JPH073806Y2 - Charger - Google Patents

Charger

Info

Publication number
JPH073806Y2
JPH073806Y2 JP14604288U JP14604288U JPH073806Y2 JP H073806 Y2 JPH073806 Y2 JP H073806Y2 JP 14604288 U JP14604288 U JP 14604288U JP 14604288 U JP14604288 U JP 14604288U JP H073806 Y2 JPH073806 Y2 JP H073806Y2
Authority
JP
Japan
Prior art keywords
circuit
battery
voltage
current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14604288U
Other languages
Japanese (ja)
Other versions
JPH0268641U (en
Inventor
哲也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14604288U priority Critical patent/JPH073806Y2/en
Publication of JPH0268641U publication Critical patent/JPH0268641U/ja
Application granted granted Critical
Publication of JPH073806Y2 publication Critical patent/JPH073806Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ)産業上の利用分野 本考案は電池の充電装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a battery charger.

(ロ)従来の技術 例えば第3図に示すように充電用電源(1)にトランジ
スタ(Q1)を介して複数本の素電池が直列に接続された
バッテリーパック(B)を接続すると共に、前記トラン
ジスタ(Q1)のコレクタに対して抵抗(R1)(R2)から成る
抵抗分圧回路を前記バッテリーパック(B)に対して並
列に接続し、該抵抗分圧回路の分圧点(A)の電圧を入
力する電圧検出回路(2)を設け、該電圧検出回路
(2)の検出値に基いて前記トランジスタ(Q1)のベー
ス抵抗(R3)へ流れる電流を制御し、このトランジスタ
(Q1)の導通状態を調節して前記バッテリーパック
(B)へ流れる充電電流を制御するようにした充電装置
があった。ところがこの方法で充電を行う場合、充電用
電源(1)の出力を切った状態(例えばパルス電流によ
る断続充電)では前記抵抗(R1)(R2)を介して電流IR及び
ICが流れ、バッテリーパック(B)が接続されたままだ
と抵抗分圧回路への放電が生じる惧れがある。そこで従
来は前記抵抗(R1)(R2)を高抵抗にしてバッテリーパック
(B)の放電を抑制する手段がとられていた。
(B) Conventional technology For example, as shown in FIG. 3, a charging power source (1) is connected to a battery pack (B) in which a plurality of unit cells are connected in series via a transistor (Q1), and A resistor voltage dividing circuit composed of resistors (R 1 ) and (R 2 ) is connected in parallel to the battery pack (B) with respect to the collector of the transistor (Q 1 ), and a voltage dividing point (A ) Is provided, and the current flowing to the base resistance (R 3 ) of the transistor (Q1) is controlled based on the detection value of the voltage detection circuit (2). There is a charging device that controls the charging current flowing to the battery pack (B) by adjusting the conduction state of Q1). However, when the charging is performed by this method, when the output of the charging power source (1) is cut off (for example, intermittent charging by pulse current), the current I R and the current I R via the resistors (R 1 ) (R 2 )
If I C flows and the battery pack (B) is still connected, there is a risk of discharge to the resistance voltage dividing circuit. Therefore, conventionally, a means for suppressing the discharge of the battery pack (B) by increasing the resistances (R 1 ) and (R 2 ) has been taken.

また、第4図(実開昭61-88447号公報と実質的に同一)
に示すようにバッテリーパック(B)とトランジスタ
(Q1)のコレクタとの間に放電防止用のダイオード
(D)を介挿したものもあるが、この場合ダイオード
(D)を流れる電流IDはバッテリーパック(B)を流れ
る充電電流となるため急速充電を行うような場合には、
ダイオード(D)にも大電流が流れてしまう為このダイ
オード(D)は大容量のものを使用する必要が生じ、且
つ該ダイオード(D)での損失も大になるという問題点
があった。
Further, FIG. 4 (substantially the same as Japanese Utility Model Laid-Open No. 61-88447)
As shown in, there is a battery pack (B) and a collector of the transistor (Q1) with a diode (D) for preventing discharge inserted between them. In this case, the current I D flowing through the diode (D) is the battery. When performing rapid charging because the charging current flows through the pack (B),
Since a large current also flows through the diode (D), it is necessary to use a large capacity diode (D), and there is a problem that the diode (D) also has a large loss.

(ハ)考案が解決しようとする課題 本考案が解決しようとする課題は非充電時における電池
の放電を簡単な構成で阻止することである。
(C) Problem to be Solved by the Invention The problem to be solved by the present invention is to prevent discharge of the battery during non-charging with a simple configuration.

(ニ)課題を解決するための手段 電池に相当量の電流を供給する充電用電源と、電池電圧
の変化を逐次検出する電圧検出回路と、該電圧検出回路
の検出値に基ずき前記電流を制御する演算回路とよりな
り、前記充電用電源に、満充電時に非導通になるスイッ
チング素子と電池の直列回路と、抵抗分圧回路とを並列
に接続し、該抵抗分圧回路の分圧点を前記電圧検出回路
に接続したものにおいて、前記スイッチング素子と電池
の接続点と、前記分圧回路中の一点との間に、蓄電池の
放電を抑制するためのダイオードを介挿する。
(D) Means for Solving the Problems A charging power supply that supplies a considerable amount of current to a battery, a voltage detection circuit that sequentially detects changes in battery voltage, and the current based on the detection value of the voltage detection circuit. And a series circuit of a switching element and a battery that become non-conductive when fully charged, and a resistance voltage dividing circuit are connected in parallel to the charging power source, and the voltage dividing circuit of the resistance voltage dividing circuit is connected. When the point is connected to the voltage detection circuit, a diode for suppressing discharge of the storage battery is inserted between the connection point of the switching element and the battery and one point in the voltage dividing circuit.

(ホ)作用 充電用電源からの出力電流はダイオードを介して電池へ
供給され、充電用電源が作動を停止すると電池の放電が
ダイオードによって阻止される。
(E) Action The output current from the charging power supply is supplied to the battery through the diode, and when the charging power supply stops operating, the battery is prevented from discharging.

(ヘ)実施例 以下本考案の充電装置を図面の一実施例について詳細に
説明する。
(F) Embodiment Hereinafter, a charging device of the present invention will be described in detail with reference to an embodiment of the drawings.

第1図において、(1)は商用交流に接続され電池に相
当量の電流を供給する充電用電源、(B)は該充電用電
源(1)にトランジスタ(Q3)のエミッタ〜コレクタを
介して接続され、複数個の素電池が直列に接続されて構
成されるバッテリーパック、(R1)(R2)(R4)は前記充電用
電源(1)に対し前記バッテリーパック(B)と並列に
接続され抵抗分圧回路を構成する抵抗、(2)は該抵抗
分圧回路の分圧点(A)の電圧を検出入力として電池電
圧を検出する電圧検出回路、(3)は該電圧検出回路
(2)の検出出力に基き前記トランジスタ(Q1)のベー
ス抵抗(R3)を通る電流を調整し該トランジスタ(Q1)の
導通状態によりバッテリーパック(B)への供給電流を
制御する演算回路である。そして前記抵抗分圧回路の点
Pとバッテリーパック(B)の正極とはダイオード
(D)を介して連結されている。即ち、第2図に示す如
くダイオード(D)の順方向電圧降下VDだけ電池電圧(V
B)よりオフセットされた電圧(VP)が前記抵抗分圧回路の
点Pに生じる。
In FIG. 1, (1) is a charging power supply which is connected to a commercial AC and supplies a considerable amount of current to a battery, and (B) is the charging power supply (1) via an emitter-collector of a transistor (Q3). A battery pack in which a plurality of unit cells are connected in series, and (R 1 ) (R 2 ) (R 4 ) is parallel to the battery pack (B) with respect to the charging power source (1). A resistor which is connected to the resistor and constitutes a resistance voltage dividing circuit, (2) is a voltage detection circuit which detects a battery voltage using a voltage at a voltage dividing point (A) of the resistance voltage dividing circuit as a detection input, and (3) is the voltage detection circuit. An arithmetic circuit for adjusting the current passing through the base resistance (R 3 ) of the transistor (Q1) based on the detection output of the circuit (2) and controlling the supply current to the battery pack (B) by the conduction state of the transistor (Q1). Is. The point P of the resistance voltage dividing circuit and the positive electrode of the battery pack (B) are connected via the diode (D). That is, as shown in FIG. 2, the forward voltage drop V D of the diode (D) is equal to the battery voltage (V
A voltage (V P ) offset from B ) occurs at point P of the resistive voltage divider circuit.

但し、バッテリーパック(B)に充電電流が供給されて
いる間にしか点Pに電圧は生じない。
However, the voltage is generated at the point P only while the charging current is being supplied to the battery pack (B).

前記点Pの電圧は抵抗(R1)(R2)(R4)によって分圧され、
この分圧点(A)の電圧が電圧検出回路(2)に入力さ
れる。
The voltage at the point P is divided by resistors (R 1 ) (R 2 ) (R 4 ),
The voltage at the voltage dividing point (A) is input to the voltage detection circuit (2).

以上の構成を有する充電装置において、バッテリーパッ
ク(B)を第1図の回路に接続し、充電用電源(1)に
商用交流を入力して、該充電用電源(1)より直流の充
電電流を出力させると抵抗(R4)(R1)(R2)から成る抵抗分
圧回路に電流が流れ、且つダイオード(D)を通してパ
ック(B)へ電流が流れる。そして抵抗分圧回路の分圧
点(A)の電圧が電圧検出回路(2)に入力される。
In the charging device having the above configuration, the battery pack (B) is connected to the circuit of FIG. 1, commercial AC is input to the charging power source (1), and the DC charging current is supplied from the charging power source (1). When a current is output, a current flows through a resistance voltage dividing circuit including resistors (R 4 ) (R 1 ) (R 2 ), and a current flows through the diode (D) to the pack (B). Then, the voltage at the voltage dividing point (A) of the resistance voltage dividing circuit is input to the voltage detecting circuit (2).

バッテリーパック(B)が未充電電池の場合その充電電
圧は満充電時の充電電圧よりも低く、電圧検出回路
(2)の出力に基き演算回路(3)の出力が「L」にな
りトランジスタ(Q3)が導通してバッテリーパック
(B)は大電流による急速充電が行われる。
When the battery pack (B) is an uncharged battery, the charging voltage is lower than the charging voltage when fully charged, and the output of the arithmetic circuit (3) becomes “L” based on the output of the voltage detection circuit (2), and the transistor ( Q3) becomes conductive and the battery pack (B) is rapidly charged with a large current.

やがてバッテリーパック(B)が満充電になるとその電
圧が分圧点(A)によって検出され、電圧検出回路
(2)の出力に基き演算回路(3)の出力が「L」→
「H」に反転する。よって、トランジスタ(Q1)が非導
通となってバッテリーパック(B)への大電流充電は終
了する。
When the battery pack (B) is fully charged, its voltage is detected by the voltage dividing point (A), and the output of the arithmetic circuit (3) is "L" based on the output of the voltage detection circuit (2).
Invert to "H". Therefore, the transistor (Q1) becomes non-conductive, and the high current charging of the battery pack (B) is completed.

ところで、充電用電源(1)の出力は商用交流を整流し
たものであるため大電流充電中或いは終了後にバッテリ
ーパック(B)へ流れる電流は断続的なものである。こ
こで、ダイオード(D)がない場合急速充電中はバッテ
リーパック(B)自身の放電よりも充電電流の方が大き
いため、パック(B)の自己放電による影響は少ない
が、もれ電流による電圧の変動があり、且つ抵抗(R4)を
通る細流充電に切換ってからはその充電電流が小さいた
め、パック(B)の放電量がこれに優るとバッテリーパ
ック(B)の電圧は次第に下がるという大きな問題が生
じる。しかし乍ら第1図の実施例でダイオード(D)の
挿入により抵抗(R1)(R2)を介してバッテリーパック
(B)の放電が抑制され、急速充電中の電池電圧の変化
を抑制し、且つ急速充電終了後のバッテリーパック
(B)の電圧を維持することができる。
By the way, since the output of the charging power source (1) is obtained by rectifying commercial AC, the current flowing to the battery pack (B) is intermittent during or after the high current charging. Here, when the diode (D) is not provided, the charging current is larger than the discharge of the battery pack (B) itself during the rapid charging, so the self-discharge of the pack (B) is less affected, but the voltage due to the leakage current is smaller. , And the charging current is small after switching to trickle charging through the resistor (R 4 ), so if the discharge amount of the pack (B) exceeds this, the voltage of the battery pack (B) will gradually drop. A big problem arises. However, by inserting the diode (D) in the embodiment shown in FIG. 1 , the discharge of the battery pack (B) is suppressed through the resistors (R 1 ) and (R 2 ), and the change of the battery voltage during the rapid charging is suppressed. In addition, the voltage of the battery pack (B) after the end of the rapid charging can be maintained.

(ト)考案の効果 本考案は以上の説明の如く、電池に相当量の電流を供給
する充電用電源と、電池電圧の変化を逐次検出する電圧
検出回路と、該電圧検出回路の検出値に基ずき前記電流
を制御する演算回路とよりなり、前記充電用電源に、満
充電時に非導通になるスイッチング素子と電池の直列回
路と、抵抗分圧回路とを並列に接続し、該抵抗分圧回路
の分圧点を前記電圧検出回路に接続したものにおいて、
前記スイッチング素子と電池の接続点と、前記分圧回路
中の一点との間に、蓄電池の放電を抑制するためのダイ
オードを介挿することにより、満充電後における電池の
放電を防止できると共に、急速充電中はダイオードに大
きな電流が流れないので大容量のダイオードを必要とせ
ず、且つこのダイオードでの損失はほとんど無い。また
急速充電後は、分圧抵抗の一部を通して細流充電が続け
られるので、電池の自己放電分を補充電して、常時満充
電状態に保持しておくことができる。
(G) Effect of the Invention As described above, the present invention provides a charging power supply that supplies a considerable amount of current to a battery, a voltage detection circuit that sequentially detects changes in the battery voltage, and a detection value of the voltage detection circuit. Based on an arithmetic circuit for controlling the current, a series circuit of a switching element and a battery, which become non-conductive when fully charged, and a resistance voltage dividing circuit are connected in parallel to the charging power source, In the one in which the voltage dividing point of the voltage circuit is connected to the voltage detection circuit,
Between the connection point of the switching element and the battery, and one point in the voltage dividing circuit, by inserting a diode for suppressing the discharge of the storage battery, it is possible to prevent the discharge of the battery after full charge, Since a large current does not flow through the diode during rapid charging, a large capacity diode is not required, and there is almost no loss in this diode. Further, after the rapid charging, the trickle charge is continued through a part of the voltage dividing resistor, so that the self-discharged portion of the battery can be supplementarily charged and always kept in the fully charged state.

【図面の簡単な説明】 第1図は本考案充電装置の一実施例を示す回路、第2図
は第1図回路のP点電圧と電池電圧との特性比較図、第
3図及び第4図は第1図に相当する比較回路図である。 (B)……電池、(1)……充電用電源、(2)……電
圧検出回路、(3)……演算回路、(R4)(R1)(R2)……抵
抗分圧回路を構成する抵抗、(A)……分圧点、(D)
……ダイオード。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing an embodiment of a charging device of the present invention, FIG. 2 is a characteristic comparison diagram of point P voltage and battery voltage in FIG. 1, circuit, FIG. 3 and FIG. The figure is a comparison circuit diagram corresponding to FIG. (B) …… Battery, (1) …… Charging power source, (2) …… Voltage detection circuit, (3) …… Calculation circuit, (R 4 ) (R 1 ) (R 2 ) …… Resistance voltage division Resistance that composes the circuit, (A) ... Dividing point, (D)
……diode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】電池に相当量の電流を供給する充電用電源
と、電池電圧の変化を逐次検出する電圧検出回路と、該
電圧検出回路の検出値に基ずき前記電流を制御する演算
回路とよりなり、前記充電用電源に、満充電時に非導通
になるスイッチング素子と電池の直列回路と、抵抗分圧
回路とを並列に接続し、該抵抗分圧回路の分圧点を前記
電圧検出回路に接続したものにおいて、前記スイッチン
グ素子と電池の接続点と、前記分圧回路中の一点との間
に、蓄電池の放電を抑制するためのダイオードを介挿す
ることを特徴とする充電装置。
1. A charging power supply that supplies a considerable amount of current to a battery, a voltage detection circuit that sequentially detects changes in battery voltage, and an arithmetic circuit that controls the current based on a detection value of the voltage detection circuit. And a series circuit of a switching element and a battery, which become non-conductive when fully charged, and a resistance voltage dividing circuit are connected in parallel to the charging power source, and the voltage dividing point of the resistance voltage dividing circuit is detected by the voltage detection circuit. A battery charger connected to a circuit, wherein a diode for suppressing discharge of a storage battery is inserted between a connection point of the switching element and the battery and a point in the voltage dividing circuit.
JP14604288U 1988-11-09 1988-11-09 Charger Expired - Lifetime JPH073806Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14604288U JPH073806Y2 (en) 1988-11-09 1988-11-09 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14604288U JPH073806Y2 (en) 1988-11-09 1988-11-09 Charger

Publications (2)

Publication Number Publication Date
JPH0268641U JPH0268641U (en) 1990-05-24
JPH073806Y2 true JPH073806Y2 (en) 1995-01-30

Family

ID=31415170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14604288U Expired - Lifetime JPH073806Y2 (en) 1988-11-09 1988-11-09 Charger

Country Status (1)

Country Link
JP (1) JPH073806Y2 (en)

Also Published As

Publication number Publication date
JPH0268641U (en) 1990-05-24

Similar Documents

Publication Publication Date Title
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
US5352970A (en) Power resource management system
US20130285598A1 (en) Multiple cell battery charger configured with a parallel topology
EP0851556A2 (en) Battery charger
JPH0628491B2 (en) Charge controller
JPH04299032A (en) Charger for battery
US7652450B2 (en) Secondary battery charging device
JPH0690531A (en) Charger
JPH08182213A (en) Parallel charging control system
JPH104636A (en) Method for charging lithium cell
KR19990037303A (en) Charge current adapter circuit or batteries for a cell
JPH073806Y2 (en) Charger
JP3177955B2 (en) Rechargeable battery charging method and charging system
JP2897094B2 (en) Charge / discharge device
JPH06332030A (en) Camera provided with solar battery
JPH08186940A (en) Charge control circuit for combined battery
JP3767024B2 (en) Charger
JP2995142B2 (en) Series battery charger
JP3642105B2 (en) Battery pack
JP3216595B2 (en) Rechargeable battery charger
JPH08149700A (en) Charger
JPH053634A (en) Battery charging and discharging circuit
JPH08317571A (en) Charger circuit of secondary battery
JPH0633649Y2 (en) Charger
JP2747601B2 (en) Battery charger