JPH0738164A - Method of stacking upper layer thin film over oxide superconducting thin film - Google Patents

Method of stacking upper layer thin film over oxide superconducting thin film

Info

Publication number
JPH0738164A
JPH0738164A JP5200016A JP20001693A JPH0738164A JP H0738164 A JPH0738164 A JP H0738164A JP 5200016 A JP5200016 A JP 5200016A JP 20001693 A JP20001693 A JP 20001693A JP H0738164 A JPH0738164 A JP H0738164A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconducting
film
superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5200016A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5200016A priority Critical patent/JPH0738164A/en
Priority to DE69422666T priority patent/DE69422666T2/en
Priority to EP94401516A priority patent/EP0633331B1/en
Priority to US08/269,777 priority patent/US5501175A/en
Priority to CA002127323A priority patent/CA2127323C/en
Publication of JPH0738164A publication Critical patent/JPH0738164A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a thin film of good crystallinity through formation of a good interface by making the substrate temperature in forming a non- superconducting film and insulator film under the maximum temperature not adversely affecting mutual diffusion and over the minimum temperature by which the crystalline thin film grows. CONSTITUTION:In stacking an SrTiO3 thin film over a Y1Ba2Cu3O7-x oxide superconducting thin film, film-forming is made at a substrate temperature lower than a temperature by which mutual diffusion occurs in an interface. Also, an Au thin film which is to be further stacked over this SrTiO3 thin film is formed at a substrate temperature by which a mutual diffusion does not occur between the Y1Ba2Cu3O7-x oxide film and the SrTiO3 thin film. Consequently, very little mutual diffusion in the interface occurs, thus forming a sharp interface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基板上に予め成膜した酸
化物超電導薄膜上に他の薄膜を積層する方法に関するも
のであり、特に、酸化物超電導薄膜と上層の薄膜との間
の界面で、相互拡散ができるだけ起こらないよう、上層
の薄膜を成膜する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for laminating another thin film on an oxide superconducting thin film previously formed on a substrate, and more particularly to an interface between the oxide superconducting thin film and an upper thin film. The present invention relates to a method of forming an upper thin film so that mutual diffusion does not occur as much as possible.

【0002】[0002]

【従来の技術】酸化物超電導体を各種電子デバイス等に
応用する場合には、酸化物超電導体を薄膜化して積層す
る必要がある。特に、トンネル型ジョセフソン接合とい
われる超電導体−非超電導体−超電導体接合を酸化物超
電導体を使用して実現する場合には、第1の酸化物超電
導薄膜/非超電導体薄膜/第2の酸化物超電導薄膜をこ
の順番で順次積層しなければならない。
2. Description of the Related Art When an oxide superconductor is applied to various electronic devices, it is necessary to make the oxide superconductor into a thin film and stack it. In particular, when a superconductor-non-superconductor-superconductor junction called a tunnel-type Josephson junction is realized using an oxide superconductor, the first oxide superconducting thin film / non-superconductor thin film / second The oxide superconducting thin films must be sequentially stacked in this order.

【0003】また、酸化物超電導体で構成された超電導
チャネルに流れる超電導電流を、超電導チャネル上に絶
縁層を介して配置されたゲート電極に印加する信号電圧
で制御する超電導電界効果型素子を実現する場合には、
酸化物超電導薄膜/絶縁体薄膜/金属導体膜をこの順番
で積層する必要がある。
Further, a superconducting field-effect element is realized in which a superconducting current flowing in a superconducting channel composed of an oxide superconductor is controlled by a signal voltage applied to a gate electrode arranged on the superconducting channel via an insulating layer. If you do
It is necessary to stack the oxide superconducting thin film / insulator thin film / metal conductor film in this order.

【0004】さらに、酸化物超電導体を使用して超電導
多層配線を実現する場合には、酸化物超電導薄膜と絶縁
体薄膜とを相互に積層しなければならない。すなわち、
酸化物超電導薄膜により超電導電線路を形成し、層間絶
縁層を絶縁体薄膜により形成することが必要である。
Furthermore, in the case of realizing a superconducting multilayer wiring using an oxide superconductor, the oxide superconducting thin film and the insulating thin film must be laminated on each other. That is,
It is necessary to form a superconducting conductive line with an oxide superconducting thin film and an interlayer insulating layer with an insulator thin film.

【0005】上記の各種電子デバイスを構成する酸化物
超電導薄膜、非超電導体薄膜および絶縁体薄膜には高い
品質も要求される。すなわち、上記の各薄膜は諸特性が
優れた結晶性の良い薄膜でなければならず、全ての薄膜
が単結晶であることが好ましい。いずれかの薄膜が多結
晶またはアモルファスである場合には、この上にできる
膜は多結晶またはアモルファスにより、素子の性能が悪
化または素子として動作しない場合もある。また、薄膜
間の界面の状態も重要であり、界面における相互拡散が
なく、界面がシャープに形成されていることが好まし
い。そのために、これらの薄膜を同一の装置内で連続的
に成膜する処理が行われている。すなわち、それぞれの
薄膜が同一の成膜方法で成膜可能な場合には、蒸着源を
切り換えることで連続成膜を行っていた。また、薄膜に
より、異なる成膜方法が必要な場合には、それぞれの成
膜方法に必要な装備を全て備える装置を用いて連続成膜
を行っていた。
High quality is also required for oxide superconducting thin films, non-superconducting thin films and insulator thin films constituting the above various electronic devices. That is, each of the above thin films must be a thin film with excellent characteristics and good crystallinity, and it is preferable that all the thin films are single crystals. When any of the thin films is polycrystalline or amorphous, the film formed on the thin film may be polycrystalline or amorphous, so that the performance of the device may be deteriorated or the device may not operate. Further, the state of the interface between the thin films is also important, and it is preferable that the interface is formed sharply without mutual diffusion at the interface. Therefore, a process of continuously forming these thin films in the same apparatus is performed. That is, when each thin film can be formed by the same film forming method, the evaporation source is switched to perform continuous film formation. Further, when different film formation methods are required depending on the thin film, continuous film formation was performed using an apparatus equipped with all the equipment required for each film formation method.

【0006】しかしながら、酸化物超電導薄膜上に、連
続して非超電導体薄膜、絶縁体薄膜等を成膜する場合、
従来は、酸化物超電導薄膜の成膜する際の基板温度また
はそれよりも多少低い基板温度で成膜を行っていた。例
えば、Appl. Phys. Lett. 60 (14), pp1744 では、基板
温度750〜800℃でSrTiO3 基板上に成膜したY1Ba2Cu3
7-X酸化物超電導薄膜上に、同一の基板温度でSrTiO3
薄膜を成膜している。
However, when a non-superconductor thin film, an insulator thin film, etc. are continuously formed on an oxide superconducting thin film,
Conventionally, film formation was performed at the substrate temperature at the time of forming the oxide superconducting thin film or at a substrate temperature slightly lower than that. For example, in Appl. Phys. Lett. 60 (14), pp1744, Y 1 Ba 2 Cu 3 formed on a SrTiO 3 substrate at a substrate temperature of 750 to 800 ° C.
SrTiO 3 on O 7 -X oxide superconducting thin film at the same substrate temperature
Forming a thin film.

【0007】上記従来の方法は、非超電導体薄膜、絶縁
体薄膜の結晶性を維持し、さらにその上に積層する薄膜
の結晶性、特性を向上すること、および連続成膜の処理
時間の短縮に主眼をおいていた。しかしながら、従来の
方法で酸化物超電導薄膜上に、非超電導体薄膜、絶縁体
薄膜等を成膜すると、非超電導体薄膜、絶縁体薄膜の成
膜時に酸化物超電導薄膜と非超電導体薄膜、絶縁体薄膜
との界面が、長時間高温に保持されるので、界面におけ
る相互拡散が避けられない。従って、酸化物超電導薄膜
の超電導特性と、非超電導体薄膜、絶縁体薄膜の絶縁特
性の両方が著しく劣化する。
The above conventional method maintains the crystallinity of the non-superconductor thin film and the insulator thin film, and further improves the crystallinity and characteristics of the thin film laminated thereon, and shortens the processing time for continuous film formation. I focused on. However, when a non-superconductor thin film, an insulator thin film, etc. is formed on the oxide superconducting thin film by the conventional method, the oxide superconducting thin film, the non-superconductor thin film, and the insulating Since the interface with the body thin film is kept at high temperature for a long time, mutual diffusion at the interface is unavoidable. Therefore, both the superconducting properties of the oxide superconducting thin film and the insulating properties of the non-superconductor thin film and the insulator thin film are significantly deteriorated.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は従来技
術の問題点を解決して、界面における相互拡散を防ぎな
がら、基板上の予め成膜された酸化物超電導薄膜上に、
結晶性の優れた非超電導体薄膜、絶縁体薄膜等を成膜す
る方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problems of the prior art and prevent the interdiffusion at the interface while pre-depositing the oxide superconducting thin film on the substrate,
It is an object of the present invention to provide a method for forming a non-superconductor thin film, an insulator thin film, etc. having excellent crystallinity.

【0009】[0009]

【課題を解決するための手段】本発明は、基板上に予め
成膜した酸化物超電導薄膜上に前記薄膜を構成する酸化
物超電導体以外の材料の所定の厚さの薄膜を積層する方
法において、前記材料の薄膜を前記酸化物超電導薄膜の
成膜後に、同一の成膜装置内で連続して成膜し、前記材
料の薄膜を成膜する際の基板温度を、前記酸化物超電導
薄膜上に前記材料の結晶性の薄膜が成長する最低の温度
以上で、前記材料の成分元素と前記酸化物超電導薄膜の
成分元素の相互拡散が、互いに悪影響を及ぼさない程度
の最高の温度以下とすることを特徴とする。
The present invention provides a method for laminating a thin film of a material other than an oxide superconductor constituting the thin film, which has a predetermined thickness, on an oxide superconducting thin film previously formed on a substrate. After forming a thin film of the oxide superconducting thin film on the oxide superconducting thin film, the substrate temperature when the thin film of the material is continuously formed in the same film forming apparatus is At or above the minimum temperature at which the crystalline thin film of the material grows, the mutual diffusion of the constituent elements of the material and the constituent elements of the oxide superconducting thin film should be below the maximum temperature at which they do not adversely affect each other. Is characterized by.

【0010】本発明の方法は、前記酸化物超電導薄膜
が、Y1Ba2Cu37-X酸化物超電導薄膜であり、前記材料
がSrTiO3である場合に適用することが好ましい。ま
た、この場合には、前記SrTiO3 薄膜を前記Y1Ba2Cu3
7-X酸化物超電導薄膜上に成膜する際の基板温度が、4
30 ℃以下であることが好ましい。
The method of the present invention is preferably applied when the oxide superconducting thin film is a Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film and the material is SrTiO 3 . Further, in this case, the SrTiO 3 thin film is formed by the Y 1 Ba 2 Cu 3 thin film.
The substrate temperature when forming a film on the O 7-X oxide superconducting thin film is 4
It is preferably 30 ° C. or lower.

【0011】さらに、本発明の方法は、酸化物超電導薄
膜による超電導チャネル、該超電導チャネル上に配置さ
れたゲート絶縁層および該ゲート絶縁層上に配置された
ゲート電極を備える超電導素子の該ゲート構造の作製に
適用される。
Further, the method of the present invention is the gate structure of a superconducting device comprising a superconducting channel formed of an oxide superconducting thin film, a gate insulating layer arranged on the superconducting channel, and a gate electrode arranged on the gate insulating layer. Applied to the production of.

【0012】[0012]

【作用】本発明の方法は、予め基板上に成膜された酸化
物超電導薄膜上に、この酸化物超電導薄膜の成膜後に、
酸化物超電導薄膜を大気に曝すことなく、同一の成膜装
置内で非超電導体膜、絶縁体膜等を成膜する。この非超
電導体膜、絶縁体膜の成膜の際の基板温度は、酸化物超
電導薄膜上に非超電導体、絶縁体の結晶性の薄膜が成長
する最低の温度以上で、非超電導体、絶縁体の成分元素
と酸化物超電導薄膜中の成分元素との相互拡散が、酸化
物超電導薄膜および非超電導体絶縁体へ悪影響を及ぼさ
ない程度の最高の温度以下とする。本発明の方法では、
酸化物超電導体の表面が清浄に保たれ、また、それぞれ
の薄膜への不純物の相互拡散が有効に抑制されるので、
酸化物超電導薄膜の超電導特性および非超電導体膜、絶
縁体膜の絶縁特性の両方の特性が極めて良好になる。
According to the method of the present invention, after the oxide superconducting thin film is formed on the oxide superconducting thin film previously formed on the substrate,
A non-superconductor film, an insulator film, and the like are formed in the same film forming apparatus without exposing the oxide superconducting thin film to the atmosphere. The substrate temperature during the formation of the non-superconductor film and the insulator film is higher than or equal to the minimum temperature at which the crystalline thin film of the non-superconductor and the insulator grows on the oxide superconducting thin film. The temperature is set to a temperature not higher than the maximum temperature at which mutual diffusion of the constituent elements of the body and the constituent elements in the oxide superconducting thin film does not adversely affect the oxide superconducting thin film and the non-superconductor insulator. In the method of the present invention,
Since the surface of the oxide superconductor is kept clean and the mutual diffusion of impurities into the respective thin films is effectively suppressed,
Both the superconducting properties of the oxide superconducting thin film and the insulating properties of the non-superconducting film and the insulating film become extremely good.

【0013】また、本発明の方法では、酸化物超電導薄
膜が成膜後に高温に加熱されないので、酸化物超電導薄
膜の表面から酸素が離脱することも防止される。従っ
て、酸化物超電導薄膜と、非超電導体膜、絶縁体膜との
間の界面が急峻に形成され、酸化物超電導薄膜の超電導
特性は界面においても良好になる。
Further, according to the method of the present invention, since the oxide superconducting thin film is not heated to a high temperature after the film formation, oxygen is prevented from desorbing from the surface of the oxide superconducting thin film. Therefore, the interface between the oxide superconducting thin film and the non-superconductor film or the insulator film is formed steeply, and the superconducting property of the oxide superconducting thin film is improved at the interface as well.

【0014】本発明の方法は、例えば、酸化物超電導体
の超電導チャネルを有する超電導電界効果型素子のゲー
ト構造、すなわち、酸化物超電導薄膜で構成された超電
導チャネル、この超電導チャネル上に配置されたゲート
絶縁層およびゲート絶縁層上に配置されたゲート電極を
備える構造の作製に有利に適用できる。このゲート構造
においては、超電導チャネルは極めて薄く(5nm以
下)、しかも結晶性に優れた酸化物超電導薄膜で構成さ
れていなければならず、また、ゲート絶縁層はやはり10
〜100 nm程度の厚さの絶縁体薄膜で構成されていなけれ
ばならない。また、両者の界面は、急峻に形成されてい
ることが要求される。このように、厳しい条件の酸化物
超電導薄膜および絶縁体膜の積層構造を形成する場合
に、本発明の方法は有利に適用される。
According to the method of the present invention, for example, a gate structure of a superconducting field effect device having a superconducting channel of an oxide superconductor, that is, a superconducting channel composed of an oxide superconducting thin film, is arranged on the superconducting channel. It can be advantageously applied to fabrication of a structure including a gate insulating layer and a gate electrode arranged on the gate insulating layer. In this gate structure, the superconducting channel must be composed of an oxide superconducting thin film that is extremely thin (5 nm or less) and has excellent crystallinity.
It must consist of an insulator thin film with a thickness of ~ 100 nm. Further, the interface between the two is required to be formed steeply. Thus, the method of the present invention is advantageously applied when forming a laminated structure of an oxide superconducting thin film and an insulating film under severe conditions.

【0015】本発明の方法において、酸化物超電導薄膜
は、Y系超電導材料、例えばY1Ba2Cu37-X、Bi系超電
導材料、例えばBi2Sr2Ca2Cu3x 、およびTl系超電導材
料、例えばTl2Ba2Ca2Cu3x 等で構成されていることが
好ましい。Y1Ba2Cu37-Xは高品質の結晶性のよい薄膜
を安定に成膜できるので好ましく、また、Bi系複合酸化
物超電導体は超電導臨界温度Tc が高いので好ましい。
In the method of the present invention, the oxide superconducting thin film is a Y-based superconducting material such as Y 1 Ba 2 Cu 3 O 7-X , a Bi-based superconducting material such as Bi 2 Sr 2 Ca 2 Cu 3 O x , and It is preferably composed of a Tl-based superconducting material such as Tl 2 Ba 2 Ca 2 Cu 3 O x . Y 1 Ba 2 Cu 3 O 7-X is preferable because it can stably form a high quality thin film having good crystallinity, and a Bi-based complex oxide superconductor is preferable because it has a high superconducting critical temperature Tc.

【0016】本発明の方法により、上記の酸化物超電導
薄膜上に成膜される他の材料の薄膜は酸化物の薄膜であ
るのが好ましく、特に、酸化物超電導体に類似した結晶
構造または格子定数を有する非超電導酸化物材料である
のが好ましい。例としては、MgO、SrTiO3 、NaGa
3 、LaAlO3 、YSZ等の酸化物を挙げることができ
る。
The thin film of another material deposited on the above-mentioned oxide superconducting thin film by the method of the present invention is preferably an oxide thin film, and in particular, a crystal structure or lattice similar to an oxide superconductor. It is preferably a non-superconducting oxide material having a constant. Examples include MgO, SrTiO 3 , NaGa
Oxides such as O 3 , LaAlO 3 and YSZ can be mentioned.

【0017】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0018】[0018]

【実施例】本発明の方法で、SrTiO3 基板上に成膜され
たY1Ba2Cu37-X酸化物超電導薄膜上にSrTiO3薄膜を
積層した。先ず、反応性共蒸着法でSrTiO3(100)
基板上にY1Ba2Cu37-X超電導薄膜を成膜した。主な成
膜条件は下記の通り: 蒸発源 : Y、Ba、Cu 基板温度 : 700 ℃ O2 圧力 : 5×10-6Torr(O3 :70%含
有) 膜厚 : 10 nm 次に、基板温度を430℃に下げ、この酸化物超電導薄膜
上にSrTiO3薄膜を反応性共蒸着法で成膜した。主な成
膜条件を以下に示す。 蒸発源 : Sr、Ti 基板温度 : 430 ℃ 圧力(真空度) : 5×10-6Torr(O3 :70%含
有) 膜厚 : 10nm その場のRHEED観察で、SrTiO3薄膜の状態を確認
したところ、単結晶で均一且つ連続に成長していた。
EXAMPLE A SrTiO 3 thin film was laminated on a Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film formed on a SrTiO 3 substrate by the method of the present invention. First, SrTiO 3 (100) was formed by reactive co-evaporation method.
A Y 1 Ba 2 Cu 3 O 7-X superconducting thin film was formed on the substrate. The main film formation conditions are as follows: Evaporation source: Y, Ba, Cu Substrate temperature: 700 ° C O 2 pressure: 5 × 10 -6 Torr (O 3 : 70% content) Film thickness: 10 nm Next, substrate The temperature was lowered to 430 ° C., and an SrTiO 3 thin film was formed on this oxide superconducting thin film by the reactive co-evaporation method. The main film forming conditions are shown below. Evaporation source: Sr, Ti Substrate temperature: 430 ℃ Pressure (vacuum degree): 5 × 10 -6 Torr (O 3 : 70% content) Film thickness: 10 nm The state of the SrTiO 3 thin film was confirmed by RHEED observation in situ. However, the single crystal was grown uniformly and continuously.

【0019】続いて、基板温度430℃のまま、上記のSrT
iO3単結晶薄膜上にさらにAu薄膜を、厚さが200nmとな
るまで成膜を行った。主な成膜条件を以下に示す。 蒸発源 : Au 基板温度 : 430 ℃ 膜厚 : 200 nm
Next, with the substrate temperature kept at 430 ° C., the above SrT
An Au thin film was further formed on the iO 3 single crystal thin film until the thickness became 200 nm. The main film forming conditions are shown below. Evaporation source: Au Substrate temperature: 430 ℃ Film thickness: 200 nm

【0020】上記本発明の方法においては、Y1Ba2Cu3
7-X酸化物超電導薄膜上にSrTiO3薄膜を積層する際
に、界面において相互拡散が起こる温度よりも低い基板
温度で成膜を行う。また、このSrTiO3薄膜上にさらに
積層するAu薄膜も、Y1Ba2Cu37-X酸化物超電導薄膜お
よびSrTiO3薄膜間の相互拡散が起こらない基板温度で
成膜を行う。従って、上記の本発明の方法で作製された
積層膜においては、界面における相互拡散が極めて少な
く、シャープな界面が形成されていた。また、本実施例
においては、Y1Ba2Cu37-X酸化物超電導薄膜上にSrTi
3 薄膜を積層する場合についてのみ説明を行ったが、
上述のように本発明の方法は、任意の酸化物超電導体の
薄膜上に、他の材料の薄膜を積層する場合に適用でき
る。
In the above method of the present invention, Y 1 Ba 2 Cu 3
When the SrTiO 3 thin film is laminated on the O 7 -X oxide superconducting thin film, the film is formed at a substrate temperature lower than the temperature at which mutual diffusion occurs at the interface. Further, the Au thin film further laminated on this SrTiO 3 thin film is also formed at a substrate temperature at which mutual diffusion between the Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film and the SrTiO 3 thin film does not occur. Therefore, in the laminated film produced by the method of the present invention described above, mutual diffusion at the interface was extremely small, and a sharp interface was formed. In addition, in this example, SrTi was formed on the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film.
Only the case of stacking O 3 thin films has been described,
As described above, the method of the present invention can be applied to the case of laminating a thin film of another material on a thin film of any oxide superconductor.

【0021】[0021]

【発明の効果】本発明の方法を用いることによって、酸
化物超電導薄膜上に結晶性の良い薄膜を、良好な界面を
形成して成膜することができる。従って、本発明の方法
を、各種超電導素子の作製に応用すると効果的である。
特に、極薄の酸化物超電導薄膜で構成された超電導チャ
ネルと、この超電導チャネル上に形成されたゲート絶縁
層と、ゲート絶縁層上に形成されたゲート電極とを有す
る超電導電界効果型素子のゲート絶縁層の作製に応用す
ると有利である。すなわち、界面での相互拡散が抑制さ
れるので、素子動作に重要な影響を及ぼす界面準位密度
を低減させることができる。これにより、電流変調幅を
増大させることができる。
By using the method of the present invention, a thin film having good crystallinity can be formed on an oxide superconducting thin film by forming a good interface. Therefore, it is effective to apply the method of the present invention to the production of various superconducting devices.
In particular, a gate of a superconducting field effect device having a superconducting channel composed of an ultrathin oxide superconducting thin film, a gate insulating layer formed on the superconducting channel, and a gate electrode formed on the gate insulating layer. It is advantageous to apply it to the production of an insulating layer. That is, since the interdiffusion at the interface is suppressed, it is possible to reduce the interface state density that has an important effect on the device operation. Thereby, the current modulation width can be increased.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/22 ZAA G 9276−4M // H01B 12/06 ZAA 7244−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 39/22 ZAA G 9276-4M // H01B 12/06 ZAA 7244-5G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に予め成膜した酸化物超電導薄膜
上に前記薄膜を構成する酸化物超電導体以外の材料の所
定の厚さの薄膜を積層する方法において、前記材料の薄
膜を前記酸化物超電導薄膜の成膜後に、同一の成膜装置
内で連続して成膜し、前記材料の薄膜を成膜する際の基
板温度を、前記酸化物超電導薄膜上に前記材料の結晶性
の薄膜が成長する最低の温度以上で、前記材料の成分元
素と前記酸化物超電導薄膜の成分元素の相互拡散が、互
いに悪影響を及ぼさない程度の最高の温度以下とするこ
とを特徴とする酸化物超電導薄膜上に上層の薄膜を積層
する方法。
1. A method of laminating a thin film of a material other than an oxide superconductor constituting the thin film to a predetermined thickness on an oxide superconducting thin film preliminarily formed on a substrate, wherein the thin film of the material is oxidized. After the superconducting thin film is formed, the substrate temperature at which the thin film of the material is continuously formed in the same film forming apparatus is set to the crystalline thin film of the material on the oxide superconducting thin film. Above the minimum temperature at which is grown, the mutual diffusion of the constituent elements of the material and the constituent elements of the oxide superconducting thin film, the oxide superconducting thin film is characterized in that it is below the maximum temperature to the extent that they do not adversely affect each other. A method of laminating an upper thin film on top.
【請求項2】 前記酸化物超電導薄膜が、Y1Ba2Cu3
7-X酸化物超電導薄膜であり、前記材料がSrTiO3である
ことを特徴とする請求項1に記載の方法。
2. The oxide superconducting thin film is Y 1 Ba 2 Cu 3 O.
The method according to claim 1, wherein the method is a 7-X oxide superconducting thin film, and the material is SrTiO 3 .
【請求項3】 前記SrTiO3 薄膜を前記Y1Ba2Cu37-X
酸化物超電導薄膜上に成膜する際の基板温度が、430 ℃
以下であることを特徴とする請求項2に記載の方法。
3. The SrTiO 3 thin film is formed on the Y 1 Ba 2 Cu 3 O 7-X.
Substrate temperature is 430 ℃ when forming a film on oxide superconducting thin film.
The method of claim 2 wherein:
【請求項4】 酸化物超電導薄膜による超電導チャネ
ル、該超電導チャネル上に配置されたゲート絶縁層およ
び該ゲート絶縁層上に配置されたゲート電極を備える超
電導素子の該ゲート構造を請求項1〜3のいずれか1項
に記載の方法で作製する工程を含むことを特徴とする超
電導素子の作製方法。
4. The gate structure of a superconducting device comprising a superconducting channel formed of an oxide superconducting thin film, a gate insulating layer arranged on the superconducting channel, and a gate electrode arranged on the gate insulating layer. 13. A method for manufacturing a superconducting element, comprising the step of manufacturing by the method according to any one of 1.
JP5200016A 1993-07-02 1993-07-19 Method of stacking upper layer thin film over oxide superconducting thin film Withdrawn JPH0738164A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5200016A JPH0738164A (en) 1993-07-19 1993-07-19 Method of stacking upper layer thin film over oxide superconducting thin film
DE69422666T DE69422666T2 (en) 1993-07-02 1994-07-01 Process for the production of a highly crystalline, thin SrTiO3 oxide film
EP94401516A EP0633331B1 (en) 1993-07-02 1994-07-01 Process for preparing high crystallinity SrTiO3 oxide thin film
US08/269,777 US5501175A (en) 1993-07-02 1994-07-01 Process for preparing high crystallinity oxide thin film
CA002127323A CA2127323C (en) 1993-07-02 1994-07-04 Process for preparing high crystallinity oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200016A JPH0738164A (en) 1993-07-19 1993-07-19 Method of stacking upper layer thin film over oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH0738164A true JPH0738164A (en) 1995-02-07

Family

ID=16417406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200016A Withdrawn JPH0738164A (en) 1993-07-02 1993-07-19 Method of stacking upper layer thin film over oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0738164A (en)

Similar Documents

Publication Publication Date Title
JPH0730161A (en) Laminated film of insulator thin film and oxide superconducting thin film and its manufacture
JPH02177381A (en) Tunnel junction element of superconductor
JPH06302872A (en) Method for depositing thin film on superconductive thin oxide
JP2902939B2 (en) Oxide thin film, method of manufacturing the same, and superconducting element using the same
JPH0738164A (en) Method of stacking upper layer thin film over oxide superconducting thin film
EP0459906B1 (en) Process for preparing superconducting junction of oxide superconductor
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP2908346B2 (en) Superconducting structure
JP2773455B2 (en) Manufacturing method of laminated film
JPH02194667A (en) Superconducting transistor and manufacture thereof
JPH0745880A (en) Laminated film of insulator thin film and oxide superconducting thin film
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP2931779B2 (en) Superconducting element
US5362709A (en) Superconducting device
JP2773456B2 (en) Manufacturing method of laminated film
JP2977935B2 (en) Superconducting three-terminal element
JP2670554B2 (en) Method for producing oxide superconducting material
JP2691065B2 (en) Superconducting element and fabrication method
Chrisey Progress in the first ten years of HTS film growth
JP2710870B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
JP2835203B2 (en) Superconducting element manufacturing method
JP2883464B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
Talyansky et al. Modified deposition procedure for high quality YBa/sub 2/Cu/sub 3/O/sub 7-x//SrTiO/sub 3/bilayers
JP2647251B2 (en) Superconducting element and fabrication method
JP2708675B2 (en) Method of manufacturing superconducting thin film interlayer wiring

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003