JPH0735972A - Triplet lens provided with behind diaphragm - Google Patents

Triplet lens provided with behind diaphragm

Info

Publication number
JPH0735972A
JPH0735972A JP5178961A JP17896193A JPH0735972A JP H0735972 A JPH0735972 A JP H0735972A JP 5178961 A JP5178961 A JP 5178961A JP 17896193 A JP17896193 A JP 17896193A JP H0735972 A JPH0735972 A JP H0735972A
Authority
JP
Japan
Prior art keywords
lens
lens component
object side
component
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5178961A
Other languages
Japanese (ja)
Inventor
Atsushi Shibayama
敦史 芝山
Koichi Oshita
孝一 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5178961A priority Critical patent/JPH0735972A/en
Publication of JPH0735972A publication Critical patent/JPH0735972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a triplet lens which maintains sufficient ambient light quantity and by which various kinds of aberration can be corrected satisfactorily and provided with a viewing angle >=65 deg. by employing triplet lens component constitution and satisfying a specific condition. CONSTITUTION:This lens is constituted of a first lens component L1 of positive meniscus lens whose convex surface is faced with an object side, a second lens component L2 of biconvcave negative lens, a third lens component L3 of biconvex positive lens, and a diaphragm S sequentially from the object side, and satisfies the following conditions; 0.74f<=f1<=0.95f, 0.27f<=-f2<=0.40f, 0.30f<=f3<=0.43f, 0.24f<= SIGMA d<=0.33f, 0.08f<=d1<=0.12f, 0.25f<=r1<=0.35f, 0.75f<=-r3 <=0.95f, 1.75<=n3<=1.85, 47<=nu1<=60, and 5<=nu1-nu3<=18. Where, distance between the object side surface of the lens component L1 and the image side surface of the lens component L3 is assumed as SIGMAd, and the focal length of the whole system as (f). The focal length also is assumed as (f), axial thickness as (d), radius of curvature of an object side surface as (r), a refractive index as (n), and Abbe number as (SIGMA) for each lens component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画角が約65度乃至7
5度で、Fナンバーが3.5〜4.5程度のビハインド
絞りを有するトリプレットレンズに関し、特にレンズシ
ャッター式のコンパクトカメラに適するトリプレットレ
ンズに関する。
BACKGROUND OF THE INVENTION The present invention has an angle of view of about 65 degrees to 7 degrees.
The present invention relates to a triplet lens having a behind diaphragm with an F number of about 3.5 to 4.5 at 5 degrees, and particularly to a triplet lens suitable for a lens shutter type compact camera.

【0002】[0002]

【従来の技術】少ないレンズ枚数で諸収差を補正し得る
ことから、小型カメラの撮影レンズとしてテッサータイ
プやトリプレットタイプがよく用いられている。特に、
合焦時に絞りを固定し、レンズのみを繰り出す方式が機
構上有利であるので、ビハインド絞りのレンズ構成を採
ることが多い。この種のトリプレットレンズとして、例
えば本発明と同一出願人による特開昭60−17731
3号公報等が知られている。
2. Description of the Related Art Since various aberrations can be corrected with a small number of lenses, a tesser type or a triplet type is often used as a taking lens of a small camera. In particular,
Since a mechanism in which the diaphragm is fixed and only the lens is extended when focusing is advantageous in terms of mechanism, a lens structure of a behind diaphragm is often adopted. As such a triplet lens, for example, JP-A-60-17731 by the same applicant as the present invention is disclosed.
No. 3, etc. are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記の
特開昭60−177313号公報で提案している撮影レ
ンズは、撮影画角が約60度程度と比較的狭い。従っ
て、レンズ全長が長くなり、カメラに組み込んだ際にカ
メラの厚さを小型化するのが困難であった。そこで本発
明は、以上のような問題点を解決し、コンパクトな形態
を保ちながら充分な周辺光量を維持し、かつ諸収差が良
好に補正され、画角65度以上を有するトリプレットレ
ンズを提供することを目的とする。
However, the photographing lens proposed in the above-mentioned Japanese Patent Laid-Open No. 60-177313 has a relatively narrow photographing field angle of about 60 degrees. Therefore, the total lens length becomes long, and it is difficult to reduce the thickness of the camera when it is incorporated in the camera. Therefore, the present invention solves the above problems, and provides a triplet lens which maintains a sufficient peripheral light amount while maintaining a compact form, is well corrected for various aberrations, and has an angle of view of 65 degrees or more. The purpose is to

【0004】[0004]

【課題を解決するための手段】そのため本発明は、物体
側より順に、物体側に凸面を向けた正メニスカスレンズ
の第1レンズ成分と、両凹負レンズの第2レンズ成分
と、両凸正レンズの第3レンズ成分と、絞りとからな
り、以下の条件を満足することによって以上の問題点を
解決したビハインド絞りを有するトリプレットレンズを
得ようとするものである。 (1) 0.74f≦ f1 ≦0.95f (2) 0.27f≦−f2 ≦0.40f (3) 0.30f≦ f3 ≦0.43f (4) 0.24f≦ Σd ≦0.33f (5) 0.08f≦ d1 ≦0.12f (6) 0.25f≦ r1 ≦0.35f (7) 0.75f≦−r3 ≦0.95f (8) 1.75 ≦ n3 ≦1.85 (9) 47 ≦ ν1 ≦ 60 (10) 5 ≦ν1 −ν3 ≦ 18 但し、 f :全系の焦点距離、 f1 :第1レンズ成分の焦点距離、 f2 :第2レンズ成分の焦点距離、 f3 :第3レンズ成分の焦点距離、 Σd:第1レンズ成分の物体側面から第3レンズ成分の
像側面までを光軸に沿って測った距離、 d1 :第1レンズ成分の軸上厚、 r1 :第1レンズ成分の物体側面の曲率半径、 r3 :第2レンズ成分の物体側面の曲率半径、 n3 :第3レンズ成分のd線に対する屈折率、 ν1 :第1レンズ成分のアッベ数、 ν3 :第3レンズ成分のアッベ数、 である。
Therefore, according to the present invention, in order from the object side, the first lens component of a positive meniscus lens having a convex surface facing the object side, the second lens component of a biconcave negative lens, and the biconvex positive lens component are provided. An objective of the present invention is to obtain a triplet lens having a behind diaphragm, which is composed of a third lens component of a lens and a diaphragm, and which satisfies the following conditions and solves the above problems. (1) 0.74f ≤ f1 ≤ 0.95f (2) 0.27f ≤ -f2 ≤ 0.40f (3) 0.30f ≤ f3 ≤ 0.43f (4) 0.24f ≤ Σd ≤ 0.33f ( 5) 0.08f ≤ d1 ≤ 0.12f (6) 0.25f ≤ r1 ≤ 0.35f (7) 0.75f ≤ -r3 ≤ 0.95f (8) 1.75 ≤ n3 ≤ 1.85 (9 ) 47 ≤ ν1 ≤ 60 (10) 5 ≤ ν1 -ν3 ≤ 18 where f is the focal length of the entire system, f1 is the focal length of the first lens component, f2 is the focal length of the second lens component, and f3 is the third lens component. Focal length of lens component, Σd: distance measured from the object side surface of the first lens component to the image side surface of the third lens component along the optical axis, d1: axial thickness of the first lens component, r1: first lens Radius of curvature of component side surface of object, r3: radius of curvature of side surface of object of second lens component, n3: second radius Refractive index at the d-line of the lens component, .nu.1: Abbe number of the first lens component, .nu.3: Abbe number of the third lens component, it is.

【0005】[0005]

【作用】一般に、トリプレットレンズはレンズ構成枚数
が少ないことから、諸収差を補正するために必要な設計
上任意に設定し得る自由度は少ない。しかしながら、レ
ンズの全厚及び正屈折力の配分等に、ある程度の自由度
が存在していることから、それらを利用して設計を行う
ことができる。
In general, since the triplet lens has a small number of lens components, the degree of freedom that can be arbitrarily set in the design necessary for correcting various aberrations is small. However, since there is a certain degree of freedom in the total thickness of the lens, the distribution of the positive refractive power, and the like, it is possible to design by utilizing them.

【0006】ところで、トリプレットレンズを広角化す
るに当たり、最も重要かつ困難な点は、非点収差の補正
と周辺光量の確保である。そこで本発明においては、条
件式(1),(2),(3)で広角化に最適な屈折力配
分を規定し、非点収差の良好な補正と、周辺光量の確保
を両立している。条件式(1)は、第1レンズ成分の屈
折力に関する条件式であり、この下限値を越えると、第
1レンズ成分の屈折力が過大になり、瞳の収差によって
周辺の光量が不足する。逆に上限を越えると、第1レン
ズ成分の屈折力が小さいために、第2レンズ成分におけ
る軸上周辺光線の高さが増し、高次の球面収差の発生が
著しい。
By the way, in widening the angle of the triplet lens, the most important and difficult points are correction of astigmatism and securing of peripheral light quantity. Therefore, in the present invention, the conditional expressions (1), (2), and (3) define the optimum refractive power distribution for widening the angle, thereby achieving both good correction of astigmatism and securing of peripheral light amount. . Conditional expression (1) is a conditional expression regarding the refractive power of the first lens component. If the lower limit value is exceeded, the refractive power of the first lens component becomes excessive, and the peripheral light amount becomes insufficient due to the aberration of the pupil. On the other hand, when the value exceeds the upper limit, the refractive power of the first lens component is small, so that the height of the axial marginal ray in the second lens component increases, and the high-order spherical aberration is significantly generated.

【0007】条件式(2)は、第2レンズ成分の屈折力
に関し、ペッツバール和と像面の曲がりを改善するため
の条件式である。条件式(2)の下限を越えるとペッツ
バール和を小さくするのに有利であり、像面湾曲の補正
に有利であると思えるが、高次の像面湾曲の曲がりによ
って、却って像面湾曲が増加するため好ましくない。逆
に上限を越えるとペッツバール和が過大になり、サジッ
タル像面での像面湾曲が負に残存してしまう。
Conditional expression (2) is a conditional expression for improving the Petzval sum and the curvature of the image plane with respect to the refractive power of the second lens component. If the lower limit of conditional expression (2) is exceeded, it may be advantageous to reduce the Petzval sum, and it may be advantageous to correct the field curvature. However, the curvature of the higher-order field curvature rather increases the field curvature. It is not preferable because On the other hand, if the upper limit is exceeded, the Petzval sum becomes excessive and the field curvature at the sagittal image surface remains negative.

【0008】条件式(3)は、第3レンズ成分の屈折力
に関する条件式であり、この下限値を越えると、第3レ
ンズ成分の屈折力が大きくなり、バックフォーカスが増
大してレンズ全長が大きくなる。反対に上限値を越える
とレンズ全長の短縮には有利であるが、周辺光量不足
や、正の歪曲収差の発生をまねき好ましくない。更に、
本発明においては、条件式(4),(5)を設定するこ
とによって、良好な収差補正とコンパクトさとの両立を
図った。収差を補正する上では、レンズの全厚がある程
度大きい方が望ましいが、周辺光量の確保を考えた場
合、第1レンズ成分の有効径が過大となりコンパクト化
に反する。また、第1レンズ成分の中心厚においても球
面収差を補正するためには、厚い方が有利であるが、上
記と同様の理由から、周辺光量の確保とコンパクトさを
両立することは困難である。従って、条件式(4),
(5)の上限を越えるとコンパクト化が困難になり、逆
に下限を越えるとコマ収差と球面収差の補正が困難にな
るため、Fナンバー3.5〜4.5という明るさが保て
なくなる。
Conditional expression (3) is a conditional expression relating to the refractive power of the third lens component. When the lower limit value is exceeded, the refractive power of the third lens component increases, the back focus increases, and the total lens length increases. growing. On the other hand, when the value exceeds the upper limit, it is advantageous for shortening the total length of the lens, but it is not preferable because it causes insufficient peripheral light quantity and positive distortion. Furthermore,
In the present invention, by setting the conditional expressions (4) and (5), both good aberration correction and compactness are achieved. In order to correct aberrations, it is desirable that the total thickness of the lens be large to some extent, but in consideration of securing the peripheral light amount, the effective diameter of the first lens component becomes excessively large, which is against compactness. Further, in terms of the center thickness of the first lens component, it is advantageous to have a large thickness in order to correct spherical aberration, but for the same reason as described above, it is difficult to secure both the peripheral light amount and compactness. . Therefore, conditional expression (4),
If the upper limit of (5) is exceeded, downsizing becomes difficult, and if the lower limit is exceeded, it becomes difficult to correct coma aberration and spherical aberration. Therefore, the F number of 3.5 to 4.5 cannot be maintained. .

【0009】条件式(6)は、非点収差と球面収差の良
好な補正に関する条件式である。この上限を越えると非
点収差が著しく、かつ球面収差が補正過剰となり、広い
画角にわたる像面の平坦性を保つことが困難になり、逆
に下限を越えた場合、高次の球面収差の発生が著しい。
条件式(7)は球面収差とコマ収差の良好な補正に関す
る条件式である。この上限をこえると球面収差が補正不
足となり、反対に下限を越えるとコマ収差の発生が甚大
となる。
Conditional expression (6) is a conditional expression regarding good correction of astigmatism and spherical aberration. If this upper limit is exceeded, astigmatism will be significant, and spherical aberration will be overcorrected, making it difficult to maintain flatness of the image surface over a wide angle of view. Conversely, if the lower limit is exceeded, high-order spherical aberration Occurrence is remarkable.
Conditional expression (7) is a conditional expression regarding favorable correction of spherical aberration and coma. If this upper limit is exceeded, spherical aberration will be undercorrected, and if the lower limit is exceeded, coma will be severely generated.

【0010】条件式(8)は、良好な像面の補正に関す
るものである。ペッツバール和を補正する上では、正屈
折力としての役割分担が大きい第3レンズ成分の屈折率
を出来るだけ高くすることが望ましい。しかしながら、
条件式(8)の下限を越えた場合、ペッツバール和の補
正が困難になり、逆に上限を越えると高価なガラス材料
を用いねばならず、コスト高を招き望ましくない。
Conditional expression (8) relates to favorable correction of the image plane. In correcting the Petzval sum, it is desirable to increase the refractive index of the third lens component, which has a large share of the role of positive refractive power. However,
If the lower limit of conditional expression (8) is exceeded, it becomes difficult to correct Petzval's sum. On the contrary, if the upper limit of the conditional expression (8) is exceeded, an expensive glass material must be used, which is costly and undesirable.

【0011】条件式(9),(10)は色収差の補正に
関するものである。一般に、ビハインド絞りのレンズ
は、軸外の収差の補正が困難であり、色収差もその例外
ではない。特に、画角による倍率の色収差の曲がりは、
広角になるほど顕著になり、広角化を困難にしている。
この理由としては、第3レンズ成分に比べ、第2レンズ
成分および第1レンズ成分の斜光線に対する寄与が、画
角の増加に伴って急激に増加するためである。そこで、
第1レンズ成分に低分散のガラス材料を用いることが望
ましく、条件式(9)の下限を越えて第1レンズ成分を
高分散にすることは、倍率の色収差を増やしてしまうこ
とになるため好ましくない。逆に、この上限を越える
と、軸上色収差が過剰に補正されてしまう。また、トリ
プレットレンズの収差構造としては、色収差も含めて第
1レンズ成分と第2レンズ成分で過剰補正し、補正不足
の第3レンズ成分でその過剰分を相殺する構造になって
いる。それゆえビハインド絞りのレンズの場合、第1レ
ンズ成分に比べ第3レンズ成分が低分散であると、斜光
線に対する色収差が、軸上に比べて補正過剰になり、い
わゆる色のコマ収差が発生し、軸外性能を悪化させてし
まう。
Conditional expressions (9) and (10) relate to correction of chromatic aberration. Generally, it is difficult to correct off-axis aberrations in a lens with a behind aperture, and chromatic aberration is no exception. In particular, the bending of chromatic aberration of magnification due to the angle of view is
The wider the angle becomes, the more noticeable it becomes, making it difficult to achieve a wider angle.
The reason for this is that the contributions of the second lens component and the first lens component to the oblique rays are sharply increased as the angle of view is increased, as compared with the third lens component. Therefore,
It is desirable to use a low-dispersion glass material for the first lens component, and it is preferable to make the first lens component highly dispersed by exceeding the lower limit of the conditional expression (9) because chromatic aberration of magnification is increased. Absent. On the contrary, if the upper limit is exceeded, the axial chromatic aberration will be excessively corrected. Further, the aberration structure of the triplet lens is such that the first lens component and the second lens component are overcorrected including the chromatic aberration, and the undercorrected third lens component cancels the excess. Therefore, in the case of a lens with a behind diaphragm, if the third lens component has a low dispersion compared to the first lens component, chromatic aberration for oblique rays is overcorrected compared to on-axis, and so-called chromatic coma aberration occurs. , Deteriorates off-axis performance.

【0012】そこで本発明は、条件式(10)において
第1レンズ成分の分散に対する第3レンズ成分の分散を
規定することにより、上記問題点の解決を図った。条件
式(10)の上限を越えた場合、言い換えると第3レン
ズ成分を第1レンズ成分に対して過剰に高分散にした場
合、第3レンズ成分によって色収差が増えてしまうた
め、軸上色収差の補正が不足になる。反対に条件式(1
0)の下限を越えると軸上色収差が補正過剰となる。よ
って、この条件範囲を満足することが好ましい。
Therefore, the present invention has solved the above-mentioned problems by defining the dispersion of the third lens component with respect to the dispersion of the first lens component in conditional expression (10). If the upper limit of conditional expression (10) is exceeded, in other words, if the third lens component is made to have an excessively high dispersion with respect to the first lens component, chromatic aberration will increase due to the third lens component, so that axial chromatic aberration The correction is insufficient. On the contrary, conditional expression (1
If the lower limit of 0) is exceeded, axial chromatic aberration will be overcorrected. Therefore, it is preferable to satisfy this condition range.

【0013】[0013]

【実施例】以下に、本発明による第1実施例乃至第4実
施例を掲げる。第1実施例のレンズ断面図を図1に、第
2実施例のレンズ断面図を図3に、第3実施例のレンズ
断面図を図5に、第4実施例のレンズ断面図を図7に示
す。各レンズ断面図より、第1実施例乃至第4実施例
は、いずれも、物体側より順に、物体側に凸面を向けた
正メニスカスレンズの第1レンズ成分L1 と、両凹負レ
ンズの第2レンズ成分L2 と、両凸正レンズの第3レン
ズ成分L3 と、絞りSとから構成されている。
EXAMPLES First to fourth examples of the present invention will be given below. FIG. 1 is a lens sectional view of the first embodiment, FIG. 3 is a lens sectional view of the second embodiment, FIG. 5 is a lens sectional view of the third embodiment, and FIG. 7 is a lens sectional view of the fourth embodiment. Shown in. From each lens cross-sectional view, in all of the first to fourth examples, in order from the object side, the first lens component L1 of the positive meniscus lens with the convex surface facing the object side and the second lens of the biconcave negative lens are shown. It is composed of a lens component L2, a third lens component L3 of a biconvex positive lens, and a diaphragm S.

【0014】以下の表中、fは全系の焦点距離、Bfは
バックフォーカス、FNはFナンバー、ωは画角、rは
曲率半径、dは面間隔、νはアッベ数、nはd線(λ=
587.6nm)における屈折率を表している。
In the table below, f is the focal length of the entire system, Bf is the back focus, FN is the F number, ω is the angle of view, r is the radius of curvature, d is the surface spacing, ν is the Abbe number, and n is the d line. (Λ =
(587.6 nm).

【0015】[0015]

【表1】 第1実施例の諸元値 f=100.00 Bf=82.26 FN=3.60 2 ω=7
4.1゜
[Table 1] Specifications of the first embodiment f = 100.00 Bf = 82.26 FN = 3.60 2 ω = 7
4.1 °

【0016】[0016]

【表2】 第2実施例の諸元値 f=100.00 Bf=83.69 FN=3.60 2 ω=6
7.6゜
[Table 2] Specifications of the second embodiment f = 100.00 Bf = 83.69 FN = 3.60 2 ω = 6
7.6 °

【0017】[0017]

【表3】 第3実施例の諸元値 f=100.00 Bf=81.83 FN=4.05 2 ω=6
9.6゜
[Table 3] Specifications of the third embodiment f = 100.00 Bf = 81.83 FN = 4.05 2 ω = 6
9.6 °

【0018】[0018]

【表4】 第4実施例の諸元値 f=100.00 Bf=82.65 FN=4.58 2 ω=7
0.1゜ 本発明における第1実施例乃至第4実施例の条件対応数
値を以下の表5に示す。
[Table 4] Specifications of the fourth embodiment f = 100.00 Bf = 82.65 FN = 4.58 2 ω = 7
0.1 ° The numerical values corresponding to the conditions of the first to fourth embodiments of the present invention are shown in Table 5 below.

【0019】[0019]

【表5】 条件対応数値表 第1実施例 第2実施例 第3実施例 第4実施例 (1) f1 /f 0.884 0.930 0.767 0.924 (2)−f2 /f 0.377 0.357 0.337 0.306 (3) f3 /f 0.410 0.400 0.411 0.338 (4) Σd/f 0.309 0.300 0.261 0.263 (5) d1 /f 0.105 0.106 0.103 0.088 (6) r1 /f 0.333 0.324 0.294 0.268 (7)−r3 /f 0.900 0.795 0.896 0.862 (8) n3 1.84042 1.84042 1.80454 1.80454 (9) ν1 49.4 49.4 53.9 55.6 (10) ν1 −ν3 6.1 6.1 14.3 16.0 図2は第1実施例の諸収差図であり、図4は第2実施例
の諸収差図であり、図6は第3実施例の諸収差図であ
り、図8は第4実施例の諸収差図である。
[Table 5] Numerical table for conditions 1st embodiment 2nd embodiment 3rd embodiment 4th embodiment (1) f1 / f 0.884 0.930 0.767 0.924 (2) -f2 / f 0.377 0.357 0.337 0.306 (3) f3 / f 0.410 0.400 0.411 0.338 (4) Σd / f 0.309 0.300 0.261 0.263 (5) d1 / f 0.105 0.106 0.103 0.088 (6) r1 / f 0.333 0.324 0.294 0.268 (7) -r3 / f 0.900 0.795 0.896 0.862 (8) n3 1.84042 1.84042 1.80454 1.80454 (9) ν1 49.4 49.4 53.9 55.6 (10) ν1 −ν3 6.1 6.1 14.3 16.0 FIG. 2 is an aberration diagram of the first embodiment, and FIG. 4 is an aberration diagram of the second embodiment. FIG. 6 is a diagram of various aberrations of the third example, and FIG. 8 is a diagram of various aberrations of the fourth example.

【0020】各収差図においてdをd線(λ=587.
6nm)、gをg線(λ=435.8nm)とし、Hを
入射光線の光軸からの高さ、Yを像高、Aを画角とし、
非点収差図において実線をサジッタル像面、破線をメリ
ジオナル像面とした。これらの諸収差図からも明らかな
ように、本発明における第1実施例乃至第4実施例は、
いずれも良好に収差補正されていることが明らかであ
る。
In each aberration diagram, d is the d line (λ = 587.
6 nm), g is the g-line (λ = 435.8 nm), H is the height from the optical axis of the incident ray, Y is the image height, and A is the angle of view,
In the astigmatism diagram, the solid line is the sagittal image plane and the broken line is the meridional image plane. As is clear from these aberration diagrams, the first to fourth examples of the present invention are
It is clear that the aberrations are corrected well in all cases.

【0021】なお、本発明によるトリプレットレンズ
は、レンズの全厚が比較的薄いことから、その像側にリ
アコンバーターレンズを装着した場合、その主点間隔を
小とし得るため、リアコンバーターレンズのパワーに比
し、より高倍率が得られる。従って本発明は、いわゆる
多焦点カメラのマスターレンズとしても好適である。ま
た、本発明のレンズは従来のレンズに比べて画角が広い
ことから同じイメージサイズのカメラに搭載する場合、
従来のレンズに比べて非常に小型のレンズとして構成す
ることが出来る。更に、従来のレンズと同じ焦点距離の
レンズとして構成する場合は、その広いイメージサイズ
を活かして、レンズ全体を光軸と垂直方向に移動させる
ことによって、あおり機能や防振機能、あるいはあおり
を利用したパララックス補正機能を容易にカメラに搭載
することも出来る。
In the triplet lens according to the present invention, the total thickness of the lens is relatively thin. Therefore, when the rear converter lens is mounted on the image side, the distance between the principal points can be made small. Higher magnification can be obtained compared to. Therefore, the present invention is also suitable as a master lens for so-called multifocal cameras. Further, since the lens of the present invention has a wider angle of view than the conventional lens, when mounted on a camera of the same image size,
It can be configured as a very small lens as compared to a conventional lens. Furthermore, when configuring as a lens with the same focal length as a conventional lens, by utilizing the wide image size, the entire lens is moved in the direction perpendicular to the optical axis to use the tilt function, anti-vibration function, or tilt function. The parallax correction function can be easily installed in the camera.

【0022】[0022]

【発明の効果】以上の如く本発明によれば、小型で、豊
富な周辺光量を確保し、画角65度乃至それ以上の広画
角を有し、かつ諸収差の補正の良好なビハインド絞りを
有するトリプレットレンズを達成することが出来る。
As described above, according to the present invention, the behind diaphragm which is small in size, secures abundant peripheral light quantity, has a wide angle of view of 65 degrees or more and has good correction of various aberrations. It is possible to achieve a triplet lens having

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のレンズ断面図FIG. 1 is a lens sectional view of a first embodiment.

【図2】第1実施例の収差図FIG. 2 is an aberration diagram of the first embodiment.

【図3】第2実施例のレンズ断面図FIG. 3 is a lens sectional view of a second embodiment.

【図4】第2実施例の収差図FIG. 4 is an aberration diagram of the second example.

【図5】第3実施例のレンズ断面図FIG. 5 is a lens sectional view of a third embodiment.

【図6】第3実施例の収差図FIG. 6 is an aberration diagram of the third embodiment.

【図7】第4実施例のレンズ断面図FIG. 7 is a lens sectional view of a fourth embodiment.

【図8】第4実施例の収差図FIG. 8 is an aberration diagram of the fourth embodiment.

【符号の説明】[Explanation of symbols]

L1 ・・・・第1レンズ成分 L2 ・・・・第2レンズ成分 L3 ・・・・第3レンズ成分 S ・・・・絞り L1 ... First lens component L2 ... Second lens component L3 ... Third lens component S .... Aperture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、物体側に凸面を向けた
正メニスカスレンズの第1レンズ成分と、両凹負レンズ
の第2レンズ成分と、両凸正レンズの第3レンズ成分
と、絞りとからなり、以下の条件を満足することを特徴
とするビハインド絞りを有するトリプレットレンズ。 0.74f≦ f1 ≦0.95f 0.27f≦−f2 ≦0.40f 0.30f≦ f3 ≦0.43f 0.24f≦ Σd ≦0.33f 0.08f≦ d1 ≦0.12f 0.25f≦ r1 ≦0.35f 0.75f≦−r3 ≦0.95f 1.75 ≦ n3 ≦1.85 47 ≦ ν1 ≦ 60 5 ≦ν1 −ν3 ≦ 18 但し、 f :全系の焦点距離、 f1 :第1レンズ成分の焦点距離、 f2 :第2レンズ成分の焦点距離、 f3 :第3レンズ成分の焦点距離、 Σd:第1レンズ成分の物体側面から第3レンズ成分の
像側面までを光軸に沿って測った距離、 d1 :第1レンズ成分の軸上厚、 r1 :第1レンズ成分の物体側面の曲率半径、 r3 :第2レンズ成分の物体側面の曲率半径、 n3 :第3レンズ成分のd線に対する屈折率、 ν1 :第1レンズ成分のアッベ数、 ν3 :第3レンズ成分のアッベ数、 である。
1. A first lens component of a positive meniscus lens having a convex surface facing the object side, a second lens component of a biconcave negative lens, a third lens component of a biconvex positive lens, and an aperture stop in order from the object side. A triplet lens having a behind diaphragm, which is characterized by satisfying the following conditions. 0.74f ≤ f1 ≤ 0.95f 0.27f ≤ -f2 ≤ 0.40f 0.30f ≤ f3 ≤ 0.43f 0.24f ≤ Σd ≤ 0.33f 0.08f ≤ d1 ≤ 0.12f 0.25f ≤ r1 ≤ 0.35f 0.75f ≤-r3 ≤ 0.95f 1.75 ≤ n3 ≤ 1.85 47 ≤ ν1 ≤ 60 5 ≤ ν1 -ν3 ≤ 18 However, f: focal length of the entire system, f1: first F2: focal length of second lens component, f3: focal length of third lens component, Σd: along the optical axis from the object side surface of the first lens component to the image side surface of the third lens component Measured distance, d1: axial thickness of first lens component, r1: radius of curvature of object side surface of first lens component, r3: radius of curvature of object side surface of second lens component, n3: d line of third lens component Refractive index with respect to, ν1: Abbe number of the first lens component, ν3 Abbe number of the third lens component, it is.
JP5178961A 1993-07-20 1993-07-20 Triplet lens provided with behind diaphragm Pending JPH0735972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5178961A JPH0735972A (en) 1993-07-20 1993-07-20 Triplet lens provided with behind diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5178961A JPH0735972A (en) 1993-07-20 1993-07-20 Triplet lens provided with behind diaphragm

Publications (1)

Publication Number Publication Date
JPH0735972A true JPH0735972A (en) 1995-02-07

Family

ID=16057692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5178961A Pending JPH0735972A (en) 1993-07-20 1993-07-20 Triplet lens provided with behind diaphragm

Country Status (1)

Country Link
JP (1) JPH0735972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110189B2 (en) 2004-03-24 2006-09-19 Fuji Photo Film Co., Ltd. Photographing lens having three lens element
CN106154511A (en) * 2015-04-08 2016-11-23 亚太精密工业(深圳)有限公司 Infrared ray follows the trail of camera lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110189B2 (en) 2004-03-24 2006-09-19 Fuji Photo Film Co., Ltd. Photographing lens having three lens element
CN106154511A (en) * 2015-04-08 2016-11-23 亚太精密工业(深圳)有限公司 Infrared ray follows the trail of camera lens
CN106154511B (en) * 2015-04-08 2019-08-13 亚太精密工业(深圳)有限公司 Infrared ray tracks camera lens

Similar Documents

Publication Publication Date Title
JPH05157965A (en) Wide-angle lens
JPH1152231A (en) Read-out lens
US6580568B2 (en) Telephoto lens system
JP3409231B2 (en) Zoom lens
JPH06324264A (en) Wide angle lens
JPH09113799A (en) Retrofocus type photographic lens
US5513045A (en) Fast aspherical lens system
JP2978283B2 (en) Telephoto objective lens
JP4098586B2 (en) Zoom lens
JPH07318803A (en) Rear conversion lens
JPH0792542B2 (en) Triplet lens system after diaphragm
JP2000028919A (en) Middle telephotographic lens
JPH06308384A (en) Large-diameter wide-angle photographic lens
JP4491107B2 (en) Lens for photography
JP2006349904A (en) Rear conversion lens
JP2706946B2 (en) Front aperture projection lens
JP4674407B2 (en) Wide converter lens
JPH07104183A (en) Bright triplet lens
JP2001174701A (en) Wide angle photographic lens system
JP3038974B2 (en) Small wide-angle lens
JP3683995B2 (en) Endoscope objective lens
JPH0574806B2 (en)
JPH0735972A (en) Triplet lens provided with behind diaphragm
JP2900487B2 (en) Compact zoom lens
CN212379644U (en) Optical imaging system