of Mn, Fe, Co, Ni, Ag, Au, Pt, Pd and Rh. Alternatively, a catalyst component composed of two or more elements, and (c) one or more conductors selected from the group consisting of metal powder, metal fibers, graphite and activated carbon.

触媒を用いたオゾン酸化法における触媒活性の低下は、
触媒上に反応生成物が付着して被毒物質になる、オ
ゾンによって触媒表面が酸化して、マンガン過酸化物が
生成し、それらが触媒上に蓄積する、処理ガス中に含
まれるダストや水分が触媒表面に付着する等がその原因
と考えられる。これらの触媒活性低下原因は、触媒を直
接通電加熱して再生し得る構成とすることによって解消
することができる。
The decrease in catalytic activity in the ozone oxidation method using a catalyst is
Dust and moisture contained in the process gas, where reaction products adhere to the catalyst and become poisonous substances, ozone oxidizes the catalyst surface and forms manganese peroxide, which accumulate on the catalyst. The cause is considered to be that they adhere to the catalyst surface. These causes of catalyst activity reduction can be eliminated by directly heating the catalyst by heating so that the catalyst can be regenerated.

また悪臭成分にはオゾンによって分解除法されない成分
が存在することは前述の通りであるが、本発明の構成を
採用すればこれらの成分の除去も可能である。即ち、触
媒の吸着能力を利用して上記成分を一旦触媒上に吸着
し、吸着が飽和に至る時期を見計らって通電加熱して燃
焼処理することによって、上記成分をそのまま外部に排
出することなく処理できる。
As described above, the malodorous components include components that cannot be removed by ozone, but these components can be removed by adopting the configuration of the present invention. That is, the above components are once adsorbed on the catalyst by utilizing the adsorption ability of the catalyst, and the components are treated without being discharged to the outside as they are by directly heating and burning the components in consideration of the time when the adsorption reaches saturation. it can.

一方悪臭成分としてアルコールやアルデヒド等が含まれ
ている場合もあるが、これらの成分はオゾン分解処理に
よって対応する酸まで酸化される。そしてその酸成分が
触媒に吸着され、吸着破過に達すると該酸成分による臭
気が感じられることがあった。しかしながら本発明の構
成を採用すれば、上記と同様にして外部へ排出すること
なく分解処理できる。
On the other hand, although there are cases where alcohol, aldehyde, etc. are contained as malodorous components, these components are oxidized to the corresponding acid by ozonolysis. When the acid component was adsorbed by the catalyst and the adsorption breakthrough was reached, an odor due to the acid component was sometimes felt. However, if the configuration of the present invention is adopted, the decomposition treatment can be performed without discharging to the outside in the same manner as above.

本発明で直接通電加熱温度を100〜250℃として用いる触
媒としては、脱臭能力,余剰オゾン分解能力および吸着
能力等を考えると、下記(a)〜(c)の成分からなる
ものが最適である。
In consideration of deodorizing ability, surplus ozone decomposing ability, adsorbing ability, etc., the catalyst which is used in the present invention with a direct current heating temperature of 100 to 250 ° C. is optimally composed of the following components (a) to (c). .

(a)Ti,Si,Al,MgおよびZrよりなる群から選択される
1種または2種以上の元素からなる触媒成分、 (b)Mn,Fe,Co,Ni,Ag,Au,Pt,PdおよびRhよりなる群か
ら選択される1種または2種以上の元素からなる触媒成
分、 (c)金属粉,金属繊維,グラファイトおよび活性炭よ
りなる群から選択される1種または2種以上からなる導
電体。
(A) a catalyst component consisting of one or more elements selected from the group consisting of Ti, Si, Al, Mg and Zr, (b) Mn, Fe, Co, Ni, Ag, Au, Pt, Pd And a catalyst component consisting of one or more elements selected from the group consisting of Rh, and (c) conductivity consisting of one or more selected from the group consisting of metal powder, metal fibers, graphite and activated carbon. body.

本発明は触媒を直接通電加熱して再生する機能を有する
脱臭方法であるが、触媒再生時の加熱温度は前述の如く
100〜250℃に設定するのが良い。これは100℃未満では
高効率の分解性能を発揮することができず、250℃を超
えるとランニングコストが高くなるばかりでなく触媒の
耐久性に問題が生じるからである。
The present invention is a deodorizing method having a function of directly heating the catalyst to regenerate it, and the heating temperature at the time of regenerating the catalyst is as described above.
It is better to set it to 100-250 ℃. This is because if it is less than 100 ° C, highly efficient decomposition performance cannot be exhibited, and if it exceeds 250 ° C, not only the running cost becomes high, but also the durability of the catalyst becomes problematic.

本発明で用いる触媒成分(a)は、Ti,Si,Al,MgおよびZ
r等の元素の1種または2種以上を適当に組み合わせて
使用すればよいが、TiとSiからなる2元系複合酸化物,T
iとZrからなる2元系複合酸化物、およびTi,Si,Zrから
なる3元系複合酸化物のうちの少なくともいずれか1種
を使用するのが特に好ましく(前記触媒A)、これらは
常温においても優れた吸着性を示す。即ち、触媒Aを用
いれば、直接通電加熱温度を必ずしも100〜250℃とせず
とも、本発明の目的が達成される。但し、触媒Aを用い
た場合であっても、直接通電加熱温度を100〜250℃とし
ても良いのは勿論であり、こうした構成を採用すること
によって、本発明の効果をより向上させることができ
る。
The catalyst component (a) used in the present invention is Ti, Si, Al, Mg and Z.
One or two or more of the elements such as r may be used in an appropriate combination, but a binary compound oxide composed of Ti and Si, T
It is particularly preferable to use at least one of a binary complex oxide composed of i and Zr and a ternary complex oxide composed of Ti, Si, and Zr (the above catalyst A), which are used at room temperature. Also shows excellent adsorptivity. That is, by using the catalyst A, the object of the present invention can be achieved even if the direct current heating temperature is not necessarily 100 to 250 ° C. However, even when the catalyst A is used, the direct energization heating temperature may of course be 100 to 250 ° C. By adopting such a configuration, the effect of the present invention can be further improved. .

一般にTiおよびSiからなる2元系複合酸化物は、例えば
「触媒,第17巻、No.3,72頁,1975年号」に見られる如
く、固体酸として知られており、構成する個々の酸化物
には見られない顕著な酸性を示し、また大きい表面積を
有する。即ち、TiとSiからなる2元系複合酸化物に、酸
化チタンおよび酸化珪素を単に混合したものではなく、
TiおよびSiがいわゆる2元系複合酸化物を形成すること
によりその特異な特性を発現させることができる。また
Ti,Zrからなる2元系複合酸化物、およびTi,Zr,Siから
なる3元系複合酸化物においても、TiとSiからなる2元
系複合酸化物と同様の性質を有する酸化物となる。尚上
記各複合酸化物は、X線回折による分析の結果、非晶質
若しくはほぼ非晶質に近い微細構造を有することが分か
っている。
Generally, a binary complex oxide composed of Ti and Si is known as a solid acid as shown in, for example, “Catalyst, Vol. 17, No. 3, p. It has a pronounced acidity not found in oxides and has a large surface area. That is, it is not a simple mixture of titanium oxide and silicon oxide in a binary complex oxide composed of Ti and Si,
By forming a so-called binary complex oxide with Ti and Si, the peculiar characteristics can be expressed. Also
The binary compound oxide composed of Ti, Zr and the ternary compound oxide composed of Ti, Zr, Si also have the same properties as the binary compound oxide composed of Ti and Si. . As a result of analysis by X-ray diffraction, it is known that each of the above complex oxides has an amorphous or almost amorphous microstructure.

上記触媒Aが優れた活性、特に低温(常温)における優
れた吸着性を示す機構については全てを解明し得た訳で
はないが、上記複合酸化物の諸性質が悪臭成分の吸着に
対して好ましい影響を与えるものと考えられる。
It is not possible to elucidate all of the mechanisms by which the catalyst A exhibits excellent activity, particularly excellent adsorbability at low temperature (normal temperature), but various properties of the complex oxide are preferable for adsorption of malodorous components. It is thought to have an impact.

一方触媒成分(b)については、Mn,Fe,Co,Ni,Ag,Au,P
t,PdおよびRh等の元素から1種または2種以上を適当に
組み合わせて使用すればよいが、触媒温度をできるだけ
低くするという観点からすれば、Ag,Au,Pt,Pd及びRhの
うち少なくともいずれか1種を使用するのが望ましい。
On the other hand, for the catalyst component (b), Mn, Fe, Co, Ni, Ag, Au, P
One or two or more of the elements such as t, Pd and Rh may be used in an appropriate combination, but from the viewpoint of keeping the catalyst temperature as low as possible, at least one of Ag, Au, Pt, Pd and Rh should be used. It is desirable to use any one of them.

尚導電体として使用する金属粉や金属繊維は、Al,Ag,Cu
等の導電性金属を用い公知の方法によって製造すればよ
い。また触媒は直接通電加熱する必要上、一体化成型す
る必要があるが、成型形状については特に限定するもの
ではない。
The metal powder and metal fibers used as conductors are Al, Ag, Cu.
It may be manufactured by a known method using a conductive metal such as. Further, the catalyst needs to be directly energized and heated and needs to be integrally molded, but the molding shape is not particularly limited.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徹して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not of a nature limiting the present invention.
Any design modification that is based on the gist of the later description is included in the technical scope of the present invention.

[実施例] 触媒を次の様にして調製した。Example A catalyst was prepared as follows.

まずTiおよびSiからなる複合酸化物を以下の手順で調製
した。
First, a composite oxide composed of Ti and Si was prepared by the following procedure.

Ti源として、下記組成の硫酸チタニルの硫酸水溶液を用
いた。
As a Ti source, a sulfuric acid aqueous solution of titanyl sulfate having the following composition was used.

TiOSO4 250g/l(TiO2換算) 全H2SO4 1100g/l 水400lにアンモニア水(NH3,25%)280lを添加し、これ
にスノーテックス−NCS−30(日産化学製シリカゲル、S
iO2として約30重量%含有)を24kg加えた溶液を別に準
備しておき、これに上記硫酸水溶液153lを水300lに添加
して希釈したチタン含有硫酸水溶液を撹拌下で徐々に滴
下し、共沈ゲルを生成し、更にそのまま15時間放置して
静置した。この様にして得られたTiO2−SiO2ゲルを濾
過、水洗後200℃で10時間乾燥した。
TiOSO 4 250g / l (converted to TiO 2 ) Total H 2 SO 4 1100g / l To 400l of water, 280l of ammonia water (NH 3 , 25%) was added, and Snowtex-NCS-30 (Nissan Chemical's silica gel, S
A solution containing 24 kg of iO 2 ( containing about 30% by weight) was prepared separately, and 153 l of the above sulfuric acid aqueous solution was added to 300 l of water, and a diluted titanium-containing sulfuric acid aqueous solution was gradually added dropwise to the solution under stirring. A precipitated gel was produced, which was left as it was for 15 hours and allowed to stand. The TiO 2 —SiO 2 gel thus obtained was filtered, washed with water, and dried at 200 ° C. for 10 hours.

次いで550℃で空気雰囲気下に6時間焼成した。得られ
た粉末の組成はTiO2:SiO2=4:1(モル比)であり、BET
表面積は185m2/gであった。
Then, it was baked at 550 ° C. in an air atmosphere for 6 hours. The composition of the obtained powder was TiO 2 : SiO 2 = 4: 1 (molar ratio), and BET
The surface area was 185 m 2 / g.

得られた粉末(以後TS−1と呼ぶ)を用いて、以下に述
べる手順で格状ハニカム触媒を調製した。
A case-shaped honeycomb catalyst was prepared by using the obtained powder (hereinafter referred to as TS-1) by the procedure described below.

上記TS−1粉末8kgとグラファイト粉末1kgの混合粉末
に、適当量の水を添加してニーダーでよく混合した後、
混練機によって十分混練し、均一な混練物を押出成形し
て、外形が縦50mm、横50mm、長さ50mmの格子状ハニカム
(肉厚0.3mm,目開き1.4mm)を製作し、150℃で5時間乾
燥し、その後300℃で2時間空気雰囲気下で焼成してハ
ニカム成形体とした。引続き硝酸マンガン水溶液を含浸
せしめ、乾燥・焼成し、重量比でTS−1:グラファイト:
MnO2=80:10:10の触媒を得た。
To the mixed powder of the TS-1 powder 8 kg and the graphite powder 1 kg, after adding an appropriate amount of water and mixing well with a kneader,
Knead thoroughly with a kneading machine and extrude a uniform kneaded product to produce a lattice honeycomb (outer dimension 50 mm, width 50 mm, length 50 mm) (thickness 0.3 mm, opening 1.4 mm) at 150 ° C. It was dried for 5 hours and then fired at 300 ° C. for 2 hours in an air atmosphere to obtain a honeycomb formed body. Subsequently, it is impregnated with an aqueous solution of manganese nitrate, dried and fired, and in a weight ratio TS-1: graphite:
A catalyst with MnO 2 = 80: 10: 10 was obtained.

調製した触媒の分解性能を次の様にして調査した。The decomposition performance of the prepared catalyst was investigated as follows.

SUS製反応管に上記格子状ハニカム触媒を125cc充填し、
硫化メチルを、15ppmおよびオゾンを15ppm含有する空気
を常温において、流速が6.25Nm3/hr(空間速度50000hr
-1)になる様に前記触媒に導入した。このとき3月に1
回の割合で触媒温度を200℃まで直接通電加熱し、200日
後における硫化メチルの処理効率およびオゾン分解効率
を求めたところ、夫々95%,98%であり脱臭性能は殆ど
低下していなかった。
125cc of the lattice honeycomb catalyst is filled in a SUS reaction tube,
Air containing 15 ppm of methyl sulfide and 15 ppm of ozone at room temperature at a flow rate of 6.25 Nm 3 / hr (space velocity of 50,000 hr
-1 ) was introduced into the catalyst. At this time 1 in March
When the catalyst temperature was directly energized and heated up to 200 ° C at a rate of 200 times and the treatment efficiency and ozonolysis efficiency of methyl sulfide after 200 days were calculated, they were 95% and 98%, respectively, and the deodorizing performance was hardly deteriorated.

[発明の効果] 以上述べた如く本発明によれば、悪臭成分を長期に亘っ
て効率よく除去できる様になった。又本発明によれば、
触媒自体が発熱体であるので、加熱源を別途設置する必
要がなく、コスト的にもスペース的にも有利である。更
に触媒を他の加熱源で間接的に加熱する場合に比べて効
率的に優れ、ランニングコストも安くなる。
[Effects of the Invention] As described above, according to the present invention, the malodorous component can be efficiently removed over a long period of time. According to the invention,
Since the catalyst itself is a heating element, there is no need to install a heating source separately, which is advantageous in terms of cost and space. Further, it is more efficient and the running cost is lower than the case where the catalyst is indirectly heated by another heating source.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/38 53/74 B01J 23/34 ZAB A 8017−4G 23/38 ZAB A 8017−4G 23/74 ZAB A 8017−4G 35/02 ZAB G 8017−4G B01D 53/34 ZAB (72)発明者 西川 和良 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (72)発明者 井上 明 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (56)参考文献 特開 平2−251226(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/38 53/74 B01J 23/34 ZAB A 8017-4G 23/38 ZAB A 8017-4G 23 / 74 ZAB A 8017-4G 35/02 ZAB G 8017-4G B01D 53/34 ZAB (72) Inventor Kazara Nishikawa 1 of 992 Nishioki, Nishihama, Aboshi-ku, Himeji-shi, Hyogo Pref. ) Inventor Akira Inoue 1 992 Nishikioki, Kamahama, Aboshi-ku, Himeji-shi, Hyogo, Japan Catalytic Research Laboratory, Nippon Catalysis Chemical Co., Ltd. (56) Reference JP-A-2-251226 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】悪臭成分含有ガス中にオゾンを導入し、触
媒の存在下に悪臭成分を分解処理する脱臭方法におい
て、前記触媒を直接通電加熱して再生し得る構成とする
と共に、直接通電加熱温度を100〜250℃とすることを特
徴とする脱臭方法。
1. In a deodorizing method in which ozone is introduced into a malodorous component-containing gas to decompose the malodorous component in the presence of a catalyst, the catalyst is directly energized to be regenerated, and the catalyst is directly energized. A deodorizing method characterized in that the temperature is 100 to 250 ° C.
【請求項2】触媒が下記(a)〜(c)の成分からなる
請求項(1)に記載の脱臭方法。 (a)Ti,Si,Al,MgおよびZrよりなる群から選択される
1種または2種以上の元素からなる触媒成分、 (b)Mn,Fe,Co,Ni,Ag,Au,Pt,PdおよびRhよりなる群か
ら選択される1種または2種以上の元素からなる触媒成
分、 (c)金属粉,金属繊維,グラファイトおよび活性炭よ
りなる群から選択される1種または2種以上の導電体。
2. The deodorizing method according to claim 1, wherein the catalyst comprises the following components (a) to (c). (A) a catalyst component consisting of one or more elements selected from the group consisting of Ti, Si, Al, Mg and Zr, (b) Mn, Fe, Co, Ni, Ag, Au, Pt, Pd And a catalyst component comprising one or more elements selected from the group consisting of Rh, and (c) one or more conductors selected from the group consisting of metal powder, metal fibers, graphite and activated carbon. .
【請求項3】触媒成分(a)が、TiとSiの2元系酸化
物,TiとZrの2元系酸化物、およびTi,Si,Zrの3元系酸
化物の少なくとも1種である請求項(1)または(2)
に記載の脱臭方法。
3. A catalyst component (a) is at least one of a binary oxide of Ti and Si, a binary oxide of Ti and Zr, and a ternary oxide of Ti, Si and Zr. Claim (1) or (2)
Deodorizing method described in.
【請求項4】悪臭成分含有ガス中にオゾンを導入し、触
媒の存在下に悪臭成分を分解処理する脱臭方法におい
て、下記(a)〜(c)の成分からなる触媒を直接通電
加熱して再生し得る構成にしたことを特徴とする脱臭方
法。 (a)TiとSiの2元系酸化物,TiとZrの2元系酸化物、
およびTi,Si,Zrの3元系酸化物の少なくとも1種からな
る触媒成分、 (b)Mn,Fe,Co,Ni,Ag,Au,Pt,PdおよびRhよりなる群か
ら選択される1種または2種以上の元素からなる触媒成
分、 (c)金属粉,金属繊維,グラファイトおよび活性炭よ
りなる群から選択される1種または2種以上の導電体。
4. In a deodorizing method in which ozone is introduced into a malodorous component-containing gas to decompose the malodorous component in the presence of a catalyst, a catalyst comprising the following components (a) to (c) is directly heated by applying electricity. A deodorizing method characterized in that it can be regenerated. (A) Binary oxide of Ti and Si, Binary oxide of Ti and Zr,
And a catalyst component consisting of at least one ternary oxide of Ti, Si, Zr, (b) one selected from the group consisting of Mn, Fe, Co, Ni, Ag, Au, Pt, Pd and Rh. Alternatively, a catalyst component composed of two or more elements, and (c) one or more conductors selected from the group consisting of metal powder, metal fibers, graphite and activated carbon.
JP1175321A 1989-05-11 1989-07-06 Deodorization method Expired - Lifetime JPH0738937B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1175321A JPH0738937B2 (en) 1989-07-06 1989-07-06 Deodorization method
DE69021267T DE69021267T2 (en) 1989-05-11 1990-05-10 Process for purifying a gas using an electrically heated MnO2 catalyst.
EP90108817A EP0399302B1 (en) 1989-05-11 1990-05-10 Process for the purification of a gas using an electrically heated MnO2 catalyst
CA002016576A CA2016576A1 (en) 1989-05-11 1990-05-11 Catalyst and a useful method of using such a catalyst
KR1019900006705A KR950003412B1 (en) 1989-05-11 1990-05-11 Catalyst and useful method of using such a catalyst
US07/933,568 US5472676A (en) 1989-05-11 1992-08-24 Method of deodorizing a gas containing maloderous components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175321A JPH0738937B2 (en) 1989-07-06 1989-07-06 Deodorization method

Publications (2)

Publication Number Publication Date
JPH0342016A JPH0342016A (en) 1991-02-22
JPH0738937B2 true JPH0738937B2 (en) 1995-05-01

Family

ID=15994040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175321A Expired - Lifetime JPH0738937B2 (en) 1989-05-11 1989-07-06 Deodorization method

Country Status (1)

Country Link
JP (1) JPH0738937B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126012B2 (en) * 1994-08-31 2001-01-22 ニチアス株式会社 How to Prevent Odor Generation from Ozone Filter
CN110773160A (en) * 2019-11-08 2020-02-11 河北科技大学 Ozone oxidation catalyst and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251226A (en) * 1989-03-23 1990-10-09 Sakai Chem Ind Co Ltd Air cleaning apparatus

Also Published As

Publication number Publication date
JPH0342016A (en) 1991-02-22

Similar Documents

Publication Publication Date Title
EP0275620B1 (en) Method and catalyst for purification of gas
US5472676A (en) Method of deodorizing a gas containing maloderous components
JPH05317717A (en) Catalyzer and preparation of catalyzer
US6051198A (en) Catalyst for purifying fumigation exhaust gases and a method of purifying fumigation exhaust gases
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JPH0738937B2 (en) Deodorization method
JP3546766B2 (en) Deodorizing catalyst
JP2001009281A (en) Ammonia decomposition catalyst and treatment of ammonia-containing waste gas
JPH0741146B2 (en) Deodorization method
JP3535801B2 (en) Treatment method for exhaust gas containing basic gas
JPH0738936B2 (en) Ozone decomposition method
JPH06104184B2 (en) Deodorization method
JPH0618613B2 (en) Ozone deodorization method
JPH0716465A (en) Deodorizing member
JPS63181764A (en) Deodorizing method
JPH0528148B2 (en)
KR20010000417A (en) Metal oxide catalyst using low temperature and method of preparing the catalyst
JPH0616849B2 (en) Catalyst for treating gas containing harmful and odorous components
JPH04231059A (en) Method for deodorizing
JPH0586253B2 (en)
JP2002079048A (en) Deodorizing method and system
JPH0871361A (en) Deodorizing apparatus and method
JPH08332388A (en) Ammonia decomposing agent
JP2004209356A (en) Exhaust gas treatment catalyst and exhaust gas treatment method