JPH0737677B2 - Electrogalvanizing bath - Google Patents

Electrogalvanizing bath

Info

Publication number
JPH0737677B2
JPH0737677B2 JP61119054A JP11905486A JPH0737677B2 JP H0737677 B2 JPH0737677 B2 JP H0737677B2 JP 61119054 A JP61119054 A JP 61119054A JP 11905486 A JP11905486 A JP 11905486A JP H0737677 B2 JPH0737677 B2 JP H0737677B2
Authority
JP
Japan
Prior art keywords
bath
plating
anode sludge
amount
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61119054A
Other languages
Japanese (ja)
Other versions
JPS62278290A (en
Inventor
勉 渡辺
彰彦 古田
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP61119054A priority Critical patent/JPH0737677B2/en
Publication of JPS62278290A publication Critical patent/JPS62278290A/en
Priority to US07/273,910 priority patent/US4877497A/en
Publication of JPH0737677B2 publication Critical patent/JPH0737677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、鋼板に、高速度で連続的に電気亜鉛めつき
を施す際に使用される全塩化物電気亜鉛めつき浴に関す
るものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an all-chloride electrogalvanizing bath used for continuously electrogalvanizing a steel sheet at a high speed.

〔従来技術とその問題点〕[Prior art and its problems]

従来、酸性亜鉛めつき浴としては、硫酸亜鉛を主体とす
る、所謂、硫酸浴が多く使用されているが、この硫酸浴
は、主体となる塩化亜鉛とその他の塩化物とからなる、
所謂、全塩化物浴と比べて、次の欠点を有する。
Conventionally, as the acidic zinc plating bath, a so-called sulfuric acid bath mainly containing zinc sulfate is often used, but this sulfuric acid bath is mainly composed of zinc chloride and other chlorides.
Compared with the so-called total chloride bath, it has the following drawbacks.

(1)電気伝導度が格段に小さい。(1) The electric conductivity is remarkably low.

(2)所定のめつき電流を得るために浴電圧として過大
な電圧を要することから、電力コストが高い。
(2) The power cost is high because an excessive voltage is required as the bath voltage to obtain a predetermined plating current.

(3)許容めつき電流密度が小さいので、高速度でめつ
きを施すことが困難である。
(3) Since the allowable plating current density is small, it is difficult to perform plating at a high speed.

一方、塩化物浴は、硫化物浴と比べて腐食性が大である
ので、めつき槽や配管等のめつき装置の材料の点で難点
を有する。このために、塩化物浴の採用が拒まれていた
が、近年、耐腐食性材料の急激な進展によつて、塩化物
浴が再度、見直されている。
On the other hand, since the chloride bath is more corrosive than the sulfide bath, it has a problem in terms of the material of the plating apparatus such as the plating tank and piping. For this reason, the use of chloride baths has been refused, but in recent years, chloride baths have been revisited due to the rapid development of corrosion-resistant materials.

しかし、全塩化物浴を高速連続めつきに使用する場合、
次に述べるような致命的欠点があつた。
However, when using the total chloride bath for high-speed continuous plating,
There were the following fatal drawbacks.

即ち、全塩化物浴を使用して電気亜鉛めつきを施す場
合、自溶性アノードとして亜鉛電極を使用するが、全塩
化物浴を使用すると、亜鉛電極面にきわめて多量の鱗片
状の黒色スラツジ(以下、アノードスラツジと云う)が
生成される。このアノードスラツジは、めつき液の流動
によつて亜鉛電極面から剥離してめつき浴中を浮遊す
る。このようにしてめつき浴中に浮遊するアノードスラ
ツジは、鋼板面に黒点状に付着したり、ロールに付着し
て鋼板面に押し疵を形成する。また、めつき液中を浮遊
するアノードスラツジは、ポンプや配管等に付着して目
詰りを起したり、再溶解して不純物イオンとしてめつき
液に再混入する。この結果、円滑なめつき操業を妨げ
る。
That is, when an electrozinc plating is performed using a total chloride bath, a zinc electrode is used as a self-fluxing anode. However, when a total chloride bath is used, an extremely large amount of scale-like black sludge ( Hereinafter, referred to as anode sludge) is generated. The anode sludge is separated from the zinc electrode surface by the flow of the plating solution and floats in the plating bath. In this way, the anode sludge floating in the plating bath adheres to the steel plate surface in the form of black dots or adheres to the rolls to form push flaws on the steel plate surface. Further, the anode sludge floating in the plating solution adheres to a pump, a pipe or the like to cause clogging, or is redissolved and remixed as impurity ions in the plating solution. As a result, smooth plating operation is hindered.

従来、めつきの品質向上を目的とする技術として、特公
昭46−40402号公報に、0.1〜1g/lのカドミウムイオンを
含有する全塩化物電気亜鉛めつき浴が開示され(従来技
術1と云う)、そして、特開昭57−89493号公報に、PH
を1.0〜3.5の範囲に調整した塩化物浴による外観性状が
優れた亜鉛めつき方法(従来技術2と云う)が開示され
ている。
Conventionally, as a technique aimed at improving the quality of plating, Japanese Patent Publication No. 46-40402 discloses an all-chloride electric zinc plating bath containing 0.1 to 1 g / l of cadmium ion (referred to as prior art 1). ), And in JP-A-57-89493, PH
There is disclosed a zinc plating method (referred to as prior art 2) having an excellent appearance property by using a chloride bath in which the ratio is adjusted to 1.0 to 3.5.

しかし、上述した技術は、何れも、連続めつき操業を行
なう場合、上記アノードスラツジによる問題を助長する
結果をもたらし、実際上、その適用は、ほとんど不可能
であつた。
However, all of the above-mentioned techniques result in the problem of the anode sludge, which is practically impossible to apply in the case of continuous plating operation.

ここで、アノードスラツジの生成機構について説明す
る。全塩化物浴は、前述したように、硫酸浴に比べて電
気伝導度がきわめて大であり、且つ、多量の塩素イオン
を含むために硫酸浴に比べて腐食性が大である。従つ
て、鋼板に連続的にめつきを施す場合には、硫酸浴に比
べてはるかに多量のFe2+イオンが鋼板表面からめつき浴
中に浴出し、蓄積される。前記Fe2+イオンは、通電中で
あつても亜鉛電極表面で局部電池反応にあずかつて、容
易に金属Feとして置換析出し、Znの溶解速度が大である
ことおよび電気伝導度が大であることによつて、硫酸浴
の場合に比べて飛躍的に速い速度で、いわばFe箔が積層
した状態、即ち、鱗片状態で生成と剥離とが繰り返され
る。このようにしてアノードスラツジが生成される。
Here, the generation mechanism of the anode sludge will be described. As described above, the total chloride bath has extremely high electric conductivity as compared with the sulfuric acid bath, and is more corrosive than the sulfuric acid bath because it contains a large amount of chlorine ions. Therefore, when the steel plate is continuously plated, a much larger amount of Fe 2+ ions are discharged from the surface of the steel plate and accumulated in the plating bath as compared with the sulfuric acid bath. The Fe 2+ ion does not undergo a local cell reaction on the surface of the zinc electrode even during energization, and is easily substituted and deposited as metallic Fe, and has a high dissolution rate of Zn and a high electric conductivity. As a result, the generation and peeling are repeated in a state in which the Fe foil is laminated, that is, in a scale state, at a remarkably higher speed than in the case of the sulfuric acid bath. In this way, anode sludge is produced.

上述した従来技術1においても、上述した現象と同じ現
象が起る。この場合、めつき浴中のFe2+イオンとカドミ
ウムイオンとによつてアノードスラツジが生成させるの
で、はなはだ弊害が大きい。
Also in the above-mentioned conventional technique 1, the same phenomenon as the above-mentioned phenomenon occurs. In this case, the anode sludge is generated by the Fe 2+ ions and the cadmium ions in the plating bath, so that there is a great adverse effect.

上述した従来技術2においては、めつき浴のPHが低いこ
とによつて、腐食性がさらに増大する。この結果、上述
した局部電池反応が促進され、さらに、Fe2+イオン以外
のめつき装置からの金属イオンがめつき浴に混入するこ
とによつて、アノードスラツジ生成量は激増する。しか
も、この場合、めつき浴のPHが低いのでアノードスラツ
ジが再溶解する結果、不純物イオンの蓄積は避けられな
い。
In Conventional Technique 2 described above, the corrosivity is further increased due to the low PH of the plating bath. As a result, the above-mentioned local cell reaction is promoted, and further, the metal ions from the plating apparatus other than Fe 2+ ions are mixed into the plating bath, so that the amount of the anode sludge produced is drastically increased. Moreover, in this case, since the PH of the plating bath is low, the anode sludge is redissolved, so that the accumulation of impurity ions is unavoidable.

〔発明の目的〕[Object of the Invention]

この発明の目的は、全塩化物浴の利点である低電力コス
トおよび高生産性を損うことなく、従来の全塩化物浴の
致命的欠点であるアノードスラツジの生成を著しく低減
して、良好な品質性能を有する電気亜鉛めつき鋼板を安
定して製造することができる電気亜鉛めつき浴を提供す
ることにある。
The object of the present invention is to significantly reduce the production of anode sludge, which is a fatal drawback of conventional all chloride baths, without sacrificing the low power cost and high productivity which are the advantages of all chloride baths. An object of the present invention is to provide an electrogalvanizing bath capable of stably producing an electrogalvanizing steel sheet having quality performance.

〔発明の概要〕[Outline of Invention]

この発明はZnCl2を100〜400g/l、および、NH4ClまたはK
Clのうちの少なくとも1種を100〜400g/l含有する基本
めつき浴に、飽和カルボン酸、飽和カルボン酸のNa塩ま
たは飽和カルボン酸のK塩のうちの少なくとも1種が1
〜70g/l添加されていることに特徴を有するものであ
る。
This invention uses 100 to 400 g / l of ZnCl 2 and NH 4 Cl or K
At least one of saturated carboxylic acid, Na salt of saturated carboxylic acid or K salt of saturated carboxylic acid is added to a basic plating bath containing at least one of Cl in an amount of 100 to 400 g / l.
It is characterized by the fact that ~ 70 g / l is added.

〔発明の構成〕[Structure of Invention]

本願発明者等は、全塩化物浴においてアノードスラツジ
の生成を低減すべく鋭意研究を重ねた。その結果、アノ
ードスラツジは、めつき浴中の不純物としてのZnより貴
な金属イオン、特に、Fe2+イオンが金属として置換析出
することによつて生成されるのであるから、めつき浴組
成を選択してFe2+イオンの置換析出を防止すれば、アノ
ードスラツジの生成を低減することができるといつた知
見が得た。
The inventors of the present application have conducted extensive studies to reduce the formation of anode sludge in the total chloride bath. As a result, the anode sludge is formed by substitution and precipitation of metal ions, which are nobler than Zn as impurities in the plating bath, especially Fe 2+ ions, so that the plating bath composition is selected. Therefore, it was found that the generation of anode sludge can be reduced by preventing substitutional precipitation of Fe 2+ ions.

この発明は、上述した知見に基きなされたものである。
以下に、この発明の電気亜鉛めつき浴を更に詳細に説明
する。
The present invention is based on the above-mentioned findings.
The electrogalvanizing bath of the present invention will be described in more detail below.

ZnCl2:300g/lおよびKCl:300g/lからなる全塩化物浴と、
ZnSO4・7H2O:400g/lおよびNa2SO4:100g/lからなる硫酸
浴とを使用し、それぞれ同一条件(PH4、浴温50℃、電
流密度80A/dm2)の基で、鋼板に実際の横型連続電気亜
鉛めつき装置によつてめつきを施した。そして、めつき
開始から40時間、80時間および120時間経過後のめつき
浴中のFe2+イオン濃度と、亜鉛電極表面に生成されたア
ノードスラツジ量との関係を調べた。この結果を第1図
に示す。
ZnCl 2 : 300 g / l and KCl: 300 g / l total chloride bath,
ZnSO 4 · 7H 2 O: 400 g / l and Na 2 SO 4 : 100 g / l sulfuric acid bath were used, under the same conditions (PH 4, bath temperature 50 ° C, current density 80 A / dm 2 ), respectively. The steel plates were plated with an actual horizontal continuous electrogalvanizing device. Then, the relationship between the Fe 2+ ion concentration in the plating bath 40 hours, 80 hours and 120 hours after the start of plating and the amount of anode sludge formed on the surface of the zinc electrode was investigated. The results are shown in FIG.

第1図から明らかなように、めつき浴のPH値が同一であ
るにもかかわらず、全塩化物浴中のFe2+イオンの増加速
度は、硫酸浴に比べて大きく、そして、何れの浴におい
てもFe2+イオン濃度が高くなるにつれてアノードスラツ
ジ生成量が増大する。また、Fe2+イオン濃度がほぼ同一
であつても、硫酸浴より塩化物浴の方がアノードスラツ
ジ生成量が多いことがわかる。
As is clear from FIG. 1, the increase rate of Fe 2+ ions in the total chloride bath was larger than that in the sulfuric acid bath, even though the PH value of the plating bath was the same. Even in the bath, the amount of anode sludge produced increases as the Fe 2+ ion concentration increases. It is also found that the chloride bath produces more anode sludge than the sulfuric acid bath even when the Fe 2+ ion concentration is almost the same.

このとき、全塩化物浴では、めつきを開始してから約50
時間経過後、鋼板面にアノードスラツジの付着による黒
点が発生し、続いて、鋼板面にアノードスラツジのロー
ルへの付着量より押し疵が発生した。
At this time, in the total chloride bath, about 50 after starting plating.
After a lapse of time, black spots were generated on the surface of the steel plate due to adhesion of the anode sludge, and subsequently, flaws were generated on the surface of the steel plate due to the amount of the adhesion of the anode sludge to the roll.

なお、アノードスラツジの成分を分析したところ、その
主体は金属Feであつた。
When the components of the anode sludge were analyzed, the main component was metallic Fe.

次に、ZnCl2:300g/lとKCl:300g/lとからなる塩化物浴
(PH4、浴温50℃)に、不純物としてFe2+イオンを0〜5
00ppmの範囲で添加し、電流密度10A/dm2で6時間鋼板に
連続的にめつきを施し、このときのめつき浴中のFe2+
オン濃度と亜鉛電極表面に生成されたアノードスラツジ
量との関係を調べた。この結果を第2図に示す。
Next, in a chloride bath (PH4, bath temperature 50 ° C.) consisting of ZnCl 2 : 300 g / l and KCl: 300 g / l, Fe 2+ ions as impurities were added in an amount of 0-5.
It is added in the range of 00ppm, and the steel plate is continuously plated at a current density of 10A / dm 2 for 6 hours. At this time, the Fe 2+ ion concentration in the plating bath and the amount of anode sludge generated on the zinc electrode surface I investigated the relationship. The results are shown in FIG.

第2図から明らかなように、この場合も、第1図の場合
におけると同様に、めつき浴中のFe2+イオン濃度が高く
なるにつれて、アノードスラツジ生成量が増大すること
がわかる。
As is clear from FIG. 2, in this case, as in the case of FIG. 1, the amount of anode sludge produced increases as the Fe 2+ ion concentration in the plating bath increases.

第1および2図に示す結果は、めつき浴中のFe2+イオン
が、亜鉛電極表面で局部電池反応にあずかつて、金属Fe
として置換析出し、この結果、アノードスラツジが生成
されることを裏付けている。
The results shown in FIGS. 1 and 2 indicate that Fe 2+ ions in the plating bath do not undergo local cell reaction on the surface of the zinc electrode, and once the metal Fe
Substituting and depositing, which proves that the anode sludge is generated as a result.

また、第2図から、塩化物浴であつてもめつき浴中のFe
2+イオン濃度がきわめて低くければ、アノードスラツジ
生成量を低レベルに抑制できることがわかる。
In addition, from Fig. 2, Fe in the chloride bath was also used.
It can be seen that if the 2+ ion concentration is extremely low, the amount of anode sludge produced can be suppressed to a low level.

しかし、実際の連続めつき操業においては、第1図から
明らかなように、塩化物浴の場合、鋼板からのFe2+イオ
ンの溶出速度がきわめて大きいので、Fe2+イオンの溶出
量に見合つてFe2+イオンを除去するには、膨大な設備と
操業コストを必要とする。
However, in the actual continuous plating operation, as is clear from Fig. 1, in the case of the chloride bath, the elution rate of Fe 2+ ions from the steel sheet is extremely high, so the elution amount of Fe 2+ ions is Therefore, removing Fe 2+ ions requires enormous equipment and operating costs.

そこで、めつき浴中にFe2+イオンが混入してもこれが亜
鉛電極面に金属Feとして多量に析出することを防止でき
る、めつき浴組成について研究した。
Therefore, we studied the composition of the plating bath that can prevent a large amount of Fe 2+ ions from precipitating as metallic Fe on the zinc electrode surface even if Fe 2+ ions are mixed in the plating bath.

ZnCl2:300g/lとKCl:300g/lとからなる全塩化物電気亜鉛
めつき浴に、コハク酸ナトリウムおよび不純物としてFe
2+イオンを500ppm添加しためつき浴(PH4、浴温50℃)
を使用し、電流密度10A/dm2で6時間鋼板に連続的にめ
つきを施し、このときのコハク酸ナトリウムの添加量と
アノードスラツジ生成量との関係を調べた。この結果を
第3図に示す。
ZnCl 2 : 300 g / l and KCl: 300 g / l in a total chloride electrozinc plating bath, sodium succinate and Fe as impurities
Addition of 500ppm of 2+ ions and a bath for holding (PH4, bath temperature 50 ℃)
Was continuously applied to a steel sheet at a current density of 10 A / dm 2 for 6 hours, and the relationship between the addition amount of sodium succinate and the anode sludge production amount at this time was investigated. The results are shown in FIG.

第3図から明らかなように、コハク酸ナトリウムを添加
することによつて、生成されるアノードスラツジ量が大
幅に低減することがわかる。
As is clear from FIG. 3, the addition of sodium succinate significantly reduces the amount of anode sludge produced.

次に、ZnCl2:300g/lとKCl:300g/lとからなる全塩化物浴
に、コハク酸ナトリウム以外の飽和カルボン酸、飽和カ
ルボン酸のNa塩または飽和カルボン酸のK塩のうちの1
種を添加した全塩化物浴を使用し、その他は、第3図の
場合と同一の条件で鋼板に連続的にめつきを施し、この
ときに生成されたアノードスラツジ量を調べた。この結
果を、飽和カルボン酸、飽和カルボン酸のNa塩およびK
塩が添加されていないめつき浴を使用した場合の結果と
合わせて第1表に示す。
Next, in a total chloride bath consisting of ZnCl 2 : 300 g / l and KCl: 300 g / l, one of saturated carboxylic acids other than sodium succinate, Na salts of saturated carboxylic acids or K salts of saturated carboxylic acids was added.
A total chloride bath containing seeds was used, and the other conditions were the same as in FIG. 3, except that the steel sheets were continuously plated, and the amount of anode sludge produced at this time was examined. The results are shown as saturated carboxylic acid, Na salt of saturated carboxylic acid and K
The results are shown in Table 1 together with the results obtained when the plating bath containing no salt was used.

第1表から明らかなように、コハク酸ナトリウムに限ら
ず、飽和カルボン酸、飽和カルボン酸のNa塩またはK塩
が適当量添加されることによつて、アノードスラツジの
生成量が一様に減少することがわかる。
As is clear from Table 1, not only sodium succinate but also saturated carboxylic acid, Na salt or K salt of saturated carboxylic acid is added in an appropriate amount to uniformly reduce the amount of anode sludge produced. I understand.

次に、ZnCl2:300g/lとKCl:300g/lとからなる全塩化物浴
に、コハク酸ナトリウムを1g/l、15g/lおよび70g/l添加
しためつき浴をそれぞれ使用し、前述した第1図の場合
におけると同一の条件で鋼板に連続的にめつきを施し
た。そして、めつき開始から40時間、80時間および120
時間経過後のめつき浴中のFe2+イオン濃度と、亜鉛電極
表面に生成されたアノードスラツジ量との関係を調べ
た。この結果を第4図に示す。
Next, ZnCl 2: 300g / l and KCl: to 300 g / l and total chloride bath consisting of sodium succinate 1g / l, 15g / l and 70 g / l added and the plated bath was used respectively, above The steel plate was continuously plated under the same conditions as in FIG. And 40 hours, 80 hours and 120 from the start of plating
The relationship between the Fe 2+ ion concentration in the plating bath after a lapse of time and the amount of anode sludge formed on the surface of the zinc electrode was investigated. The results are shown in FIG.

第4図および第1図から明らかなように、めつき浴中の
Fe2+イオンの増加速度は、コハク酸ナトリウムを添加し
ない場合と変らないが、アノードスラツジ生成量は、ほ
ぼ硫酸浴なみにきわめて少量であることがわかる。
As is clear from FIG. 4 and FIG.
Although the rate of increase of Fe 2+ ions is the same as that when sodium succinate is not added, it can be seen that the amount of anodic sludge produced is extremely small as much as a sulfuric acid bath.

コハク酸ナトリウムを1g/l添加しためつき浴は、コハク
酸ナトリウムをこれ以上添加しためつき浴に比べて、ア
ノードスラツジの生成抑制効果は若干少ないが、それで
もめつき開始後、120時間以上経過しても、アノードス
ラツジに起因した黒点や押し疵が鋼板面に生じることは
なかつた。
The soaking bath with 1 g / l of sodium succinate has a slightly smaller effect of suppressing anode sludge formation than the soaking bath with more addition of sodium succinate, but still 120 hours or more after the start of plating. However, black spots and dents due to the anode sludge did not occur on the steel plate surface.

飽和カルボン酸の添加によつてアノードスラツジの生成
が抑制される理由は、十分に解明されていないが、コハ
ク酸ナトリウム等は、PH緩衝作用および金属イオンのキ
レート化作用を有することが知られていることから、カ
ルボシキル基を含まないその他のPH緩衝剤およびキレー
ト化剤をめつき浴に添加しその効果を調べたところ、何
ら、アノードスラツジの生成抑制効果が認められなかつ
た。このことから、アノードスラツジの生成抑制効果
は、カルボキシル基を含む、所謂、カルボン酸の塩化物
浴に対する特有の効果と推定される。
The reason why the formation of anode sludge is suppressed by the addition of saturated carboxylic acid has not been sufficiently clarified, but sodium succinate and the like are known to have a PH buffering action and a metal ion chelating action. Therefore, when other PH buffers and chelating agents containing no carboxyl group were added to the plating bath and their effects were investigated, no effect of suppressing the formation of anode sludge was observed. From this, it is presumed that the effect of suppressing the generation of anode sludge is a unique effect of a so-called carboxylic acid-containing chloride bath containing a carboxyl group.

第1表に示した飽和カルボン酸の他に、芳香族および不
飽和カルボン酸について調べたが、これらのアノードス
ラツジの生成抑制効果に及ぼす影響は、飽和カルボン酸
に比べて大幅に劣り、しかも、添加量を増加するとめつ
き外観および品質が劣化することがわかつた。
Aromatic and unsaturated carboxylic acids were investigated in addition to the saturated carboxylic acids shown in Table 1. The effects on the anode sludge production suppressing effect were significantly inferior to those of the saturated carboxylic acids, and addition It was found that the plating appearance and quality deteriorated with increasing amount.

飽和カルボン酸のうち、モノカルボン酸、ジカルボン
酸、トリカルボン酸等、カルボキシル基の数が異なるも
のについてアノードスラツジの生成抑制効果を調べたと
ころ、その効果にほとんど差は認められず、何れも良好
な、アノードスラツジの生成抑制効果が得られた。
Of the saturated carboxylic acids, monocarboxylic acid, dicarboxylic acid, tricarboxylic acid, etc., the effect of suppressing the generation of the anode sludge for those having a different number of carboxyl groups was examined, almost no difference in the effect was observed, both are good, The effect of suppressing the generation of anode sludge was obtained.

このようなことから、この発明においては、ZnCl2、お
よび、NH4ClまたはKClのうちの少なくとも1種からなる
基本めつき浴に添加する添加物を、飽和カルボン酸、飽
和カルボン酸のNa塩または飽和カルボン酸のK塩のうち
の少なくとも1種に限定した。
Therefore, in the present invention, the additive to be added to the basic plating bath consisting of ZnCl 2 and at least one of NH 4 Cl and KCl is a saturated carboxylic acid or a sodium salt of a saturated carboxylic acid. Alternatively, it is limited to at least one of the K salts of saturated carboxylic acids.

次に、上記添加物の添加量の限定理由について説明す
る。
Next, the reason for limiting the addition amount of the above-mentioned additive will be described.

飽和カルボン酸のうちコハク酸ナトリウムを例にとる
と、第4図から明らかなように、その添加量が増加する
ほどアノードスラツジの生成抑制効果が大きくなるが、
1g/l未満では、十分な添加効果が得られず、一方、10g/
lを超えてもそれ以上の添加効果が認められず、そし
て、70g/lを超えるとめつき外観がやや劣化する。この
現象は、コハク酸ナトリウム以外の飽和カルボン酸につ
いても云えることがわかつた。従つて、この発明におい
ては、基本めつき浴に添加する添加物の添加量を1〜70
g/lの範囲に限定した。前記添加物の添加量は、めつき
条件等によつて適宜調整する。
Taking sodium succinate among saturated carboxylic acids as an example, as is clear from FIG. 4, the effect of suppressing the generation of anode sludge increases as the amount of addition increases.
If it is less than 1 g / l, a sufficient addition effect cannot be obtained, while 10 g / l
If the amount exceeds l, no further effect is observed, and if the amount exceeds 70 g / l, the appearance of plating is slightly deteriorated. It has been found that this phenomenon can be applied to saturated carboxylic acids other than sodium succinate. Therefore, in the present invention, the addition amount of the additive to be added to the basic plating bath is 1 to 70%.
Limited to g / l range. The amount of the additive added is appropriately adjusted depending on the plating conditions and the like.

上記添加物の有するアノードスラツジの生成抑制効果
は、基本めつき浴に含有されるNH4ClまたはKCl以外の塩
化物電導度補助剤を含有した全塩化物浴およびPH緩衝剤
や光沢剤等の既知の有機添加物を含有するめつき浴にお
いても同様に発揮されることがわかつた。
The effect of suppressing the formation of anode sludge having the above-mentioned additives is the total chloride bath containing a chloride conductivity auxiliary agent other than NH 4 Cl or KCl contained in the basic plating bath, and the known pH buffers and brighteners. It has been found that the same effect can be obtained in the plating bath containing the organic additive (1).

次に、この発明における基本めつき浴組成の含有割合の
限定理由について説明する。
Next, the reasons for limiting the content of the basic plating bath composition in the present invention will be described.

ZnCl2: その含有割合が100g/l未満では、許容電流密度が低くな
つて、ライン速度を速くした場合には、必要とする電流
密度が得られず、一方、400g/lを超えると未溶解部分が
生じてめつきに悪影響を及ぼす。従つて、この発明にお
いては、ZnCl2の含有割合を100〜400g/lの範囲に限定し
た。
ZnCl 2 : When the content ratio is less than 100 g / l, the allowable current density is low, and the required current density cannot be obtained when the line speed is increased, while when it exceeds 400 g / l, undissolved Parts are generated, which adversely affects the plating. Therefore, in the present invention, the content ratio of ZnCl 2 is limited to the range of 100 to 400 g / l.

NH4Cl,KCl: これらは何れも公知の電導度補強剤であり、この他、塩
化物の電導度補強剤としてNaCl,AlCl2,BaCl2,CaCl2
が知られているが、電導度補助効果としては、NH4Clお
よびKClがきわめて優れている。従つて、めつき浴の電
導度の向上を目的の1つとするこの発明においては、電
導度補助剤としてNH4ClまたはKClのうちの少なくとも1
種を使用するが、その含有割合が100g/l未満では、上述
した効果が十分に現われず、一方、400g/lを超えると浴
温が低下したときに、未溶解部分が生じてめつきに悪影
響を及ぼす。従つて、この発明においては、NH4Clまた
はKClのうちの少なくとも1種の含有割合を100〜400g/l
の範囲に限定した。
NH 4 Cl, KCl: These are all known conductivity enhancers, and in addition, NaCl, AlCl 2 , BaCl 2 , CaCl 2, etc. are known as chloride conductivity enhancers. NH 4 Cl and KCl are extremely excellent as auxiliary effects. Therefore, in the present invention, which aims to improve the conductivity of the plating bath, at least one of NH 4 Cl and KCl is used as a conductivity auxiliary agent.
The seeds are used, but if the content ratio is less than 100 g / l, the above-mentioned effects are not sufficiently exhibited, while if it exceeds 400 g / l, when the bath temperature is lowered, undissolved parts are generated, resulting in grazing. Adversely affect. Therefore, in the present invention, the content ratio of at least one of NH 4 Cl and KCl is 100 to 400 g / l.
Limited to the range.

めつき浴のPHは、1未満では亜鉛電極の溶解が激しく、
一方、6を超えると水酸化物等が沈澱しやすくなる。従
つて、めつき浴のPHは、1〜6,好ましくは、2〜5の範
囲が良い。
If the pH of the plating bath is less than 1, the dissolution of the zinc electrode is severe,
On the other hand, when it exceeds 6, hydroxides and the like are likely to precipitate. Therefore, the pH of the plating bath is in the range of 1 to 6, preferably 2 to 5.

次に、この発明の実施例について説明する。Next, an embodiment of the present invention will be described.

〔実施例1〕 堅型連続電気亜鉛めつき装置によつて第2表に示すめつ
き浴を使用して、電流密度60A/dm2、ライン速度120mpm
の条件で40時間鋼板にめつきを施した。そして、亜鉛電
極表面に生成されたアノードスラツジ量を測定した。ま
た、このようにして製造された電気亜鉛めつき鋼板の外
観、特に、アノードスラツジの付着による黒点、および
アノードスラツジのロールへの付着による押し疵の有無
について調べた。
[Example 1] Current density of 60 A / dm 2 and line speed of 120 mpm were measured by using a plating bath as shown in Table 2 by a rigid continuous electrogalvanizing apparatus.
The steel plate was plated under the above conditions for 40 hours. Then, the amount of anode sludge generated on the surface of the zinc electrode was measured. In addition, the appearance of the electric zinc plated steel sheet thus produced, in particular, the presence or absence of black spots due to the attachment of the anode sludge and the presence or absence of flaws due to the attachment of the anode sludge to the rolls were examined.

第2表から明らかなように、この発明の全塩化物電気亜
鉛めつき浴によれば、アノードスラツジ生成量は、硫酸
浴と同程度に少なく、しかも、亜鉛めつき鋼板面にアノ
ードスラツジに起因する黒点や押し疵は、全く認められ
なかつた。
As is clear from Table 2, according to the total chloride electric zinc plating bath of the present invention, the amount of anode sludge produced is as small as that of the sulfuric acid bath, and the black spots caused by the anode sludge are present on the zinc plated steel plate surface. There was no evidence of blemishes.

〔実施例2〕 横型連続電気亜鉛めつき装置によつて第3表に示すめつ
き浴を使用して、浴温50℃、めつき浴のPH4、電流密度1
00A/dm2、ライン速度70mpmの条件で120時間鋼板にめつ
きを施した。そして、亜鉛電極表面に生成されたアノー
ドスラツジ量を測定した。また、このようにして製造さ
れた電気亜鉛めつき鋼板の外観を調べた。
[Example 2] A horizontal continuous electric zinc plating apparatus was used, and the plating bath shown in Table 3 was used. The bath temperature was 50 ° C, the pH of the plating bath was PH4, and the current density was 1
The steel plate was plated for 120 hours under the conditions of 00A / dm 2 and a line speed of 70mpm. Then, the amount of anode sludge generated on the surface of the zinc electrode was measured. In addition, the appearance of the electric zinc plated steel sheet thus manufactured was examined.

第3表から明らかなように、この発明の全塩化物電気亜
鉛めつき浴によれば、アノードスラツジ生成量は、硫酸
浴と同程度に少なく、しかも、亜鉛めつき鋼板面に、ア
ノードスラツジに起因する黒点や押し疵は、全く認めら
れなかつた。
As is clear from Table 3, according to the total chloride electrozinc plating bath of the present invention, the amount of anode sludge produced is as small as that of the sulfuric acid bath, and moreover, the zinc plating steel plate surface is caused by the anode sludge. Black spots and flaws were never observed.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、全塩化物浴の
利点である低電力コストおよび高生産性を損うことな
く、従来の全塩化物浴の致命的欠点であるアノードスラ
ツジの生成を著しく低減して、良好な品質性能を有する
電気亜鉛めつき鋼板を安定して製造することができると
いつたきわめて有用な効果がもたらされる。
As described above, according to the present invention, the generation of anode sludge, which is a fatal drawback of the conventional total chloride bath, can be remarkably reduced without impairing the low power cost and high productivity which are advantages of the total chloride bath. If it can be reduced and a galvanized steel sheet having good quality performance can be stably manufactured, an extremely useful effect is brought about.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図および第4図は、アノードスラツジ生成
量とめつき浴中のFe2+イオン濃度との関係を示すグラ
フ、第3図は、アノードスラツジ生成量とコハク酸ナト
リウムの添加量との関係を示すグラフである。
1, 2 and 4 are graphs showing the relationship between the amount of anode sludge produced and the Fe 2+ ion concentration in the plating bath, and FIG. 3 shows the amount of anode sludge produced and the amount of sodium succinate added. It is a graph which shows a relationship.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−60895(JP,A) 特開 昭61−37984(JP,A) 特公 昭51−3298(JP,B2) 野口裕臣著「金属表面技術協会第70回講 演大会講演概要集」昭和59年10月16日金属 表面技術協会発行 P.32−33 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-61-60895 (JP, A) JP-A-61-37984 (JP, A) JP-B-51-3298 (JP, B2) Hiroomi Noguchi "Metal Surface Technology Association 70th Lecture Conference Lecture Summary "October 16, 1984 Metals Surface Technology Association P. 32-33

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ZnCl2を100〜400g/l、および、NH4Clまた
はKClのうちの少なくとも1種を100〜400g/l含有する基
本めつき浴に、飽和カルボン酸、飽和カルボン酸のNa塩
または飽和カルボン酸のK塩のうちの少なくとも1種が
1〜70g/l添加されていることを特徴とする電気亜鉛め
つき浴。
1. A basic plating bath containing 100 to 400 g / l of ZnCl 2 and 100 to 400 g / l of at least one of NH 4 Cl and KCl, and saturated carboxylic acid, saturated carboxylic acid Na An electrogalvanizing bath, characterized in that at least one salt or K salt of a saturated carboxylic acid is added in an amount of 1 to 70 g / l.
JP61119054A 1986-05-26 1986-05-26 Electrogalvanizing bath Expired - Lifetime JPH0737677B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61119054A JPH0737677B2 (en) 1986-05-26 1986-05-26 Electrogalvanizing bath
US07/273,910 US4877497A (en) 1986-05-26 1988-11-18 Acidic electro-galvanizing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119054A JPH0737677B2 (en) 1986-05-26 1986-05-26 Electrogalvanizing bath

Publications (2)

Publication Number Publication Date
JPS62278290A JPS62278290A (en) 1987-12-03
JPH0737677B2 true JPH0737677B2 (en) 1995-04-26

Family

ID=14751766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119054A Expired - Lifetime JPH0737677B2 (en) 1986-05-26 1986-05-26 Electrogalvanizing bath

Country Status (2)

Country Link
US (1) US4877497A (en)
JP (1) JPH0737677B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737677B2 (en) * 1986-05-26 1995-04-26 日本鋼管株式会社 Electrogalvanizing bath
US5203986A (en) * 1990-03-08 1993-04-20 Nkk Corporation Method for manufacturing electrogalvanized steel sheet excellent in spot weldability
FR2723595B3 (en) * 1994-08-11 1996-06-07 Lorraine Laminage ELECTROZINGAGE BATH AND METHOD FOR ADAPTING THE ELECTROZINGAGE BATH COMPOSITION, WHEN USING A VERSATILE COATING INSTALLATION, LIKELY TO BE POLLUTED WITH NICKEL
DE69603209T2 (en) 1995-02-15 1999-11-11 Atotech Usa Inc Electroplating process based on zinc sulfate with a high current density and the associated composition
US5656148A (en) * 1995-03-02 1997-08-12 Atotech Usa, Inc. High current density zinc chloride electrogalvanizing process and composition
EP0786539A2 (en) 1996-01-26 1997-07-30 Elf Atochem North America, Inc. High current density zinc organosulfonate electrogalvanizing process and composition
EP1070771A1 (en) * 1999-07-23 2001-01-24 Euro Property Finance S.A. (H29) Aqueous acid bath for zinc plating process and zinc plating process using the bath
US7238266B2 (en) * 2002-12-06 2007-07-03 Mks Instruments, Inc. Method and apparatus for fluorine generation and recirculation
ATE511498T1 (en) * 2003-11-20 2011-06-15 Solvay METHOD FOR PRODUCING DICHLOROPROPANOL FROM GLYCERIN AND A CHLORINATING AGENT IN THE PRESENCE OF A CATALYST SELECTED FROM ADIPINE AND GLUTARIC ACID
KR20080037613A (en) 2005-05-20 2008-04-30 솔베이(소시에떼아노님) Method for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
TW200911693A (en) * 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
FR2918058A1 (en) * 2007-06-28 2009-01-02 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR ITS PURIFICATION AND USE IN THE MANUFACTURE OF DICHLOROPROPANOL
WO2009043796A1 (en) * 2007-10-02 2009-04-09 Solvay (Société Anonyme) Use of compositions containing silicon for improving the corrosion resistance of vessels
TWI478875B (en) 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
KR20140009163A (en) 2010-09-30 2014-01-22 솔베이(소시에떼아노님) Derivative of epichlorohydrin of natural origin
JP5821586B2 (en) * 2011-12-05 2015-11-24 新日鐵住金株式会社 Evaluation method of delayed fracture characteristics of high strength steel sheet
DE102012216011A1 (en) 2012-09-10 2014-03-13 Dr. Hesse GmbH & Cie. KG Boric acid-free zinc-nickel electrolyte
CN105908221B (en) * 2016-06-17 2017-12-19 泉州师范学院 A kind of manufacturing process of electrolytic copper foil
CN105862089B (en) * 2016-06-17 2018-07-06 泉州师范学院 A kind of production electrolytic copper foil electrolyte for preventing anode fouling and preparation method thereof
EP3666929A1 (en) 2018-12-12 2020-06-17 Dr.Ing. Max Schlötter GmbH & Co. KG Boric acid and ammonium-free zinc electrolyte for the galvanic deposition of zinc coverings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520257B2 (en) * 1974-06-26 1980-05-31
JPS5789493A (en) * 1980-11-26 1982-06-03 Kawasaki Steel Corp Zinc-plating method, excellent in surface appearance, for steel sheet in chloride bath
JPS6137984A (en) * 1984-07-27 1986-02-22 Katayama Chem Works Co Ltd Method for preventing corrosion os nonferrous metal
JPS6160895A (en) * 1984-08-30 1986-03-28 Yamatoya Shokai:Kk Bath composition for bright galvanizing
JPH0737677B2 (en) * 1986-05-26 1995-04-26 日本鋼管株式会社 Electrogalvanizing bath

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
野口裕臣著「金属表面技術協会第70回講演大会講演概要集」昭和59年10月16日金属表面技術協会発行P.32−33

Also Published As

Publication number Publication date
JPS62278290A (en) 1987-12-03
US4877497A (en) 1989-10-31

Similar Documents

Publication Publication Date Title
JPH0737677B2 (en) Electrogalvanizing bath
EP0075784A1 (en) Process for direct gold plating of stainless steel
KR890001107B1 (en) Process for preparing zn - fe base alloy electroplated steel strips
US3989604A (en) Method of producing metal strip having a galvanized coating on one side
DE3628361A1 (en) AQUEOUS ACID BATH AND METHOD FOR GALVANIC DEPOSITION OF ZINC ALLOY COATINGS
KR100276701B1 (en) Electrolytic zinc-nickel alloy plating solution and method for producing steel sheet using the alloy plating solution
JPS5839236B2 (en) Alloy electroplating method
JP6949095B2 (en) A method for producing a metal strip coated with a coating of chromium and chromium oxide using an electrolytic solution containing a trivalent chromium compound.
JP2940289B2 (en) Electrogalvanized steel sheet with two plating layers and excellent blackening resistance
JPS6122037B2 (en)
JP3282875B2 (en) Palladium plating solution and palladium plating method using the plating solution
JPS5928598A (en) Insoluble anode made of pb alloy for electroplating
JP3405669B2 (en) Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same
KR100294366B1 (en) Manufacturing method of mound-free iron-zinc electroplated sheets and electrolytic baths used therein
US3577327A (en) Method and composition for electroplating cadmium (b)
US20240044032A1 (en) Solution for electroplating iron, and electroplated steel sheet manufactured by using same
JP3422595B2 (en) Zinc displacement bath for aluminum alloy
JP3334579B2 (en) Method for producing galvanized steel sheet with excellent appearance
Loto Effect of sugar cane and cassava juices as addition agents in the electrodeposition of zinc from acid based solution
JP2761470B2 (en) Electric zinc-nickel alloy plating solution and method for producing plated steel sheet
JPH05106085A (en) Method for preventing elution of fe ion into electroplating solution
JP3136693B2 (en) Method for producing electrolytic chromated steel sheet with excellent corrosion resistance and weldability
JP2707884B2 (en) Method for producing multi-layer electrolytic chromate treated steel sheet
JP2928426B2 (en) Manufacturing method of electrolytic iron
JP2940288B2 (en) Zinc electroplated steel sheet excellent in blackening resistance and method for producing the same